hold, where B_i is a preset symmetric positive-definite matrix and $\int_{\mathbb{R}^N} |\nabla_{\theta_i}^{(k)} q(x;\theta_i)| dx < \infty$ (k = 1, 2, 3), then the guaranteed risk for the BDR $\chi = \chi(x)$ can be decomposed as

$$\begin{aligned} r_{+}(\chi) &= r\Big(\Big\{q(\cdot; \ \theta_{i}^{0})\Big\}; \ \chi\Big) + \delta r + O(\varepsilon_{+}^{2}), \qquad \delta r = \sum_{i=1}^{L} \pi_{i}\varepsilon_{i}\sqrt{\alpha_{i}^{T}B_{i}^{-1}\alpha_{i}}, \\ \alpha_{i} &= \sum_{j=1}^{L} w_{ij}\int_{R^{N}} \chi_{j}(x)\nabla_{\theta_{i}^{0}}q(x; \ \theta_{i}^{0}) \, dx \quad (i \in S). \end{aligned}$$

THEOREM 3. If the random parameter distortions

$$P_i(\varepsilon_i) = \left\{ p_i(\cdot): \ p_i(x; \ \theta_i) = n_N \left(x | \ \mu_i, \ \Sigma_i^0 \right), \quad \mu_i = \mu_i^0 + \varepsilon_i \alpha_i \right\}$$

hold, where α_i is a vector having the normal distribution $N_N(0, \Sigma_i^0)$, and the α_i are independent and unknown, then the risk for the Bayes classification rule equals

$$r(\chi^{0}) = \pi_{1} \left(w_{12} + (w_{11} - w_{12}) \Phi \left(\Delta/2 \sqrt{1 + \varepsilon_{1}^{2}} \right) \right) \\ + \pi_{2} \left(w_{21} + (w_{22} - w_{21}) \Phi \left(\Delta/2 \sqrt{1 + \varepsilon_{1}^{2}} \right) \right)$$

REFERENCES

 T. ANDERSON, An Introduction to Multivariate Statistical Analysis, Wiley, New York, 1957.
YU. S. KHARIN, Robustness of the Procedures of Discriminant Analysis, Factory Laboratory, 10 (1990).

Volodin A. I. (Kazan'), Complete convergence in the law of large numbers for a subsequence and for a random number of random elements.

We give generalizations on weighted sums and Banach spaces of results of Gut [1] and Adler [2].

For a Banach space E, let $p(E) = \sup\{p: E \text{ is of stable type } p\}$. It is known that the interval of stable types is open, that is, if E is of type p < 2, then p(E) > p.

We shall say that a sequence of random elements (Y_n) converges completely (to zero) if for all $\varepsilon > 0$ the series $\sum_{n=1}^{\infty} P\{||Y_n|| > \varepsilon\}$ converges.

In what follows a Banach space E is of stable type $p, 1 \le p \le 2$; (n_k) is a sequence of strictly increasing integers; (X_k) is a sequence of independent mean-zero random elements taking values in E. Consider the complete convergence of weighted sums $T_n = \sum_{k=1}^n a_k(n)X_k$, where $\{a_k(n): 1 \le k \le n\}, n \in N$ is a triangular array of constants. Introduce the sequence $\varphi(n) = 1/\max_{1\le k\le n} |a_k(n)|$.

Let (X_k) be stochastically dominated by a positive random variable ξ (that is,

$$\sup_{k} P\{\|X_{k}\| \ge t\} \le C P\{\xi \ge t\}$$

for all $t \ge 0$ with $E \xi^r < \infty$ for some p < r < p(E) and $E M(\varkappa(\psi(2\xi))) < \infty$, where $M(t) = \sum_{k \le t} n_k, \ \varkappa(t) = \operatorname{card} \{k: n_k \le t\}$ and $\psi(t) = \operatorname{card} \{n: \varphi(n) \le t\}, t > 0$.

THEOREM 1. Under these conditions T_{n_k} converges completely as $k \to \infty$.

Now let (b_k) be a sequence of positive constants with $\limsup b_k < 1$ and

$$\sum_{k=1}^{\infty} b_k \varphi^{p-r}(n_k) < \infty,$$

and let (v_k) be a sequence of integer-valued random variables with $\sum_{k=1}^{\infty} P\{|v_k/n_k| \ge b_k\} < \infty$. Note that we do not put assumptions on the independence of (v_k) and (X_k) . Moreover, let sequence φ satisfies the condition $\varphi(2n_k) \le C\varphi(n_k)$ for all k and some C > 0.

THEOREM 2. Under these conditions T_{ν_n} converges completely as $n \to \infty$.

These investigations will be continued by the author and A. Adler (Illinois Institute of Technology).

REFERENCES

- GUT A, On complete convergence in the law of large numbers for subsequences, Ann. Probab., 13 (1985), pp. 1286–1291.
- [2] ADLER A, On complete convergence of the sum of a random number of random variables, Calcutta Statist. Assoc. Bull., 1988, N 147-148, pp. 161-169.

S. E. Vorobeichikov and V. V. Konev (Tomsk), On detection of stationarity violation in a dynamic system.

Let $(x_n, y_n), x_n \in \mathbb{R}^p, y_n \in \mathbb{R}^q$, be a multidimensional random process described by the system of stochastic equations

$$x_{n+1} = \mu + Ax_n + \xi_{n+1}, \qquad n \ge 1,$$

$$y_n = Qx_n + \eta_n,$$

where x_n is a stable AR-process (all eigenvalues of the matrix A lie within the unit disk), y_n is the observed process, ξ_n and η_n are independent sequences of independent Gaussian random vectors with zero means and respective covariance matrices B and C C > 0, and x_0 is a Gaussian vector independent of (ξ_n, η_n) . Assume that at some unknown time (change time) θ the set of parameters $\lambda = (\mu, A, B, Q, C)$ of the process jump from value $\lambda_0 =$ $(\mu_0, A_0, B_0, Q_0, C_0)$ to $\lambda_1 = (\mu_1, A_1, B_1, Q_1, C_1)$ which are known and $\lambda_0 \neq \lambda_1$. It is required to construct a procedure for detecting the change point from the observations of the process y_n that would allow are to determine characteristics of false alarms and delay time.

It is suggested that to detect the change point, forecasts should be made for y_{n+1} based on the k preceding values y_n, \ldots, y_{n-k+1} in accordance with each of the alternative models. This is a cyclic procedure, i.e., after the data required for deciding whether there is a change or not has been accumulated, a new observation cycle starts. The durations of cycles are random and are determined by the time of exceeding some threshold H by the sum of conditional Kullback divergences between the conditional distributions of y_{n+1} for the competing models, given the values of y_n, \ldots, y_{n-k+1} . The decision that a change (disorder) has occurred is made with the help of statistics which are increments of the functional of the least-squares method on corresponding observation cycles.

Formulas are found for the mean time between false alarms T_0 and for the mean delay T_1 in detecting the change point. The asymptotic properties of the procedure are contained in the following.

THEOREM. Let the parameters λ_0 and λ_1 of the process (x_n, y_n) guarantee that $\max(h_0, h_1) < \infty$. Then

1) $\lim_{T_0\to\infty}(T_1/\log T_0) = \gamma, \quad \gamma = -Hh_1\varkappa/\log z,$

2) $\lim_{a\to\infty} (T_0/Hh_0 z^a) = \rho$, $\lim_{a\to\infty} (T/Hh_1 + a\varkappa) = \nu$,

where the values h_0 , h_1 , γ , \varkappa , ρ , ν , and z (z > 1) are determined by λ_0 and λ_1 , and a is the procedure parameter.

REFERENCES

[1] E. S. VOROBEICHIKOV AND V. V. KONEV, On the analysis of properties of the cumulative sums algorithm, Automatics and Telemechanics, 2 (1992), pp. 58-64. (In Russian.)