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We obtain complete convergence results for arrays of rowwise independent Banach
space valued random elements. Compared with similar results presented in the
probabilistic literature our conditions are weaker.

Keywords Banach space valued random element; Complete convergence;
Convergence in probability; Rowwise independence.

Mathematics Subject Classification 60B12; 60F15; 60G50.

1. Introduction

Let ���� � P� be a probability space and let B be a real separable Banach space with
norm � · �. A random element is defined to be an � -measurable mapping of � into
B with the Borel �-algebra (i.e., the �-algebra generated by the open sets determined
by � · �). The concept of independent random elements is a direct extension of the
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566 Chen et al.

concept of independent random variables. A detailed account of basic properties of
random elements in real separable Banach spaces can be found in Taylor [1].

Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent, but not
necessarily identically distributed, random elements taking values in B. In general
the case kn = � is not precluded. Rowwise independence means that the random
elements within each row are independent but that no independence is assumed
between rows.

A sequence of Banach space valued random elements �Un� n ≥ 1� is said to
converge completely, if for any � > 0,

�∑
n=1

P��Un� > �� < �	

By the Borel-Cantelli lemma, this implies �Un� → 0 almost surely as n → �. The
converse implication is true if �Un� n ≥ 1� are independent. This notion was given
first by Hsu and Robbins [2] in the case of real-valued random variables. From then
on, there are many authors who devote their study to the complete convergence
for partial sums or weighted sums of independent real-valued random variables or
Banach space valued random elements (see [3–5, 7]).

Hu et al.’s [5, Theorem 3.1] presents a general result establishing complete
convergence for row sums of an array of rowwise independent but not necessary
identically distributed Banach space valued random elements. Their result also
specified the corresponding rate of convergence. Thus, Hu et al. [5] result unifies and
extends previously obtained results in the literature and is given in the following
theorem.

Theorem A. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and let �cn� n ≥ 1� be a sequence of positive constants such that

�∑
n=1

cn

kn∑
k=1

P
{�Xnk� > �

}
< � for all � > 0� (1.1)

there exist p ≥ 1/2� J ≥ 2, and 
 > 0 such that

�∑
n=1

cn

(
E

[ kn∑
k=1

�XnkI
{�Xnk� ≤ 


}�2]p)J

< �� (1.2)

and

∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥→ 0 in probability	 (1.3)

Furthermore, suppose that

kn∑
k=1

P
{�Xnk� > 


} = o�1� as n → � (1.4)
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Complete Convergence for Arrays of Random Elements 567

if lim infn→� cn = 0. Then

�∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥ > �

}
< � for all � > 0	 (1.5)

It is implicitly assumed in Theorem A that in the case kn = �, the series∑kn
k=1 Xnk converge almost surely.
Hu et al. [7] and Ahmed et al. [8] present applications of Theorem A to obtain

new complete convergence results.
Kruglov et al. [9], shows that in the case of random variables, assumptions (1.3)

and (1.4) are redundant. Namely, the following result was proved [9, Theorem 1].

Theorem B. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
variables and let �cn� n ≥ 1� be a sequence of positive constants that satisfy
condition (1.1), and assume that there exist J > 0, 
 > 0 and p ≥ 1 such that

�∑
n=1

cn

(
E

∣∣∣∣
kn∑
k=1

�XnkI��Xnk� ≤ 
�− EXnkI��Xnk� ≤ 
��

∣∣∣∣
p)J

< �	

Then

�∑
n=1

cnP

{
max
1≤m≤kn

∣∣∣∣
m∑

k=1

�Xnk − EXnkI��Xnk� ≤ 
��

∣∣∣∣ > �

}
< ��

for all � > 0.

It is possible to show that condition (1.3) cannot be omitted from Theorem A if
we consider a general (without any geometrical conditions) Banach space setting. It
is also shown in Hu et al. [5] in Proposition 3.1 that condition (1.1) is necessary for
(1.5). It is interesting to “remove” condition (1.4). The first result in this direction in
a Banach space setting was presented in Sung et al.’s [10, Theorem 3], as follows.

Theorem C. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and �cn� n ≥ 1� a sequence of positive constants. Suppose that assumption (1.1)
is fulfilled and there exist J > 0� 
 > 0, and p ≥ 1 such that

�∑
n=1

cn

(
E

∥∥∥∥
kn∑
k=1

�XnkI��Xnk� ≤ 
�− EXnkI��Xnk� ≤ 
��

∥∥∥∥
p)J

< �	

Then

�∑
n=1

cnP

(
max
1≤m≤kn

∥∥∥∥
m∑

k=1

�Xnk − EXnkI��Xnk� ≤ 
��

∥∥∥∥ > �

)
< � for all � > 0	

Note that the conclusion of Theorems B and C are different than the conclusion
of Theorem A. One of the differences is that the conclusions of Theorems B
and C deal with maxima of partial sums. But the main difference appears in
Sung et al. [10], where the authors required the centering by expectations of
truncated random variables. In this note, we show that Theorem A holds without
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568 Chen et al.

condition (1.4), and also establish the rate of convergence for maxima of partial
sums without centering. The proofs are quite different from Sung et al. [10] and Hu
et al. [5].

In the following, C always stands for a positive constant which may differ from
one place to another.

2. Formulation of the Main Results

The main result of this article is the following theorem which shows that
condition (1.4) in Theorem A in the case lim infn→� cn = 0 is redundant.

Theorem 1. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and let �cn� n ≥ 1� be a sequence of positive constants such that (1.1)–(1.3)
hold. Then (1.5) is true.

The following example shows that Theorem 1 is more general than Theorem 3.1
of Hu et al. [5].

Example. Define sequences �cn� n ≥ 1� and �kn� n ≥ 1� by cn = 1
n

and kn = n.
Define an array �Xnk� 1 ≤ k ≤ n� n ≥ 1� by Xn1 = · · · = Xn�n−1 = j/n and Xnn =
j/n− j if n = 2j , and Xnk = 0 for all 1 ≤ k ≤ n if n �= 2j . Then condition (1.1) holds
and there exists p ≥ 1/2� J ≥ 2 and 
 > 0 such that (1.5) holds and

∑kn
k=1 Xnk → 0

in probability. But for any 
 > 0 we have lim supn→�
∑n

k=1 P��Xnk� > 
� = 1. Hence,
we can apply Theorem 1 present in this article, but not Theorem 3.1 of Hu et al. [5].

Theorem 1 shows that Theorem 3.2 of Hu et al. [5] also holds without
redundant condition (1.4) in the case lim infn→� cn = 0.

We note that Theorem 1 has already been obtained in the special case p= 1
by Sung et al. [6]. Next, it appears that in the case of symmetric summands
Theorems B and C are slightly stronger results than Theorem 1 because they
deal with maximums of partial sums. Theorem 1 does not require symmetry of
distributions and we also provide some results for maximums of partial sums in
Theorems 3 and 4 below.

We can simplify condition (1.2) of Theorem 1 when absolute moments of some
order 0 < q ≤ 2 exist for the random elements comprising the arrays.

Theorem 2. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and let �cn� n ≥ 1� be a sequence of positive constants. Suppose that
E�Xnk�q < �� 1 ≤ k ≤ kn� n ≥ 1 for some 0 < q ≤ 2, (1.1), and (1.3) hold. If

�∑
n=1

cn

( kn∑
k=1

E�Xnk�q
)J

< �� (2.1)

then (1.5) holds.

Remark 1. By Theorem 2, it is not necessary to verify the condition (1.4) in the
proofs of all results obtained in Hu et al. [5, 7], and Ahmed et al. [8].
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Complete Convergence for Arrays of Random Elements 569

If we replace the condition (1.3) that
∑kn

k=1 Xnk → 0 in probability by the strictly
stronger condition

max
1≤m≤kn

P

{∥∥∥∥
m∑

k=1

Xnk

∥∥∥∥ > �

}
→ 0 for any � > 0 (2.2)

as n → �, we obtain the following results.

Theorem 3. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and let �cn� n ≥ 1� be a sequence of positive constants such that (1.1) holds
and there exists p ≥ 1/2� J ≥ 2 and 
 > 0 such that (1.2) holds. Then (2.2) implies that

�∑
n=1

cnP

{
max
1≤m≤kn

∥∥∥∥
m∑

k=1

Xnk

∥∥∥∥ > �

}
< � (2.3)

for all � > 0.

By Theorem 3 we have the following result.

Theorem 4. Let �Xnk� 1 ≤ k ≤ kn� n ≥ 1� be an array of rowwise independent random
elements and let �cn� n ≥ 1� be a sequence of positive constants. Suppose that
E�Xnk�q < �� 1 ≤ k ≤ kn� n ≥ 1 for some 0 < q ≤ 2, (1.1), (2.1), and (2.2) hold. Then
(2.3) holds.

Remark 2. By Theorem 4 we have that Corollary 4.2 of Hu et al. [5], Theorem 3.2
of Ahmed et al. [8], and Theorem 3.2 of Hu et al. [7] are still true if we replace
weighted sums by maxima of weighted sums.

Remark 3. If the condition (4.11) of Corollary 4.8 of Hu et al. [5] is strengthened
to max1≤m≤kn

�∑m
k=1 EnkI��nk� ≤ 
�� → 0 as n → �, then the corollary also holds

if we replace sums by maxima of sums.

3. Lemmata

In this section we present a few lemmas that play significant role in the proofs of
the main results.

Lemma 1 (Lemma 2.2(ii) of Hu et al. [5]). If �Yn� n ≥ 1� is a sequence of random
elements with Yn → 0 in probability, then for all t > 0 and sufficiently large n

P��Yn� > t� ≤ 2P��Y s
n� > t/2�	

The next lemma is a simple corollary of the contraction principle presented in
Lemma 6.5 of Ledoux and Talagrand [11].

Lemma 2. Let �Yi� i ≥ 1� be a sequence of symmetric random elements and �ai� i ≥ 1�
be a sequence of constants. Then for every t > 0:

P

{∥∥∥∥∑
i

YiI
{�Xi� ≤ ai

}∥∥∥∥ > t

}
≤ 2P

{∥∥∥∥∑
i

Yi

∥∥∥∥ > t

}
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570 Chen et al.

The next lemma concerns the relationship between convergence in probability
and mean convergence for sums of independent bounded random variables and can
be found in Hu et al. [5, Lemma 2.1].

Lemma 3. Let the array �Xnk� 1 ≤ k ≤ kn� n ≥ 1� of rowwise independent random
elements be symmetric and suppose there exists 
 > 0 such that �Xnk� ≤ 
 a.s. for all
1 ≤ k ≤ kn� n ≥ 1. If

∑kn
k=1 Xnk → 0 in probability, then E�∑kn

k=1 Xnk� → 0 as n → �.

Lemma 4 presented now is a combination of well-known inequalities by Von
Bahr and Esseen (part (i)) and Rosenthal (part (ii)). The proofs can be found in
Gut [12, Theorems 6.1(iii) and 9.1].

Lemma 4. Let X1� X2� 	 	 	 � Xn be independent mean zero random variables, p ≥ 1, and
suppose that E�Xk�p < � for all k.

(i) If 1 ≤ p ≤ 2, then E�∑n
k=1 Xk�p ≤ C

∑n
k=1 E�Xk�p.

(ii) If p > 2, then E�∑n
k=1 Xk�p ≤ max�

∑n
k=1 E�Xk�p� �

∑n
k=1 EX

2
k�

p/2�.

The next lemma is a famous cr-inequality (cf., e.g., [12, Theorem 2.2]).

Lemma 5. Let r > 0. Suppose that E�X�r < � and E�Y �r < �. Then

E�X + Y �r ≤ cr�E�X�r + E�Y �r ��

where cr = 1 when r ≤ 1 and cr = 2r−1 when r ≥ 1.

We also need the Ottaviani inequality (cf., e.g., [12, Theorem 7.7], or [11,
Lemma 6.2]).

Lemma 6. Suppose X1� X2� 	 	 	 � Xn are independent random variables, and let x and y
be positive reals. If

� = max
1≤k≤n

P��Sn − Sk� > y� < 1�

then

P

{
max
1≤m≤n

∥∥∥∥
m∑

k=1

Xk

∥∥∥∥ > x + y

}
≤ 1

1− �
P

{∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > x

}
	

The the last lemma is an iterated form of the Kahane–Hoffmann–Jorgensen
inequality (cf., e.g., [12, Theorem 7.5(iii)]).

Lemma 7. If X1� X2� 	 	 	 � Xn are independent symmetric random elements, then for all
t ≥ 0 and j ≥ 1

P

{∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > 3jt
}
≤ CjP

{
sup
1≤k≤n

�Xk� > t

}
+Dj

(
P

{∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > t

})2j

where Cj and Dj are positive constants depending only on j.
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Complete Convergence for Arrays of Random Elements 571

4. Proofs

Proof of Theorem 1. Let N1 = �n �
∑kn

k=1 P��Xnk� > 
� > 1� and N2 = �n �∑kn
k=1 P��Xnk� > 
� ≤ 1�. Then by condition (1.1)

∑
n∈N1

cn <
∑
n∈N1

cn

kn∑
k=1

P
{�Xnk� > 


} ≤ �∑
n=1

cn

kn∑
k=1

P
{�Xnk� > 


}
< �	

Note that for all � > 0,

�∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥ > �

}
≤ ∑

n∈N1

cn +
∑
n∈N2

cnP

{∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥ > �

}
	

Hence, to prove the theorem, it is enough to show that

∑
n∈N2

cnP

{∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥ > �

}
< �� for all � > 0	

Without loss of generality, we assume that N2 = �n� n ≥ 1�.
Let �Xs

nk� 1 ≤ k ≤ kn� n ≥ 1� be the symmetrized version of Xnk, i.e., Xs
nk =

Xnk − X∗
nk where Xnk and X∗

nk are independent and have the same distribution. By
Lemma 1, to prove the theorem, it is enough to show that

�∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xs
nk

∥∥∥∥ > �

}
< �� for all � > 0	

Note that for any � > 0 and some 
 > 0,

�∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xs
nk

∥∥∥∥ > �

}

≤
�∑
n=1

cn

kn∑
k=1

P
{�Xs

nk� > 

}+ �∑

n=1

cnP

{∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ > �

}

≤ 2
�∑
n=1

cn

kn∑
k=1

P
{�Xnk� > 
/2

}+ �∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ > �

}
	

In view of (1.1), it suffices to show that

�∑
n=1

cnP

{∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ > �

}
< � for all � > 0	

Since
∑kn

k=1 Xnk → 0 in probability implies
∑kn

k=1 X
s
nk → 0 in probability, hence

using the contraction principle formulated above in Lemma 2, we have

kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
� → 0 in probability	
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572 Chen et al.

By Lemma 3, we have

E

∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥→ 0 as n → �	

Now by Lemmas 1 and 7 with j = �Log J�+ 1 where Log denotes the logarithm
to the base 2 and �·� is the integer part function, and the weak symmetrization
inequality (cf. [12, Proposition 6.2]), we have for all large n

P

{∥∥∥∥
kn∑
k=1

XnkI��Xnk� ≤ 
�

∥∥∥∥ ≥ �

}

≤ 2P
{∥∥∥∥

kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ ≥ �/2
}
≤ 2Cj

kn∑
k=1

P

{
�Xs

nk� ≥ �

2 · 3j
}

+ 2Dj

(
P

{∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ ≥ �

2 · 3j
})J

≤ 4Cj

kn∑
k=1

P

{
�Xnk� ≥ �

4 · 3j
}
+ 2Dj

(
P

{∥∥∥∥
kn∑
k=1

Xs
nkI��Xs

nk� ≤ 
�

∥∥∥∥ ≥ �

2 · 3j
})J

	

Hence, by (1.1) it is enough to prove that

�∑
n=1

cn

(
E

[ kn∑
k=1

∥∥Xs
nkI��Xs

nk� ≤ 
�
∥∥2]p)J

< �	 (4.1)

Note that

�Xs
nkI��Xs

nk� ≤ 
�� = ��Xnk − X∗
nk�I��Xnk − X∗

nk� ≤ 
��
≤ ��Xnk − X∗

nk�I��Xnk − X∗
nk� ≤ 
� �Xnk� ≤ 
��

+ ��Xnk − X∗
nk�I��Xnk − X∗

nk� ≤ 
� �Xnk� > 
��
≤ ��Xnk − X∗

nk�I��Xnk − X∗
nk� ≤ 
� �Xnk� ≤ 
�� + 
I��Xnk� > 
�

= ��XnkI��Xnk� ≤ 
�− X∗
nkI��Xnk� ≤ 
��I��Xnk − X∗

nk� ≤ 
��
+ 
I��Xnk� > 
�

and in the same way

��XnkI��Xnk� ≤ 
�− X∗
nkI��Xnk� ≤ 
��I��Xnk − X∗

nk� ≤ 
��
≤ �XnkI��Xnk� ≤ 
� �X∗

nk� ≤ 
�− X∗
nkI��Xnk� ≤ 
� �X∗

nk� ≤ 
��
× I��Xnk − X∗

nk� ≤ 
�+ 
I��X∗
nk� > 
�

≤ �Xnk�I��Xnk� ≤ 
�+ �X∗
nk�I��X∗

nk� ≤ 
�+ 
I��X∗
nk� > 
�	

Hence,

�Xs
nkI��Xs

nk� ≤ 
�� ≤ �Xnk�I��Xnk� ≤ 
�+ �X∗
nk�I��X∗

nk� ≤ 
�

+ 
I��Xnk� > 
�+ 
I��X∗
nk� > 
�	
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Complete Convergence for Arrays of Random Elements 573

By the cr-inequality presented in Lemma 5 we have

E

[ kn∑
k=1

∥∥Xs
nkI��Xs

nk�≤ 
�
∥∥2]p ≤CE

[ kn∑
k=1

∥∥XnkI��Xnk�≤ 
�
∥∥2]p +CE

(
kn∑
k=1

I��Xnk�>
�

)p

	

Now we estimate the last expression in different ways for different values of p ≥ 1/2.
If 1/2 ≤ p ≤ 1, by the cr-inequality presented in Lemma 5 we have

E

( kn∑
k=1

I��Xnk� > 
�

)p

≤ E

( kn∑
k=1

I��Xnk� > 
�

)
=

kn∑
k=1

P��Xnk� > 
�	

If 1 < p ≤ 2, by the cr-inequality presented in Lemmas 5 and 4(i) and noticing
that

∑kn
k=1 P��Xnk� > 
� ≤ 1 for all n ≥ 1 we have

E

( kn∑
k=1

I��Xnk� > 
�

)p

≤ E

(∣∣∣∣
kn∑
k=1

I��Xnk� > 
�−
kn∑
k=1

P��Xnk� > 
�

∣∣∣∣+
kn∑
k=1

P��Xnk� > 
�

)p

≤ CE

∣∣∣∣
kn∑
k=1

I��Xnk� > 
�−
kn∑
k=1

P��Xnk� > 
�

∣∣∣∣
p

+ C
kn∑
k=1

P��Xnk� > 
�

≤ C
kn∑
k=1

E
∣∣I��Xnk� > 
�− P��Xnk� > 
�

∣∣p + C
kn∑
k=1

P��Xnk� > 
�

≤ C
kn∑
k=1

P��Xnk� > 
�	

If p > 2, by the cr-inequality presented in Lemmas 5 and 4(ii)

E

( kn∑
k=1

I��Xnk� > 
�

)p

≤ CE

∣∣∣∣
kn∑
k=1

I��Xnk� > 
�−
kn∑
k=1

P��Xnk� > 
�

∣∣∣∣
p

+ C
kn∑
k=1

P��Xnk� > 
�

≤ C
kn∑
k=1

E
∣∣I��Xnk� > 
�− P��Xnk� > 
�

∣∣p

+ C

( kn∑
k=1

E
∣∣I��Xnk� > 
�− P��Xnk� > 
�

∣∣2)p/2

+ C
kn∑
k=1

P��Xnk� > 
�

≤ C
kn∑
k=1

P��Xnk� > 
�	
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Therefore,

E

[ kn∑
k=1

∥∥Xs
nkI��Xs

nk� ≤ 
�
∥∥2]p ≤ CE

[ kn∑
k=1

∥∥XnkI��Xnk� ≤ 
�
∥∥2]p + C

kn∑
k=1

P��Xnk� > 
�	

Hence, by the cr-inequality (Lemma 5) and assumptions (1.1) and (1.2), (4.1)
holds. �

Proof of Theorem 2. In view of Theorem 1, it suffices to verify that (1.2) holds with
p = 1. For n ≥ 1 and any 
 > 0

E

( kn∑
k=1

∥∥XnkI��Xnk� ≤ 
�
∥∥2) =

kn∑
k=1

E
∥∥XnkI��Xnk� ≤ 
�

∥∥2 ≤ 
2−q
kn∑
k=1

E�Xnk�q

and (1.2) with p = 1 follows from (2.1). �

Proof of Theorem 3. By the Ottaviani inequality (Lemma 6), for any � > 0, for n
large enough we have

P

{
max
1≤m≤kn

∥∥∥∥
m∑

k=1

Xnk

∥∥∥∥ > �

}
≤ 2P

{∥∥∥∥
kn∑
k=1

Xnk

∥∥∥∥ > �/2
}
	

Hence, by Theorem 1 we have Theorem 3 at once. �

Proof of Theorem 4. The proof is the same as that of Theorem 2, only instead of
Theorem 1 we use Theorem 3. �
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