
Bull. Korean Math. Soc. 38 (2001), No. 4, pp. 763–772

ON CONVERGENCE OF SERIES OF
INDEPENDENT RANDOM VARIABLES

Soo Hak Sung and Andrei I. Volodin

Abstract. The rate of convergence for an almost surely conver-
gent series Sn =

Pn
i=1 Xi of independent random variables is stud-

ied in this paper. More specifically, when Sn converges almost
surely to a random variable S, the tail series Tn ≡ S − Sn−1 =P∞

i=n Xi is a well-defined sequence of random variables with Tn →
0 almost surely. Conditions are provided so that for a given posi-

tive sequence {bn, n ≥ 1}, the limit law supk≥n |Tk|/bn
P→ 0 holds.

This result generalizes a result of Nam and Rosalsky [4].

1. Introduction

Throughout this paper, {Xn, n ≥ 1} is a sequence of independent ran-
dom variables defined on a probability space (Ω,F , P ). As usual, their
partial sums will be denoted by Sn =

∑n
i=1 Xi, n ≥ 1. If Sn converges

almost surely (a.s.) to a random variable S, then (set S0 = 0)

Tn ≡ S − Sn−1 =
∞∑

i=n

Xi, n ≥ 1

is a well-defined sequence of random variables (referred to as the tail
series) with

(1.1) Tn → 0 a.s.
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In this paper, we shall be concerned with the rate in which Sn converges
to S or, equivalently, in which the tail series Tn converges to 0. Recalling
that (1.1) is equivalent to

sup
k≥n

|Tk| P→ 0,

Nam and Rosalsky [4] proved the limit law

(1.2)
supk≥n |Tk|

bn

P→ 0

if {Xn, n ≥ 1} is a sequence of independent random variables with
EXn = 0, n ≥ 1, and {bn, n ≥ 1} is a sequence of positive constants
such that

(1.3)
∞∑

i=n

E|Xi|p = o(bp
n)

for some 1 < p ≤ 2. Rosalsky and Rosenblatt [7] extended Nam and
Rosalsky’s result to Banach spaces of Rademacher type p. Rosalsky and
Rosenblatt [8] extended Nam and Rosalsky’s result to the setting of
martingale differences. The main purpose of this paper is to generalize
Nam and Rosalsky’s result. More specifically, we will provide more
general conditions than (1.3), under which the limit law (1.2) holds.

2. Preliminary lemmas

Some lemmas are needed to establish the main results. The first
lemma is due to von Bahr and Esseen [1].

Lemma 1 (von Bahr and Esseen [1]). Let X1, · · · , Xn be random
variables such that E{Xm+1|Sm} = 0 for 0 ≤ m ≤ n− 1, where S0 = 0
and Sm =

∑m
i=1 Xi for 1 ≤ m ≤ n. Then

E|Sn|p ≤ 2
n∑

i=1

E|Xi|p for all 1 ≤ p ≤ 2.

Note that Lemma 1 holds when X1, · · · , Xn are independent ran-
dom variables with EXm = 0 for 1 ≤ m ≤ n. Nam, Rosalsky, and
Volodin [6] proved the following maximal inequality for the tail series
using Etemadi’s [3] maximal inequality for the partial sums. Further-
more, the maximal inequalities for the partial sums and the tail sums
hold for Banach space valued random variables.
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Lemma 2 (Nam, Rosalsky, and Volodin [6]). Let {Xn, n ≥ 1} be a
sequence of independent random variables with

∑∞
n=1 Xn converges a.s.

Then setting Tn =
∑∞

i=n Xi, n ≥ 1,

P{sup
k≥n

|Tk| > ε} ≤ 4 sup
k≥n

P{|Tk| > ε

4
}, ε > 0.

Lemma 3. Let {Xi, n ≤ i ≤ N} be a sequence of independent ran-
dom variables with EXi = 0, n ≤ i ≤ N. Let {gi(x), n ≤ i ≤ N} be a
sequence of functions defined on [0,∞) such that

(2.1) 0 ≤ gi(0) ≤ gi(x),
gi(x)

x
↑, gi(x)

xp
↓ on (0,∞), n ≤ i ≤ N

for some 1 ≤ p ≤ 2. Let {bi, n ≤ i ≤ N} be a sequence of positive
constants. Then for ε > 0

P
{∣∣∣

N∑

i=n

Xi

bi

∣∣∣ > ε
}
≤

(22p+1

εp
+

22

ε

) N∑

i=n

Egi(|Xi|)
gi(bi)

.

Proof. Define X ′
i = XiI(|Xi| ≤ bi), X ′′

i = XiI(|Xi| > bi) for n ≤ i ≤
N. Noting that EXi = 0 for n ≤ i ≤ N, it follows that

N∑

i=n

Xi

bi
=

N∑

i=n

X ′
i − EX ′

i

bi
+

N∑

i=n

X ′′
i − EX ′′

i

bi
.

By using the Markov’s inequality and Lemma 1, we have

P
{∣∣∣

N∑

i=n

Xi

bi

∣∣∣ > ε
}

≤ P
{∣∣∣

N∑

i=n

X ′
i − EX ′

i

bi

∣∣∣ >
ε

2

}
+ P

{∣∣∣
N∑

i=n

X ′′
i − EX ′′

i

bi

∣∣∣ >
ε

2

}

≤ 2p

εp
E

∣∣∣
N∑

i=n

X ′
i − EX ′

i

bi

∣∣∣
p

+
2
ε
E

∣∣∣
N∑

i=n

X ′′
i − EX ′′

i

bi

∣∣∣

(2.2)

≤ 2p+1

εp

N∑

i=n

E|X
′
i − EX ′

i

bi
|p +

2
ε

N∑

i=n

E
∣∣∣X

′′
i − EX ′′

i

bi

∣∣∣

≤ 22p+1

εp

N∑

i=n

E|X ′
i|p

bp
i

+
22

ε

N∑

i=n

E|X ′′
i |

bi
.
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It follows from (2.1) that on the set {x : |x| ≤ bi} we have |x|p/bp
i ≤

gi(|x|)/gi(bi). Thus we have

(2.3)
N∑

i=n

E|X ′
i|p

bp
i

≤
N∑

i=n

Egi(|X ′
i|)

gi(bi)
≤

N∑

i=n

Egi(|Xi|)
gi(bi)

.

On the set {x : |x| > bi}, we have |x|/bi ≤ gi(|x|)/gi(bi). Thus we get

(2.4)
N∑

i=n

E|X ′′
i |

bi
≤

N∑

i=n

Egi(|X ′′
i |)

gi(bi)
≤

N∑

i=n

Egi(|Xi|)
gi(bi)

.

The result follows by (2.2), (2.3), and (2.4). ¤

Remark 1. When p = 1, Lemma 3 holds without the independence
condition. However, the independence condition is necessary if 1 < p ≤
2. Such a counter-example can be easily obtained.

The following lemma was proved by Nam and Rosalsky [5].

Lemma 4. Let {Xn, n ≥ 1} be a sequence of independent and sym-
metric random variables with

∑∞
n=1 Xn converges a.s. Then the tail

series {Tn =
∑∞

i=n Xi, n ≥ 1} is a well-defined sequence of random
variables and for every ε > 0 and n ≥ 1 the inequality

P
{

sup
k≥n

|Tk| > ε
}
≤ 2P{|Tn| > ε}

holds.

The following lemma gives conditions so that the tail series weak law
of large numbers

(2.5)
Tn

bn

P→ 0

and the limit law

(2.6)
supk≥n |Tk|

bn

P→ 0

are equivalent, where Tn =
∑∞

i=n Xi, n ≥ 1.
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Lemma 5. Let {Xn, n ≥ 1} be a sequence of independent random
variables with

∑∞
n=1 Xn converges a.s. Let {bn, n ≥ 1} be a sequence of

positive constants. Assume that either {bn, n ≥ 1} is a sequence of non-
increasing or {Xn, n ≥ 1} is a sequence of symmetric random variables.
Then (2.5) and (2.6) are equivalent.

Proof. Since (2.6) clearly implies (2.5), it needs to show that (2.5)
implies (2.6). When {bn} is a sequence of non-increasing, Nam and
Rosalsky [5] proved that (2.5) implies (2.6). We now let {Xn} is a
sequence of independent and symmetric random variables. By Lemma
4, we have

P
{ supk≥n |Tk|

bn
> ε

}
≤ 2P

{ |Tn|
bn

> ε
}

.

Hence (2.5) implies (2.6). ¤

3. Main results

With the preliminaries accounted for, the main results of this pa-
per may be established. Theorem 1 gives conditions so that the series∑∞

n=1 Xn converges a.s.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of independent random
variables with EXn = 0, n ≥ 1, and let {bn, n ≥ 1} be a sequence of
positive constants. Let {gn(x), n ≥ 1} be a sequence of functions defined
on [0,∞) such that

(3.1) 0 ≤ gn(0) ≤ gn(x), 0 < gn(x) ↑ as n ↑ ∞ for each x > 0

and

(3.2)
gn(x)

x
↑, gn(x)

xp
↓ on (0,∞), n ≥ 1

for some 1 < p ≤ 2. If

(3.3)
∞∑

n=1

Egn(|Xn|) < ∞,

then {Tn, n ≥ 1} is a well-defined sequence of random variables, and for
all n ≥ 1 and all ε > 0,

P
{ supk≥n |Tk|

bn
> ε

}
≤

(24p+3

εp
+

26

ε

) ∞∑

i=n

Egi(|Xi|)
gi(bn)

.
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Proof. First, we show that Tn is well-defined random variable, i.e.,∑∞
n=1 Xn converges a.s. Let X ′

n = XnI(|Xn| ≤ 1), n ≥ 1. Noting that
(3.2) implies gn(x) ↑ on (0,∞), n ≥ 1, we have

∞∑
n=1

P{|Xn| > 1} ≤
∞∑

n=1

P{gn(|Xn|) ≥ gn(1)}

≤
∞∑

n=1

Egn(|Xn|)
gn(1)

≤ 1
g1(1)

∞∑
n=1

Egn(|Xn|) < ∞

by (3.1) and (3.3). It follows from (3.2) that on the set {x : |x| ≤ 1} we
have |x|2 ≤ |x|p ≤ gn(|x|)/gn(1). Thus we have

∞∑
n=1

V ar(X ′
n) ≤

∞∑
n=1

E|X ′
n|2

≤
∞∑

n=1

1
gn(1)

Egn(|X ′
n|)

≤ 1
g1(1)

∞∑
n=1

Egn(|Xn|) < ∞.

On the set {x : |x| > 1} we have |x| ≤ gn(|x|)/gn(1). Using this and the
fact that EXn = 0, we get

∞∑
n=1

|EX ′
n| =

∞∑
n=1

|EXnI(|Xn| > 1)|

≤
∞∑

n=1

E|Xn|I(|Xn| > 1)

≤
∞∑

n=1

Egn(|Xn|I(|Xn| > 1))
gn(1)

≤ 1
g1(1)

∞∑
n=1

Egn(|Xn|) < ∞.

Thus
∑∞

n=1 Xn converges a.s. by the Kolmogorov’s three-series theorem.
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Now we find an upper bound of P{supk≥n |Tk|/bn > ε}. Observe that,
by Theorem 8.1.3 of Chow and Teicher [2], for ε > 0

P
{|Tk| > ε

}
= P

{
lim

M→∞

∣∣∣
M∑

i=k

Xi

∣∣∣ > ε
}
≤ lim inf

M→∞
P

{∣∣∣
M∑

i=k

Xi

∣∣∣ > ε
}

.

Thus, it follows by Lemma 2 and Lemma 3 with bi = bn, k ≤ i ≤ M,
that

P
{ supk≥n |Tk|

bn
> ε

}
≤ 4 sup

k≥n
P

{ |Tk|
bn

>
ε

4

}

≤ 4 sup
k≥n

lim inf
M→∞

P
{

∣∣∣ ∑M
i=k Xi|
bn

>
ε

4

}

≤ 4 sup
k≥n

lim inf
M→∞

( 22p+1

(ε/4)p
+

22

ε/4

) M∑

i=k

Egi(|Xi|)
gi(bn)

=
(24p+3

εp
+

26

ε

) ∞∑

i=n

Egi(|Xi|)
gi(bn)

.

Hence the proof is completed. ¤

Theorem 2. Let {Xn, n ≥ 1} be a sequence of independent random
variables with EXn = 0, n ≥ 1, and let {gn(x), n ≥ 1} be a sequence of
functions defined on [0,∞) satisfying (3.1) and (3.2). Let {bn, n ≥ 1}
be a sequence of positive constants such that

(3.4)
∞∑

i=n

Egi(|Xi|) = o(gn(bn)).

Then {Tn, n ≥ 1} is a well-defined sequence of random variables obeying
(2.6)

Proof. Since (3.4) implies (3.3), Tn is well-defined by Theorem 1.
Also, Theorem 1 implies that

P
{ supk≥n |Tk|

bn
> ε

}
≤

(24p+3

εp
+

26

ε

) ∞∑

i=n

Egi(|Xi|)
gi(bn)

≤
(24p+3

εp
+

26

ε

) 1
gn(bn)

∞∑

i=n

Egi(|Xi|) = o(1).
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Thus the proof is completed. ¤

Nam and Rosalsky [4] proved the following corollary which is the
special case gn(x) = |x|p, x ≥ 0, n ≥ 1, of Theorem 2.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of independent ran-
dom variables with EXn = 0, n ≥ 1, and let {bn, n ≥ 1} be a sequence
of positive constants such that

(3.5)
∞∑

i=n

E|Xi|p = o(bp
n)

for some 1 < p ≤ 2. Then {Tn, n ≥ 1} is a well-defined sequence of
random variables obeying (2.6).

The following example illustrates the sharpness of Theorem 2. It
shows that if o in (3.4) is replaced by O, then Theorem 2 can fail. It
also shows that if p > 2, then Theorem 2 can fail.

Example 1. Let {Yn, n ≥ 1} be sequence of independent and iden-
tically distributed N(0, 1) random variables, and let {an, n ≥ 1} be
a sequence of positive constants such that

∑∞
n=1 a2

n < ∞. Let Xn =
anYn, bn =

√∑∞
i=n a2

i , n ≥ 1, and gn(x) = |x|p(p > 1), x ≥ 0, n ≥ 1.
Then {Xn, n ≥ 1} is a sequence of independent and symmetric random
variables with EXn = 0, n ≥ 1. Since

∑∞
n=1 V ar(Xn) =

∑∞
n=1 a2

n < ∞,
Tn is well defined.

To show that the limit law supk≥n |Tk|/bn
P→ 0 does not hold, it

is enough to show by Lemma 5 that the tail series weak law of large
numbers does not hold. To do this, let Sn,k =

∑k
i=n Xi, k ≥ n ≥

1, and let φn,k(t) be the characteristic function of Sn,k. Then Sn,k ∼
N(0,

∑k
i=n a2

i ), and so

φn,k(t) = exp
{
− 1

2
t2

k∑

i=n

a2
i

}
→ exp

{
− 1

2
t2

∞∑

i=n

a2
i

}

as k → ∞. Since limk→∞ φn,k(t) is the characteristic function of N(0,∑∞
i=n a2

i ), it follows by the Lévy continuity theorem that Tn ∼ N(0,
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∑∞
i=n a2

i ). Thus Tn/bn has standard normal distribution, which implies
that the tail series weak law of large numbers does not hold.

Now we let an = 1/2n, n ≥ 1. Note that

∞∑

i=n

Egi(|Xi|) = E|Y1|p
∞∑

i=n

1
2ip

∼ C1
1

2np
,

gn(bn) =
( ∞∑

i=n

1
22i

)p/2

∼ C2
1

2np

for some constants C1 > 0 and C2 > 0. Thus

∞∑

i=n

Egi(|Xi|) = O(gn(bn)),

and as shown before Tn is well-defined, but the limit law supk≥n |Tk|/bn
P→

0 does not hold.
On the other hand, if we take an = 1/n, n ≥ 1, then

∞∑

i=n

Egi(|Xi|) = E|Y1|p
∞∑

i=n

1
ip
∼ C3

1
np−1

,

gn(bn) =
( ∞∑

i=n

1
i2

)p/2

∼ C4
1

np/2

for some constants C3 > 0 and C4 > 0. Thus, when p > 2, the limit
law supk≥n |Tk|/bn

P→ 0 does not hold although (3.4) holds and Tn is
well-defined.
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