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Abstract. For an array of rowwise independent random elements
{Vnj, j ≥ 1, n ≥ 1} in a real separable, stable type p Banach space X
and an array of constants {anj, j ≥ 1, n ≥ 1}, general weak laws of large

numbers of the forms (i)
∑kn
j=1 anjVnj

P→ 0 and (ii)
∑Tn
j=1 anj(Vnj−cnj)

P→ 0
are obtained where for (i), EVnj = 0, j ≥ 1, n ≥ 1 and the kn are permitted
to assume the value ∞ and for (ii), {cnj, j ≥ 1, n ≥ 1} is a suitable array
of elements in X and {Tn, n ≥ 1} is a sequence of positive integer-valued
random variables (called random indices). In the main results, the random
elements {Vnj, j ≥ 1, n ≥ 1} are assumed to be stochastically dominated
by a random element V and the hypotheses impose conditions on the
growth behavior of the {anj, j ≥ 1, n ≥ 1}, on the tail of the distribution
of ||V ||, and (for (ii)) on the marginal distributions of the random indices.
The results of the form (i) are shown to be valid for a mode of convergence
which is stronger than convergence in probability, viz. convergence in the
Lorentz space L(p,∞)(X ). It is shown via example that the stable type p
hypothesis cannot be relaxed.
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1. Introduction. In this paper, for an array {Vnj, j ≥ 1, n ≥ 1} of rowwise inde-
pendent Banach space valued random elements, general weak laws of large numbers
(WLLNs) and/or related convergence results will be established for weighted sums of
the form

∑kn
j=1 anjVnj (or

∑Tn
j=1 anjVnj where Tn is random). The general setting will

now be described. Let (Ω,F , P ) be a probability space and let X be a real separable
Banach space with norm || · ||. The expected value or mean of a random element V ,
denoted by EV , is defined to be the Pettis integral provided it exists. That is, V
has expected value EV ∈ X if f(EV ) = E(f(V )) for every f ∈ X ∗ where X ∗ is the
(dual) space of all continuous linear functionals on X .

Consider an array of constants {anj, j ≥ 1, n ≥ 1} and an array of rowwise
independent X -valued random elements {Vnj, j ≥ 1, n ≥ 1} defined on (Ω,F , P ).
Let {kn, n ≥ 1) be a sequence in {1, 2, · · · ,∞} and let {Tn, n ≥ 1} be a sequence of
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positive integer-valued random variables. Let {cnj, j ≥ 1, n ≥ 1} be a “centering”
array consisting of (suitably selected) elements in X . In this paper, general WLLNs
of the two forms

kn∑
j=1

anjVnj
P→ 0 (1.1)

Tn∑
j=1

anj(Vnj − cnj)
P→ 0 (1.2)

will be established. The expressions in (1.1) and (1.2) are referred to as weighted sums
with weights anj. The results of the form (1.1) assume that EVnj = 0, j ≥ 1, n ≥ 1
and are shown to be valid for convergence in the Lorentz space L(p,∞)(X ) where
1 < p < 2. (Technical definitions such as this will be discussed in Section 2). This
mode of convergence is stronger than convergence in probability. Of course, in (1.2),
the number of terms in the sum is random, and the {Tn, n ≥ 1} are referred to as
random indices.

Some of the early work on the WLLN problem for random elements in a real
separable normed linear space was conducted by Taylor [32] wherein it is shown that
a sequence of identically distributed random elements satisfying the WLLN in the
weak linear topology also satisfies the WLLN in the norm topology. This was shown
to be a consequence of Taylor’s [32] result asserting that a sequence of identically
distributed random elements in a real separable Banach space which has a Schauder
basis satisfies the WLLN in the norm topology if and only if the WLLN holds in each
coordinate of the basis.

Taylor [33] provided a comprehensive and unified treatment of results under whose

conditions either the WLLN
∑n
j=1 anjVj

P→ 0 or the general strong law of large numbers
(SLLN)

∑n
j=1 anjVj → 0 almost certainly (a.c.) obtains where {Vn, n ≥ 1} is a

sequence of independent, mean 0 random elements in a real separable normed linear
space and {anj, 1 ≤ j ≤ n, n ≥ 1} is an array of constants. For the special case where
the {anj, 1 ≤ j ≤ n, n ≥ 1} are of the form anj = aj/bn (0 < bn → ∞), the SLLN
problem was studied by Mikosch and Norvaǐsa [27] and [28] and by Adler, Rosalsky,
and Taylor [2] and the WLLN problem was studied by Adler, Rosalsky, and Taylor [3]
for sequences of independent random elements in Banach spaces. In Adler, Rosalsky,
and Taylor [3] the corresponding SLLN need not necessarily hold. For Banach space
valued weighted sums of the form

∑n
j=1 anjVj or

∑∞
j=1 anjVj or

∑n
j=1 anjVnj or, more

generally,
∑∞
j=1 anjVnj, conditions for the equivalence between the WLLN in the norm

topology and the WLLN in the weak linear topology were provided by Taylor and
Padgett [34], Wei and Taylor [37], Howell and Taylor [19], and Wang and Bhaskara
Rao [35], respectively.

Somewhat unrelated to the results of this paper is a vast literature of investigation
of hypotheses which are required for the WLLN and the SLLN to be equivalent. For
example, see Kuelbs and Zinn [22], de Acosta [1], Etemadi [15], Mikosch and Norvaǐsa
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[27] and [28], Alt [5] and [6], Heinkel [18], Ledoux and Talagrand [24], and Wang,
Bhaskara Rao, and Li [36].

In the current work, the Banach space X is assumed to satisfy the geometric
condition of being of stable type p. Conditions are placed on the growth behavior of
the weights {anj, j ≥ 1, n ≥ 1}. In the main results (Theorems 4.1 and 4.3 which
yield conclusions of the form (1.1) and (1.2), respectively), the random elements
{Vnj, j ≥ 1, n ≥ 1} are assumed to be stochastically dominated by a random element
V in the sense that (2.4) holds. The tail P{||V || > t} of the distribution of ||V || as
t → ∞ is controlled by (4.3) or (4.18). In Theorem 4.3, a condition is imposed on
the marginal distributions of the random indices {Tn, n ≥ 1}. Examples are provided
showing that the stable type p hypotheses cannot be relaxed. Theorem 4.2 is a
result similar to Theorem 4.1 except that the random elements are not assumed to
be stochastically dominated by a random element.

For convenience, technical definitions will be consolidated into Section 2. The
lemmata which are needed to establish the main results will be presented in Section
3. The main results will be established in Section 4. Finally, the symbol C denotes
throughout a generic constant (0 < C <∞) which is not necessarily the same one in
each appearance.

2. Preliminary Definitions. Technical definitions relevant to the current work
will be discussed in this section.

Let 0 < p ≤ 2 and let {θn, n ≥ 1} be independent and identically distributed stable
random variables each with characteristic function φ(t) = exp{−|t|p},−∞ < t <∞.
The real separable Banach space X is said to be of stable type p if

∑∞
n=1 θnvn converges

a.c. whenever {vn, n ≥ 1} ⊆ X with
∑∞
n=1 ||vn||p < ∞. Equivalent characterizations

of a Banach space being of stable type p, properties of stable type p Banach spaces, as
well as various relationships between the conditions “Rademacher type p” and “stable
type p” may be found in Woyczyński [39], Marcus and Woyczyński [26], Rosiński [30],
and Pisier [29]. Some of these properties and relationships will now be summarized.
Every real separable Banach space X is of stable type p for all 0 < p < 1. Moreover

(i) for 0 < p < 2, X is of stable type p if and only if X is of Rademacher type p′

for some p′ ∈ (p, 2].

(ii) X is of stable type 2 if and only if X is of Rademacher type 2.

Consequently, if X is of stable type p for some 1 ≤ p ≤ 2, then

X is of Rademacher type p,
X is of stable type q for all 0 < q < p,
X is of stable type p1 for some p1 ∈ (p, 2] if p < 2.

For q ≥ 2, the Lq-spaces and `q-spaces are of stable type 2 while for 1 ≤ q < 2, the
Lq-spaces and `q-spaces are of stable type p for all 0 < p < q but are not of stable type
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q. Every real separable Hilbert space and real separable finite dimensional Banach
space is of stable type 2.

Let p(X ) = sup{p ∈ (0, 2] : X is of stable type p}. Then 1 ≤ p(X ) ≤ 2 and it
follows from the above discussion that if X is of stable type p < 2, then p(X ) > p
and X is of stable type q for all 0 < q < p(X ).

For a random element V and 0 < p < ∞, it proves convenient to introduce the
notation

Λp(V ) = sup
t>0

tpP{||V || > t}.

Note that for a ∈ R, v ∈ X , and random elements V1, V2

Λp(aV1) = |a|pΛp(V1) (2.1)

Λp(aV1 + v) ≤ 2p(||v||p + |a|pΛp(V1)) (2.2)

and
Λp(V1 + V2) ≤ 2p(Λp(V1) + Λp(V2)). (2.3)

For 0 < p < ∞, let Λp(X ) denote the Lorentz space L(p,∞)(X ) consisting of the
collection of all random elements V in X for which Λp(V ) < ∞. Relation (2.3)
establishes that Λp(·) is a quasi-norm on Λp(X ) (provided random elements equal
a.c. are identified). Random elements {Vn, n ≥ 1} ⊆ Λp(X ) are said to converge to

0 in Λp(X ) (denoted Vn
Λp(X )→ 0) if Λp(Vn) = o(1). As usual, for 0 < p < ∞,Lp(X )

denotes the collection of all random elements V in X for which E||V ||p < ∞, and

random elements {Vn, n ≥ 1} ⊆ Lp(X ) converge to 0 in Lp(X ) (denoted Vn
Lp(X )→ 0)

if E||Vn||p = o(1). It is well known and easy to show for 0 < r < p <∞ that:

(i) Lp(X ) ⊆ Λp(X ) ⊆ Lr(X ).

(ii) If Vn
Lp(X )→ 0, then Vn

Λp(X )→ 0 and Vn
P→ 0.

(iii) If Vn
Λp(X )→ 0, then Vn

Lr(X )→ 0 (and consequently Vn
Λr(X )→ 0 and Vn

P→ 0).

The reader may refer to Bennett and Rudnick [8], Bergh and Löfström [9], Butzer
and Berens [12], Calderón [13], Hunt [20], Lindenstrauss and Tzafriri [25], and Stein
and Weiss [31] for a thorough treatment of Lorentz space theory.

Random elements {Vnj, j ≥ 1, n ≥ 1} are said to be stochastically dominated by a
random element V if for some finite constant D,

P{||Vnj|| > t} ≤ DP{||DV || > t}, t ≥ 0, j ≥ 1, n ≥ 1. (2.4)

This condition is, of course, automatic with V = V11 and D = 1 if the {Vnj, j ≥ 1, n ≥
1} are identically distributed. It follows from Lemma 5.2.2 of Taylor [33], p. 123 (or
Lemma 3 of Wei and Taylor [37]) that stochastic dominance can be accomplished
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by the array of random elements having a bounded absolute rth moment (r > 0).
Specifically, if supn≥1,j≥1 E||Vnj||r < ∞ for some r > 0, then there exists a random
element V with E||V ||p <∞ for all 0 < p < r such that (2.4) holds with D = 1. (The
proviso that r > 1 in Lemma 5.2.2 of Taylor [33], p. 123 (or Lemma 3 of Wei and
Taylor [37]) is not needed as was pointed out by Adler, Rosalsky, and Taylor [4].)

3. Preliminary Lemmata. In this section, lemmata needed to establish the
results in this paper will be presented. Some of them may be of independent interest.

The first lemma, due to Etemadi [16], provides a maximal inequality for a sum of
independent random elements and will be used in the proof of a maximal inequality
(Lemma 3.3) for random elements in stable type p Banach spaces. Lemma 3.1 may
also be found in Billingsley [10], p. 288. For some related results see Etemadi [17]. In
Proposition 1.1.1 of Kwapień and Woyczyński [23], p. 15, it is shown that Lemma 3.1
holds with the constant 4 replaced by 3. However the version of Lemma 3.1 stated
below is adequate for our purposes.

Lemma 3.1 (Etemadi [16]). Let {Vj, 1 ≤ j ≤ n} be independent random elements
in a real separable Banach space. Then

P

max
1≤k≤n

∣∣∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

 ≤ 4 max
1≤k≤n

P


∣∣∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

4

 , t > 0.

The next lemma in its original form is due to Rosiński [30]. The version presented
below is a slight modification of Rosiński’s [30] result and is due to Pisier [29]. (See
Theorem 4.12 and Remark (ii) after it in Pisier [29].)

Lemma 3.2. If a real separable Banach space is of stable type p (1 < p < 2),
then there exists a finite constant Cp such that for every finite collection {V1, · · · , Vn}
of independent mean 0 random elements

Λp

 n∑
j=1

Vj

 ≤ Cp
n∑
j=1

Λp(Vj). (3.1)

Remark 3.1. The inequality (3.1) holds for an a.c. convergent series of indepen-
dent mean 0 random elements. That is, if

∑∞
j=1 Vj converges a.c. to a random element

where {Vn, n ≥ 1} are independent mean 0 random elements in a real separable, stable
type p (1 < p < 2) Banach space, then

Λp

 ∞∑
j=1

Vj

 ≤ Cp
∞∑
j=1

Λp(Vj).

This follows from (3.1) and the observation that (see, e.g., Theorem 8.1.3 of Chow
and Teicher [14], p. 278)

P


∣∣∣∣∣∣∣∣ ∞∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

 ≤ lim inf
n→∞

P


∣∣∣∣∣∣∣∣ n∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

 .
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The details are left to the reader.
Lemma 3.3. Let {Vn, n ≥ 1} be independent mean 0 random elements in a real

separable, stable type p (1 < p < 2) Banach space. Then for all n ≥ 1,

P

max
1≤k≤n

∣∣∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

 ≤ C

tp

n∑
j=1

Λp(Vj), t > 0

where C is a constant independent of n.
Proof. By Lemma 3.1, for n ≥ 1 and t > 0

P

max
1≤k≤n

∣∣∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

 ≤ 4p+1

tp
max

1≤k≤n

(
t

4

)p
P


∣∣∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣∣∣ > t

4


≤ 4p+1

tp
max

1≤k≤n
Λp

 k∑
j=1

Vj


≤ 4p+1

tp
max

1≤k≤n
Cp

k∑
j=1

Λp(Vj) (by Lemma 3.2)

=
4p+1Cp
tp

n∑
j=1

Λp(Vj). 2

In the last lemma, no independence or moment conditions are imposed on the
random elements {Wnj, j ≥ 1, n ≥ 1}.

Lemma 3.4. Let {Wnj, j ≥ 1, n ≥ 1} be an array of random elements in a real
separable Banach space. Let {Tn, n ≥ 1} be positive integer-valued random variables
and {αn, n ≥ 1} be constants such that for some 0 < λ <∞

P
{
Tn
αn

> λ
}

= o(1). (3.2)

Let {dnj, j ≥ 1, n ≥ 1} be an array of positive constants such that

[λαn]∑
j=1

P{||Wnj|| > dnj} = o(1). (3.3)

If

max
1≤k≤[λαn]

∣∣∣∣∣∣∣∣ k∑
j=1

(W ′
nj − EW ′

nj)
∣∣∣∣∣∣∣∣ P→ 0 (3.4)

where W ′
nj = WnjI(||Wnj|| ≤ dnj), j ≥ 1, n ≥ 1, then

Tn∑
j=1

(Wnj − EW ′
nj)

P→ 0.
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Proof. Note at the outset that E||W ′
nj|| < ∞, j ≥ 1, n ≥ 1 and so (see, e.g.,

Taylor [33], p. 40) the {W ′
nj, j ≥ 1, n ≥ 1} all have expected values. For arbitrary

ε > 0,

P


∣∣∣∣∣∣∣∣ Tn∑
j=1

(Wnj − EW ′
nj)
∣∣∣∣∣∣∣∣ > ε


≤ P


∣∣∣∣∣∣∣∣ Tn∑

j=1

(Wnj − EW ′
nj)
∣∣∣∣∣∣∣∣ > ε

 [Tn ≤ λαn]

+ P{Tn > λαn}

≤ P


∣∣∣∣∣∣∣∣ Tn∑

j=1

(Wnj − EW ′
nj)
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ Tn∑

j=1

(W ′
nj − EW ′

nj)
∣∣∣∣∣∣∣∣ > ε

 [Tn ≤ λαn]

+ o(1)

(by (3.2))

≤ P


∣∣∣∣∣∣∣∣ Tn∑

j=1

(Wnj −W ′
nj)
∣∣∣∣∣∣∣∣ > ε

2

 [Tn ≤ λαn]


+P


∣∣∣∣∣∣∣∣ Tn∑

j=1

(W ′
nj − EW ′

nj)
∣∣∣∣∣∣∣∣ > ε

2

 [Tn ≤ λαn]

+ o(1)

≤ P


[λαn]⋃
j=1

[Wnj 6= W ′
nj]

+ P

 max
1≤k≤[λαn]

∣∣∣∣∣∣∣∣ k∑
j=1

(W ′
nj − EW ′

nj)
∣∣∣∣∣∣∣∣ > ε

2

+ o(1)

≤
[λαn]∑
j=1

P{||Wnj|| > dnj}+ o(1) (by (3.4))

= o(1) (by (3.3)). 2

4. Mainstream. With the preliminaries accounted for, the first main result,
Theorem 4.1, may be presented. Theorem 4.1 establishes for an array of rowwise
independent and stochastically dominated mean 0 random elements in a stable type
p (1 < p < 2) Banach space the convergence in Λp(X ) limit law (4.4) which is
stronger than the corresponding WLLN. Its proof owes much to that of Theorem
3.2 of Howell and Taylor [19] where the WLLN was obtained for the particular case
kn = n, n ≥ 1. However, in Theorem 4.1, the {kn, n ≥ 1} are permitted to assume
the value ∞. (Of course, if kn = ∞ for any n ≥ 1, it must be established that the
series

∑∞
j=1 anjVnj converges a.c. to a random element.) Note that it follows from

(2.4) and (4.3) that E||Vnj||r < ∞ for all 0 < r < p, 1 ≤ j ≤ kn, n ≥ 1. Moreover,
it follows from the discussion of stochastic dominance in Section 2 that a sufficient
condition for the existence of a random element V satisfying (2.4) and (4.3) is that
supn≥1,1≤j≤kn E||Vnj||r <∞ for some r > p. Professor Robert L. Taylor has so kindly
pointed out to the authors via example that supn≥1,1≤j≤kn E||Vnj||p < ∞ does not
ensure the existence of a random element V satisfying (2.4) and (4.3).

Theorem 4.1. Let {Vnj, 1 ≤ j ≤ kn ≤ ∞, n ≥ 1} be an array of rowwise
independent mean 0 random elements in a real separable, stable type p (1 < p < 2)
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Banach space X . Suppose that {Vnj, 1 ≤ j ≤ kn, n ≥ 1} is stochastically dominated
by a random element V . Let {anj, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such
that

sup
n≥1

kn∑
j=1

|anj|p <∞ (4.1)

and
sup

1≤j≤kn
|anj| = o(1). (4.2)

If
lim
t→∞

tpP{||V || > t} = 0, (4.3)

then
kn∑
j=1

anjVnj
Λp(X )→ 0 (4.4)

(and consequently
∑kn
j=1 anjVnj converges to 0 in Lr(X ) for all 0 < r < p and in

probability).
Proof. Let D be as in (2.4). In view of (4.1), it will be assumed without loss of

generality that

sup
n≥1

kn∑
j=1

|anj|p = 1. (4.5)

Let bnj = |anj|−1 (where 0−1 =∞) and

Unj = VnjI(||Vnj|| ≤ bnj), U
′
nj = VnjI(||Vnj|| > bnj), 1 ≤ j ≤ kn, n ≥ 1.

Since E||Unj|| <∞, 1 ≤ j ≤ kn, n ≥ 1, the {Unj, 1 ≤ j ≤ kn, n ≥ 1} all have expected
values. Then since EVnj = 0, 1 ≤ j ≤ kn, n ≥ 1, the {U ′nj, 1 ≤ j ≤ kn, n ≥ 1} all have
expected values as well. Also note that (4.3) ensures that Λp(V ) <∞.

It will first be shown that if kn = ∞ for any n ≥ 1, then for that n the series∑∞
j=1 anjVnj and

∑∞
j=1 anj(Unj − EUnj) converge a.c. to random elements in X . Let

ε > 0 be arbitrary. For m ≥ 1,

sup
M>m

E
∣∣∣∣∣∣∣∣ M∑
j=1

anjVnj −
m∑
j=1

anjVnj

∣∣∣∣∣∣∣∣ = sup
M>m

E
∣∣∣∣∣∣∣∣ M∑
j=m+1

anjVnj

∣∣∣∣∣∣∣∣
≤ sup

M>m

ε+
∫ ∞
ε

tpP


∣∣∣∣∣∣∣∣ M∑
j=m+1

anjVnj

∣∣∣∣∣∣∣∣ > t

 t−pdt


≤ sup
M>m

ε+
∫ ∞
ε

Λp

 M∑
j=m+1

anjVnj

 t−pdt


≤ sup
M>m

ε+
Cp

εp−1(p− 1)

M∑
j=m+1

|anj|pΛp(Vnj)

 (by Lemma 3.2 and (2.1))
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≤ ε+
CpD

p+1Λp(V )

εp−1(p− 1)

∞∑
j=m+1

|anj|p (by (2.4) and (2.1))

→ ε as m→∞ (by (4.5)).

Since ε > 0 is arbitrary,

lim
m→∞

sup
M>m

E

∣∣∣∣∣∣∣∣ M∑
j=1

anjVnj −
m∑
j=1

anjVnj

∣∣∣∣∣∣∣∣ = 0

whence there exists a random element Sn in X such that

lim
m→∞

E
∣∣∣∣∣∣∣∣ m∑
j=1

anjVnj − Sn
∣∣∣∣∣∣∣∣ = 0.

This implies that

m∑
j=1

anjVnj
P→ Sn as m→∞.

Since convergence in probability and convergence a.c. are equivalent for sums of
independent random elements in a real separable Banach space (see Itô and Nisio
[21]),

∑∞
j=1 anjVnj converges a.c. to a random element in X .

Next, if kn =∞ for some n ≥ 1, then recalling that EVnj = 0, j ≥ 1

∞∑
j=1

||anjEUnj|| =
∞∑
j=1

|anj| ||EU ′nj||

≤
∞∑
j=1

|anj|E||Vnj||I(||Vnj|| > bnj)

=
∞∑
j=1

|anj|
∫ ∞
bnj

P{||Vnj|| > t}dt+
∞∑
j=1

|anj|bnjP{||Vnj|| > bnj}

(by integration by parts)

≤ D
∞∑
j=1

|anj|
∫ ∞
bnj

tpP{||DV || > t}t−pdt+D
∞∑
j=1

|anj|pbpnjP{||DV || > bnj}

(by (2.4))

≤ Dp+1Λp(V )

p− 1

∞∑
j=1

|anj|b1−p
nj +Dp+1Λp(V )

∞∑
j=1

|anj|p (by (2.1))

=
Dp+1Λp(V )

p− 1

∞∑
j=1

|anj|p +Dp+1Λp(V )
∞∑
j=1

|anj|p
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≤ pDp+1Λp(V )

p− 1
(by (4.5))

<∞. (4.6)

Then (arguing as in the proof that
∑∞
j=1 anjVnj converges a.c.) for arbitrary ε > 0

and all m ≥ 1

sup
M>m

E

∣∣∣∣∣∣∣∣ M∑
j=1

anj(Unj − EUnj)−
m∑
j=1

anj(Unj − EUnj)
∣∣∣∣∣∣∣∣

≤ sup
M>n

ε+
Cp

εp−1(p− 1)

M∑
j=m+1

|anj|pΛp(Unj − EUnj)


≤ ε+

Cp2
p

εp−1(p− 1)

 ∞∑
j=m+1

|anj|p||EUnj||p +
∞∑

j=m+1

|anj|pΛp(Unj)

 (by (2.2))

≤ ε+
Cp2

p

εp−1(p− 1)

 ∞∑
j=m+1

||anjEUnj||

p +
∞∑

j=m+1

|anj|pΛp(Vnj)


≤ ε+

Cp2
p

εp−1(p− 1)

 ∞∑
j=m+1

||anjEUnj||

p +Dp+1Λp(V )
∞∑

j=m+1

|anj|p


(by (2.4) and (2.1))

→ ε as m→∞ (by (4.6) and (4.5))

implying that
∑∞
j=1 anj(Unj−EUnj) converges a.c. to a random element in X . It then

follows from the a.c. convergence of
∑∞
j=1 anjVnj that

∑∞
j=1 anj(U

′
nj−EU ′nj) converges

a.c. to a random element in X .
Now recalling (2.3),

Λp

 kn∑
j=1

anjVnj

 ≤ 2p

Λp

 kn∑
j=1

anj(Unj − EUnj)

+ Λp

 kn∑
j=1

anj(U
′
nj − EU ′nj)


and so (4.4) will certainly hold provided it can be shown

Λp

 kn∑
j=1

anj(Unj − EUnj)

 = o(1) (4.7)

and

Λp

 kn∑
j=1

anj(U
′
nj − EU ′nj)

 = o(1). (4.8)

Choose q ∈ (p, p(X )). Then X is of stable type q. Let ε > 0 be arbitrary. Now
(4.3) ensures that there exists a constant 0 < B <∞ such that

sup
t≥B

tpP{||DV || > t} ≤ min

{
ε(p− 1)

4D
,
εq

D2q

}
. (4.9)
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The condition (4.2) guarantees that for all large n

sup
1≤j≤kn

|anj| ≤ min

{
1

B
,
(
ε

2B

) q
q−p
}
. (4.10)

Set Bn = inf1≤i≤kn bni, n ≥ 1. Then Bn →∞ by (4.2) and

kn∑
j=1

|anj|pbpnjP{||DV || > bnj}

≤ sup
t≥Bn

tpP{||DV || > t} (by (4.5))

= o(1) (by (4.3)). (4.11)

Then for all large n, arguing as in (4.6),

kn∑
j=1

||anjEUnj||

≤ D
kn∑
j=1

|anj|
∫ ∞
bnj

tpP{||DV || > t}t−pdt+D
kn∑
j=1

|anj|pbpnjP{||DV || > bnj}

≤ D
kn∑
j=1

|anj|
ε(p− 1)b1−p

nj

4D(p− 1)
+
ε

4
(by (4.10), (4.9), and (4.11))

=
kn∑
j=1

|anj|p
ε

4
+
ε

4

≤ ε

4
+
ε

4
=
ε

2
(by (4.5)). (4.12)

Thus for all large n,

kn∑
j=1

|anj|q||EUnj||q ≤

 kn∑
j=1

||anjEUnj||

q ≤ εq

2q
. (4.13)

Then for all large n

Λq

 kn∑
j=1

anj(Unj − EUnj)


≤ Cq

kn∑
j=1

Λq(anj(Unj − EUnj)) (by Lemma 3.2 and Remark 3.1)

≤ 2qCq

 kn∑
j=1

|anj|q||EUnj||q +
kn∑
j=1

|anj|qΛq(Unj)

 (by (2.2))
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≤ 2qCq

 εq
2q

+
kn∑
j=1

|anj|q sup
0<t<bnj

tqP{||Unj|| > t}

 (by (4.13))

≤ Cq

εq + 2q
kn∑
j=1

|anj|qmax

{
Bq, D sup

B≤t≤bnj
tqP{||DV || > t}

}
(by (4.10) and (2.4))

≤ Cq

εq + 2q
kn∑
j=1

|anj|qmax

{
Bq, Dbq−pnj sup

t≥B
tpP{||DV || > t}

}
≤ Cq

εq + 2q
kn∑
j=1

|anj|pmax

{
Bq sup

1≤i≤kn
|ani|q−p,

εq

2q

} (by (4.9))

≤ Cq

(
εq + 2qmax

{
εq

2q
,
εq

2q

})
(by (4.5) and (4.10))

= 2Cqε
q.

By the arbitrariness of ε > 0,

Λq

 kn∑
j=1

anj(Unj − EUnj)

 = o(1)

implying (4.7) since p < q.
Next, it follows from (4.12) that for all large n

kn∑
j=1

|anj|p||EU ′nj||p =
kn∑
j=1

|anj|p||EUnj||p ≤

 kn∑
j=1

||anjEUnj||

p ≤ εp

2p
. (4.14)

Now to prove (4.8), note that for all large n,

Λp

 kn∑
j=1

anj(U
′
nj − EU ′nj)


≤ Cp

kn∑
j=1

Λp(anj(U
′
nj − EU ′nj)) (by Lemma 3.2 and Remark 3.1)

≤ 2pCp

 kn∑
j=1

|anj|p||EU ′nj||p +
kn∑
j=1

|anj|pΛp(U
′
nj)

 (by 2.2))

≤ 2pCp

 εp
2p

+
kn∑
j=1

|anj|p sup
t>0

tpP{||U ′nj|| > t}

 (by (4.14))

≤ Cp

εp + 2p
kn∑
j=1

|anj|p( sup
0<t<bnj

tpP{||Vnj|| > bnj}+ sup
t≥bnj

tpP{||Vnj|| > t})


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≤ Cp

εp + 2p+1
kn∑
j=1

|anj|p sup
t≥bnj

tpP{||Vnj|| > t}


≤ Cp

εp + 2p+1D
kn∑
j=1

|anj|p sup
t≥bnj

tpP{||DV || > t}

 (by (2.4))

≤ Cp

(
εp + 2p+1D sup

t≥Bn
tpP{||DV || > t}

)
(by (4.5))

= Cpε
p + o(1) (by (4.3)).

Since ε > 0 is arbitrary, (4.8) holds thereby completing the proof of Theorem 4.1. 2

Remarks 4.1. The connection between Theorem 4.1 and other results in the
literature concerning the WLLN problem for random elements in a stable type p
Banach space will now be discussed.

(i) In Theorem 2 of Wei and Taylor [38], a WLLN version of Theorem 4.1 was
obtained in the case 0 < p < 2 for a sequence of independent mean 0 random
elements. The kn are permitted to be ∞. Condition (4.3) of Theorem 4.1 is
weaker than the corresponding condition E||V ||p <∞ of Theorem 2 of Wei and
Taylor [38].

(ii) In Theorem 2.1 of Bozorgnia and Bhaskara Rao [11], a WLLN version of Theorem
4.1 was obtained in the case 0 < p < 1 for a sequence of pairwise independent
random elements. The kn are again permitted to be ∞. The Bozorgnia and
Bhaskara Rao [11] result has the condition E||V ||p <∞ instead of (4.3). Since
0 < p < 1, the Banach space is, of course, automatically of stable type p. The
random elements are not assumed to have mean 0.

(iii) As mentioned earlier, Howell and Taylor [19] obtained a WLLN version of The-
orem 4.1 when kn = n, n ≥ 1.

(iv) For a sequence {Vn, n ≥ 1} of independent random elements, Alt [6] obtained
two WLLN versions of Theorem 4.1. In Theorem 1.2 of Alt [6], the random
elements are not assumed to have mean 0, the kn are permitted to be ∞, and
0 < p < 1 so again the stable type p condition is automatic. Alt [6] also
obtains an Lp(X ) convergence version of his Theorem 1.2 under an additional
uniform integrability condition when kn < ∞, n ≥ 1. In Theorem 1.4 of
Alt [6], kn < ∞ for all n ≥ 1, 1 ≤ p < 2, and the random elements are
not assumed to have mean 0 but are centered at the truncated expectations
EVjI(||Vj|| ≤ |anj|−1), 1 ≤ j ≤ kn, n ≥ 1 in the conclusion. Moreover, Alt [6]
asserts that if 1 < p < 2 and EVn = 0, n ≥ 1, then the truncated expectations

are not needed and so
∑kn
j=1 anjVj

P→ 0. Unfortunately, the authors cannot quite
follow this assertion of Alt [6] if lim supn→∞ kn =∞. Thus, the main difference
between Alt’s [6] Theorem 1.4 and Theorem 4.1 is that in Alt’s [6] Theorem 1.4

13



the kn are required to be finite, the random elements are centered at truncated
expectations, and the convergence is in probability whereas in Theorem 4.1,
the kn are permitted to be ∞, the random elements are centered at their true
expectations, and the convergence is in Λp(X ).

(v) For the 1 < p < 2 case, a WLLN version of Theorem 4.1 is established in
Theorem 3.3 of Wang, Bhaskara Rao, and Li [36] for a sequence of independent
mean 0 random elements. The kn are permitted to be ∞. However, Wang,
Bhaskara Rao, and Li [36] imposed the condition supn≥1 E||Vn||p < ∞ which

isn’t needed for
∑kn
j=1 anjVj

P→ 0 in view of Theorem 4.1.

The following example, inspired by a similar one of Beck [7], shows that the stable
type p hypothesis in Theorem 4.1 cannot be replaced by the weaker hypothesis that
X is of Rademacher type p.

Example 4.1. Let 1 < p < 2. Consider the real separable Banach space `p
of absolute pth power summable real sequences v = {vi, i ≥ 1} with norm ||v|| =
(
∑∞
i=1 |vi|p)1/p. Let v(n) denote the element having 1 in its nth position and 0 elsewhere,

n ≥ 1. Define a sequence {Vn, n ≥ 1} of independent mean 0 random elements in `p
by requiring the {Vn, n ≥ 1} to be independent with

P{Vn = v(n)} = P{Vn = −v(n)} =
1

2
, n ≥ 1.

Let kn = n, n ≥ 1, and Vnj = Vj, 1 ≤ j ≤ n, n ≥ 1. Then (2.4) and (4.3) hold with
D = 1 and V = V11. Let anj = n−1/p, 1 ≤ j ≤ n, n ≥ 1. Then (4.1) and (4.2) hold
but ∣∣∣∣∣∣∣∣ n∑

j=1

anjVnj

∣∣∣∣∣∣∣∣ =
||∑n

j=1 Vj||
n1/p

= 1 a.c., n ≥ 1

and so (4.4) fails. Of course, `p is not of stable type p but it is of Rademacher type p.
The next theorem is a version of Theorem 4.1 but without the assumption that the

array of random elements is stochastically dominated by a random element. Theorem
4.2 contains the additional condition (4.15) relating the marginal distributions of the
random variables {||Vnj||, 1 ≤ j ≤ kn, n ≥ 1} with the respective weights {anj, 1 ≤
j ≤ kn, n ≥ 1} in the weighted sum

∑n
j=1 anjVnj. Condition (4.16) serves the role in

Theorem 4.2 of condition (4.3) in Theorem 4.1. Theorem 4.2 will only be stated as
its proof follows along the lines of Theorem 4.1 and is left to the reader.

Theorem 4.2. Let {Vnj, 1 ≤ j ≤ kn ≤ ∞, n ≥ 1} be an array of rowwise
independent mean 0 random elements in a real separable, stable type p (1 < p < 2)
Banach space X . Let {anj, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such that
(4.1) and (4.2) hold. If

lim
t→∞

sup
n≥1

kn∑
j=1

|anj|tpP{||Vnj|| > t} = 0 (4.15)
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and
lim
t→∞

sup
n≥1

sup
1≤j≤kn

tpP{||Vnj|| > t} = 0, (4.16)

then

kn∑
j=1

anjVnj
Λp(X )→ 0.

Remarks 4.2. Some discussion is in order concerning the conditions of Theorem
4.2 and their relation with the conditions of Theorem 4.1.

(i) It is clear that (4.16) ⇒ (4.15) if

sup
n≥1

kn∑
j=1

|anj| <∞. (4.17)

(ii) In general, the hypotheses of Theorems 4.1 and 4.2 do not imply each other.
However, if {Vnj, 1 ≤ j ≤ kn, n ≥ 1} is stochastically dominated by a random
element V and if (4.3) and (4.17) hold, then (4.15) and (4.16) hold.

Proof. Stochastic domination and (4.3) immediately yield (4.16), and then
(4.15) follows from Remark 4.2(i). 2

(iii) If the array of random variables {||Vnj||p, 1 ≤ j ≤ kn, n ≥ 1} is {anj}-uniformly
integrable (that is,

lim
t→∞

sup
n≥1

kn∑
j=1

|anj|E||Vnj||pI(||Vnj|| > t) = 0),

then (4.15) holds.

Proof. For n ≥ 1,

kn∑
j=1

|anj|tpP{||Vnj|| > t} ≤
kn∑
j=1

|anj|E||Vnj||pI(||Vnj|| > t)

and (4.15) follows. 2

(iv) If the array of random elements {Vnj, 1 ≤ j ≤ kn, n ≥ 1} is {anj}-compactly
uniformly p-th order integrable, then (4.15) holds.

Proof. By hypothesis, for arbitrary ε > 0, there exists a compact subset Kε of
X such that

sup
n≥1

kn∑
j=1

|anj|E||Vnj||pI(Vnj /∈ Kε) < ε.
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In view of Remark 4.2(iii), it suffices to show that the array {||Vnj||p, 1 ≤ j ≤
kn, n ≥ 1} is {anj}-uniformly integrable. By the boundedness of Kε,

tε ≡ sup{||x|| : x ∈ Kε} <∞.

Thus for all t ≥ tε,

sup
n≥1

kn∑
j=1

|anj|E||Vnj||pI(||Vnj|| > t) ≤ sup
n≥1

kn∑
j=1

|anj|E||Vnj||pI(Vnj /∈ Kε) < ε.

The conclusion follows since ε is arbitrary. 2

(v) Example 4.1 also shows that the stable type p hypothesis in Theorem 4.2 cannot
be replaced by the weaker hypothesis that X is of Rademacher type p.

For random elements in a stable type p (1 ≤ p < 2) Banach space, the next
theorem establishes the WLLN (4.22) which involves random indices {Tn, n ≥ 1}. It is
not assumed that the random elements {Vnj, j ≥ 1, n ≥ 1} have mean 0. In addition,
no assumptions are made regarding the joint distributions of the random indices
whose marginal distributions are constrained solely by (4.19). Nor is it assumed that
the stochastic processes {Tn, n ≥ 1} and {Vnj, j ≥ 1, n ≥ 1} are independent of
each other. It should be noted that the condition (4.19) is considerably weaker than

Tn/αn
P→ c for some constant c ∈ [0,∞).

Theorem 4.3. Let {Vnj, j ≥ 1, n ≥ 1} be an array of rowwise independent
random elements in a real separable, stable type p (1 ≤ p < 2) Banach space X .
Suppose that {Vnj, j ≥ 1, n ≥ 1} is stochastically dominated by a random element
V . Assume that

lim
t→∞

tpP{||V || > t} = 0 if p > 1 and E||V || <∞ if p = 1. (4.15)

Let {Tn, n ≥ 1} be positive integer-valued random variables and 0 < αn → ∞ be
constants such that for some 0 < λ <∞

P
{
Tn
αn

> λ
}

= o(1). (4.16)

Let {anj, j ≥ 1, n ≥ 1} be an array of constants such that

sup
n≥1

[λαn]∑
j=1

|a[αn],j|p <∞ (4.17)

and
sup

1≤j≤[λαn]
|a[αn],j|p = O(α−1

n ). (4.18)
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Then the WLLN

Tn∑
j=1

a[αn],j

(
V[αn],j − EV[αn],jI(||V[αn],j|| ≤ ( sup

1≤j≤[λαn]
|a[αn],j|)−1)

)
P→ 0 (4.19)

obtains.
Proof. Let D be as in (2.4). Note at the outset that it follows from (4.18) that

lim
t→∞

tpP{||V || > t} = 0 and E||V || <∞. (4.20)

Let Γ = supn≥1

∑[λαn]
j=1 |a[αn],j|p and en = (sup1≤j≤[λαn] |a[αn],j|)−1, n ≥ 1. Then (4.21)

and αn → ∞ ensure that en → ∞, and it follows from (4.20), (4.21), and αn → ∞
that for every q > p

[λαn]∑
j=1

|a[αn],j|q = O(α
p−q
p

n ) = o(1). (4.21)

Let q ∈ (p, p(X )). Then X is of stable type q. Set

dnj = |a[αn],j|en, Wnj = a[αn],jV[αn],j, Unj = V[αn],jI(||V[αn],j|| ≤ en),

W ′
nj = WnjI(||Wnj|| ≤ dnj) = a[αn],jUnj, j ≥ 1, n ≥ 1.

Since E||Unj|| ≤ ∞, j ≥ 1, n ≥ 1, the {Unj, j ≥ 1, n ≥ 1} all have expected values.
Note that

[λαn]∑
j=1

P{||Wnj|| > dnj} ≤
[λαn]∑
j=1

P{||V[αn],j|| > en}

≤ DλαnP{||DV || > en} (by (2.4))

≤ CepnP{||DV || > en} = o(1) (by (4.21) and (4.23)).

Thus, in view of Lemma 3.4, it only needs to be shown that (3.4) holds. To this end,
for arbitrary ε > 0

P

 max
1≤k≤[λαn]

∣∣∣∣∣∣∣∣ k∑
j=1

(W ′
nj − EW ′

nj)
∣∣∣∣∣∣∣∣ > ε


≤ C

εq

[λαn]∑
j=1

Λq(W
′
nj − EW ′

nj) (by Lemma 3.3)

≤ 2qC

εq

[λαn]∑
j=1

||EW ′
nj||q +

[λαn]∑
j=1

Λq(W
′
nj)

 (by (2.2)). (4.22)

Now by (2.4) and (4.23)

E||V[αn],j|| ≤ D2E||V || <∞, j ≥ 1, n ≥ 1
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and so recalling (4.24)

[λαn]∑
j=1

||EW ′
nj||q ≤

[λαn]∑
j=1

|a[αn],j|q(E||V[αn],j||)q

≤ D2q(E||V ||)q
[λαn]∑
j=1

|a[αn],j|q = o(1).

For arbitrary δ > 0, (4.23) ensures that there exists a constant 0 < B <∞ such that

sup
t≥B

tpP{||DV || > t} ≤ δ

2DΓ
. 4.24)

Since en →∞, en ≥ B for all large n. Thus for all large n,

[λαn]∑
j=1

Λq(W
′
nj) =

[λαn]∑
j=1

|a[αn],j|q sup
0<t<en

tqP{||Unj|| > t} (by (2.1))

≤
[λαn]∑
j=1

|a[αn],j|qmax

{
Bq, D sup

B≤t≤en
tqP{||DV || > t}

}
(by (2.4))

≤ Bq
[λαn]∑
j=1

|a[αn],j|q +D
[λαn]∑
j=1

|a[αn],j|p sup
1≤i≤[λαn]

|a[αn],i|q−peq−pn sup
t≥B

tpP{||DV || > t}

≤ δ

2
+DΓ

δ

2DΓ
= δ (by (4.24) and (4.27)).

Since δ > 0 is arbitrary,
∑[λαn]
j=1 Λq(W

′
nj) = o(1) which in view of (4.25) and (4.26)

yields (3.4) thereby completing the proof of Theorem 4.3. 2

The following modification of Example 4.1 shows that the stable type p hypothesis
in Theorem 4.3 cannot be replaced by the weaker hypothesis that X is of Rademacher
type p.

Example 4.2. Let 1 ≤ p < 2 and let {Vn, n ≥ 1} be the sequence of independent
random elements in `p (which is of Rademacher type p) defined as in Example 4.1.
Set Vnj = Vj, j ≥ 1, n ≥ 1. Let anj = n−1/p, 1 ≤ j ≤ n, anj = 0, j ≥ n + 1, n ≥ 1 and
let Tn ≡ n, αn = n, n ≥ 1, and λ = 1. Then all of the hypotheses of Theorem 4.3 are
satisfied (except for the stable type p hypothesis) but (4.22) fails. The details are left
to the reader.
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23. S. Kwapień and W. A. Woyczyński, Random Series and Stochastic Integrals:

Single and Multiple, Birkhäuser, Boston, 1992.
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