
ON CONVERGENCE OF SERIES OF

INDEPENDENT RANDOM ELEMENTS IN

BANACH SPACES

Eunwoo Nam

Department of Computer Science and Statistics,
Korean Air Force Academy, Cheongjoo,

Republic of Korea 363-849

Andrew Rosalsky

Department of Statistics, University of Florida,
Gainesville, Florida 32611 U.S.A.

Andrej I. Volodin

Research Institute of Mathematics and Mechanics,
Kazan State University, Kazan 420008, Tatarstan, Russia

November 8, 2002

empty

ABSTRACT

The rate of convergence for an almost certainly convergent series Sn =
∑n
i=1 Vi of

independent random elements in a real separable Banach space is studied in this paper.
More specifically, when Sn converges almost certainly to a random element S, the tail series
Tn ≡ S−Sn−1 =

∑∞
i=n Vi is a well-defined sequence of random elements with Tn → 0 almost

certainly. The main result establishes for a sequence of positive constants {bn, n ≥ 1} with
bj ≤ Const. bn whenever j ≥ n ≥ 1 the equivalence between the tail series weak law of large

numbers Tn/bn
P→ 0 and the limit law supj≥n ||Tj ||/bn

P→ 0 thereby extending a result of
Nam and Rosalsky [20] to a Banach space setting while also simplifying the argument used
in the earlier result. The quasi-monotonicity proviso on {bn, n ≥ 1} cannot be dispensed
with.

1 Introduction

Throughout this paper, {Vn, n ≥ 1} is a sequence of independent random elements defined
on a probability space (Ω,F , P ) and assuming values in a real separable Banach space X
with norm || · ||. As usual, their partial sums will be denoted by Sn =

∑n
i=1 Vi, n ≥ 1.
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Woyczyński [24, 25], Jain [13], Giné, Mandrekar, and Zinn [11], and Etemadi [10] among
others provided conditions under which Sn converges almost certainly (a.c.) (to a random
element). For example, Woyczyński [25] proved that if the Banach space X is of Rademacher
type p (1 ≤ p ≤ 2) and if

EVn = 0, n ≥ 1, and
∞∑
n=1

E||Vn||p <∞,

then Sn converges a.c. Of course, in the (real-valued) random variable case, this result is
well known and follows readily from the celebrated Kolmogorov three-series criterion (see
Corollary 5.1.3 of Chow and Teicher [5, p. 117]).

When Sn converges a.c. to a random element S, then (set S0 = 0)

Tn ≡ S − Sn−1 =
∞∑
i=n

Vi, n ≥ 1

is a well-defined sequence of random elements (referred to as the tail series) with

Tn → 0 a.c. (1.1)

In this paper, we shall be concerned with the rate in which Sn converges to S or, equivalently,
in which the tail series Tn converges to 0. Recalling that (1.1) is equivalent to

sup
j≥n
||Tj ||

P→ 0,

Rosalsky and Rosenblatt [22] provided conditions in their Theorem 4.2 in order for the limit
law

supj≥n ||Tj ||
bn

P→ 0 (1.2)

to hold for a given sequence of positive constants {bn, n ≥ 1} thereby extending Theorem
4 of Nam and Rosalsky [18] which pertained to only the random variable case. While the
proof of Theorem 4.2 of Rosalsky and Rosenblatt [22] bears some affinity to that of its
random variable counterpart (Theorem 4 of Nam and Rosalsky [18]), the overall argument
was different and substantially simpler. Thus, Theorem 4.2 of Rosalsky and Rosenblatt [22]
not only extended but, also, simplified the special case established by Nam and Rosalsky
[18]. The limit law (1.2) in the random variable case was apparently first investigated by
Nam and Rosalsky [18]. Of course, the Nam and Rosalsky [18] and Rosalsky and Rosenblatt
[22] results are of greatest interest when bn = o(1). Rosalsky and Rosenblatt [22] provided
examples illustrating the sharpness of their work.

The sequence of random elements {Vn, n ≥ 1} is said to obey the tail series weak law
of large numbers (WLLN) (resp., strong law of large numbers (SLLN)) with respect to the
norming constants bn > 0 if the tail series Tn is well defined and

Tn
bn

P→ 0 (1.3)

(resp.,
Tn
bn
→ 0 a.c.). (1.4)

Again, these are of greatest interest when bn = o(1).
When 0 < bn ↓, Rosalsky and Rosenblatt [22] observed that the tail series SLLN (1.4)

implies the limit law (1.2) and that the tail series SLLN (1.4) is equivalent to the apparently
stronger limit law

supj≥n ||Tj ||
bn

→ 0 a.c. (1.5)
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(These observations had previously been made by Nam and Rosalsky [18] for the random
variable case.) Nam and Rosalsky [18] provided an example in the random variable case
wherein (1.2) holds with 0 < bn ↓ but (1.4) fails. Moreover, Nam and Rosalsky [20] provided
an example in the random variable case showing that without the monotonicity condition
on {bn, n ≥ 1}, the tail series SLLN (1.4) does not imply either of the limit laws (1.2) or
(1.5).

For the random variable case, Nam and Rosalsky [20] proved apropos of the tail series
of independent summands that the tail series WLLN (1.3) and the apparently stronger
limit law (1.2) are indeed equivalent when 0 < bn ↓ thereby establishing the validity of a
conjecture posed by Nam and Rosalsky [18]. When 0 < bn ↓, it is interesting to note that
the Nam and Rosalsky [20] argument for the implication (1.3) =⇒ (1.2) is substantially
more involved than that of Nam and Rosalsky [18] for the implication (1.4) =⇒ (1.5). Nam
and Rosalsky [20] showed via a random variable example that the tail series WLLN (1.3)
does not imply the limit law (1.2) if the monotonicity condition on {bn, n ≥ 1} is dispensed
with.

The main purpose of the current work is to extend (in Theorem 1 below) the Nam and
Rosalsky [20] equivalence between the tail series WLLN (1.3) and the limit law (1.2) from the
random variable case to the case of Banach space valued random elements. In Theorem 1 it
is assumed that the sequence of positive constants {bn, n ≥ 1} is quasi-monotone decreasing
in the sense that there exists a constant 0 < C <∞ such that

bj ≤ Cbn whenever j ≥ n ≥ 1. (1.6)

Of course if bn ↓, then (1.6) holds with C = 1. The proof of Theorem 1 is completely different
and considerably simpler than that of its earlier random variable counterpart. Indeed, the
earlier argument does not carry over to a Banach space setting unless one modifies it by
introducing a symmetrization procedure which is not at all necessary in view of the proof
of Theorem 1 presented below.

There has been a substantial literature of investigation on the limiting behavior of tail
series in the random variable case following the ground breaking work of Chow and Teicher
[4] wherein a tail series law of the iterated logarithm (LIL) was obtained. Barbour [1] then
established a tail series analogue of the Lindeberg-Feller version of the central limit theorem.
Numerous other investigations on the tail series LIL problem have followed; see Heyde [12],
Wellner [23], Kesten [14], Budianu [3], Chow, Teicher, Wei, and Yu [6], Klesov [15], Rosalsky
[21], and Mikosch [17] for such work. Klesov [15, 16], Mikosch [17], and Nam and Rosalsky
[19] studied the tail series SLLN problem. The only work that the authors are aware of on
the limiting behavior of tail series with Banach space valued summands is that of Dianliang
[7, 8] on the tail series LIL and that of Rosalsky and Rosenblatt [22] on the limit law (1.2).

2 Preliminary Lemmas

Some lemmas are needed to establish the main result (Theorem 1). Lemma 1 provides a
maximal inequality for a sum of independent random elements and is due to Etemadi [9].
Lemma 1 may also be found in Billingsley [2, p. 288]. For some related results see Etemadi
[10].

Lemma 1 (Etemadi [9]) Let n ≥ 1 and let {Vi, 1 ≤ i ≤ n} be independent random elements
in a real separable Banach space. Then setting Sj =

∑j
i=1 Vi, 1 ≤ j ≤ n,

P

{
max

1≤j≤n
||Sj || > t

}
≤ 4 max

1≤j≤n
P

{
||Sj || >

t

4

}
, t > 0.
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Lemma 2 Let 1 ≤ k ≤ n and let {Vi, k ≤ i ≤ n} be independent random elements in a real
separable Banach space. Then setting Sj,n =

∑n
i=j Vi, k ≤ j ≤ n,

P

{
max
k≤j≤n

||Sj,n|| > t

}
≤ 4 max

k≤j≤n
P

{
||Sj,n|| >

t

4

}
, t > 0.

Proof. Set S(n)
j =

∑j
i=1 Vn+1−i, 1 ≤ j ≤ n+ 1− k. Note at the outset that

{Sj,n, j = k, · · · , n} = {S(n)
j , j = n+ 1− k, · · · , 1}.

Then for t > 0

P

{
max
k≤j≤n

||Sj,n|| > t

}
= P

{
max

1≤j≤n+1−k
||S(n)

j || > t

}
≤ 4 max

1≤j≤n+1−k
P

{
||S(n)

j || >
t

4

}
(by Lemma 1)

= 4 max
k≤j≤n

P

{
||Sj,n|| >

t

4

}
. 2

Lemma 3 Let {Vn, n ≥ 1} be a sequence of independent random elements in a real separable
Banach space with

∑∞
n=1 Vn converging a.c. Then the tail series {Tn =

∑∞
i=n Vi, n ≥ 1} is

a well-defined sequence of random elements satisfying

P

{
sup
j≥n
||Tj || ≥ t

}
≤ 4 sup

j≥n
P

{
||Tj || ≥

t

4

}
, t > 0, n ≥ 1.

Proof. Let 1 ≤ n < N < M and t > 0. For n ≤ j ≤ N , set Sj,M =
∑M
i=j Vi. Then∣∣∣∣||Sj,M || − ||Tj ||∣∣∣∣ ≤ ||Sj,M − Tj || M→∞−→ 0 a.c.

implying
||Tj || = lim

M→∞
||Sj,M || a.c. (2.1)

Now

P

{
max
n≤j≤N

||Tj || > t

}
= P

{
max
n≤j≤N

lim
M→∞

||Sj,M || > t

}
(by (2.1))

= P

{
lim
M→∞

max
n≤j≤N

||Sj,M || > t

}
≤ lim inf

M→∞
P

{
max
n≤j≤N

||Sj,M || > t

}
(by Theorem 8.1.3 of Chow and Teicher [5, p. 260])

≤ lim sup
M→∞

P

{
max
n≤j≤N

||Sj,M || > t

}
. (2.2)

Set S′j,N =
∑N
i=j V

′
i for n ≤ j ≤ N where

V ′i = Vi for n ≤ i ≤ N − 1 and V ′N =
M∑
k=N

Vk.
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Then Sj,M = S′j,N for n ≤ j ≤ N and so

P

{
max
n≤j≤N

||Sj,M || > t

}
= P

{
max
n≤j≤N

||S′j,N || > t

}

≤ 4 max
n≤j≤N

P

{
||S′j,N || >

t

4

}
(by Lemma 2)

≤ 4 max
n≤j≤N

P

{
||Sj,M || ≥

t

4

}
. (2.3)

Combining (2.2) and (2.3) yields

P

{
max
n≤j≤N

||Tj || > t

}
≤ 4 lim sup

M→∞
max
n≤j≤N

P

{
||Sj,M || ≥

t

4

}
= 4 max

n≤j≤N
lim sup
M→∞

P

{
||Sj,M || ≥

t

4

}
≤ 4 max

n≤j≤N
P

{
lim
M→∞

||Sj,M || ≥
t

4

}
(by Theorem 8.1.3 of Chow and Teicher [5, p. 260])

= 4 max
n≤j≤N

P

{
||Tj || ≥

t

4

}
(by (2.1))

≤ 4 sup
j≥n

P

{
||Tj || ≥

t

4

}
.

Then

P

{
sup
j≥n
||Tj || > t

}
= lim
N→∞

P

{
max
n≤j≤N

||Tj || > t

}
≤ 4 sup

j≥n
P

{
||Tj || ≥

t

4

}
. (2.4)

Now, in (2.4), replace t by t−m−1 (where m is an integer > t−1) and Lemma 3 then follows
by letting m→∞. 2

3 The Main Result

With the preliminaries accounted for, the main result of this paper may be established.

Theorem 1 Let {Vn, n ≥ 1} be a sequence of independent random elements in a real sepa-
rable Banach space with

∑∞
n=1 Vn converging a.c. and tail series Tn =

∑∞
i=n Vi, n ≥ 1, and

let {bn, n ≥ 1} be a sequence of positive constants which is quasi-monotone decreasing in
the sense that (1.6) holds. Then the tail series WLLN

Tn
bn

P→ 0 (3.1)

and the limit law
supj≥n ||Tj ||

bn

P→ 0 (3.2)

are equivalent.
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Proof. Since (3.2) clearly implies (3.1), it needs to be established that (3.1) implies
(3.2). For arbitrary ε > 0, it follows from Lemma 3 with t replaced by εbn that

P

{
supj≥n ||Tj ||

bn
≥ ε
}
≤ 4 sup

j≥n
P

{
||Tj ||
bn
≥ ε

4

}
≤ 4 sup

j≥n
P

{
||Tj ||
bj
≥ ε

4C

}
(by (1.6))

= o(1) (by (3.1)). 2

Remark. The example of Nam and Rosalsky [20] reveals that (3.1) does not imply (3.2)
without the quasi-monotonicity assumption on {bn, n ≥ 1}.

Corollary 1 Let {Vn, n ≥ 1} be a sequence of independent random elements in a real
separable Banach space with

∑∞
n=1 Vn converging a.c. and tail series Tn =

∑∞
i=n Vi, n ≥ 1,

and let {bn, n ≥ 1} be a sequence of positive constants which is quasi-monotone decreasing
in the sense that (1.6) holds. Let {gn(x), n ≥ 1} be a sequence of nondecreasing nonnegative
functions defined on [0,∞) such that for all ε > 0, there exists a number δε > 0 and a positive
integer Nε such that

n ≥ Nε =⇒ gn(εbn) ≥ δεgn(bn). (3.3)

If
Egn(||Tn||) = o(gn(bn)), (3.4)

then

supj≥n ||Tj ||
bn

P→ 0.

Proof. For arbitrary ε > 0 and all n ≥ Nε,

P

{
||Tn||
bn

≥ ε
}
≤ P{gn(||Tn||) ≥ gn(εbn)}

≤ P{gn(||Tn||) ≥ δεgn(bn)} (by (3.3))

≤ Egn(||Tn||)
δεgn(bn)

(by the Markov inequality)

= o(1) (by (3.4)).

Thus, Tn/bn
P→ 0 and Corollary 1 then follows immediately from Theorem 1. 2

The second corollary follows immediately from Corollary 1 by taking gn(x) = xpn , 0 ≤
x <∞, n ≥ 1 where 0 < pn = O(1).

Corollary 2 Let {Vn, n ≥ 1} be a sequence of independent random elements in a real
separable Banach space with

∑∞
n=1 Vn converging a.c. and tail series Tn =

∑∞
i=n Vi, n ≥ 1,

and let {bn, n ≥ 1} be a sequence of positive constants which is quasi-monotone decreasing
in the sense that (1.6) holds. If

E||Tn||pn = o(bpnn ) where 0 < pn = O(1),

then

supj≥n ||Tj ||
bn

P→ 0.
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[24] W.A. Woyczyński, Random series and laws of large numbers in some Banach spaces,
Theor. Probab. Appl. 18 (1974), 350-355.
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