hold, where B_{i} is a preset symmetric positive-definite matrix and $\int_{R^{N}}\left|\nabla_{\theta_{i}}^{(k)} q\left(x ; \theta_{i}\right)\right| d x<\infty$ ($k=1,2,3$), then the guaranteed risk for the $B D R \chi=\chi(x)$ can be decomposed as

$$
\begin{aligned}
r_{+}(\chi) & =r\left(\left\{q\left(\cdot ; \theta_{i}^{0}\right)\right\} ; \chi\right)+\delta r+O\left(\varepsilon_{+}^{2}\right), \quad \delta r=\sum_{i=1}^{L} \pi_{i} \varepsilon_{i} \sqrt{\alpha_{i}^{T} B_{i}^{-1} \alpha_{i}} \\
\alpha_{i} & =\sum_{j=1}^{L} w_{i j} \int_{R^{N}} \chi_{j}(x) \nabla_{\theta_{i}^{0}} q\left(x ; \theta_{i}^{0}\right) d x \quad(i \in S) .
\end{aligned}
$$

Theorem 3. If the random parameter distortions

$$
P_{i}\left(\varepsilon_{i}\right)=\left\{p_{i}(\cdot): p_{i}\left(x ; \theta_{i}\right)=n_{N}\left(x \mid \mu_{i}, \Sigma_{i}^{0}\right), \quad \mu_{i}=\mu_{i}^{0}+\varepsilon_{i} \alpha_{i}\right\}
$$

hold, where α_{i} is a vector having the normal distribution $N_{N}\left(0, \Sigma_{i}^{0}\right)$, and the α_{i} are independent and unknown,then the risk for the Bayes classification rule equals

$$
\begin{aligned}
r\left(\chi^{0}\right)= & \pi_{1}\left(w_{12}+\left(w_{11}-w_{12}\right) \Phi\left(\Delta / 2 \sqrt{1+\varepsilon_{1}^{2}}\right)\right) \\
& +\pi_{2}\left(w_{21}+\left(w_{22}-w_{21}\right) \Phi\left(\Delta / 2 \sqrt{1+\varepsilon_{1}^{2}}\right)\right)
\end{aligned}
$$

REFERENCES

[1] T. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, New York, 1957.
[2] Yu. S. Kharin, Robustness of the Procedures of Discriminant Analysis, Factory Laboratory, 10 (1990).

Volodin A. I. (Kazan'), Complete convergence in the law of large numbers for a subsequence and for a random number of random elements.

We give generalizations on weighted sums and Banach spaces of results of Gut [1] and Adler [2].

For a Banach space E, let $p(E)=\sup \{p: E$ is of stable type $p\}$. It is known that the interval of stable types is open, that is, if E is of type $p<2$, then $p(E)>p$.

We shall say that a sequence of random elements $\left(Y_{n}\right)$ converges completely (to zero) if for all $\varepsilon>0$ the series $\sum_{n=1}^{\infty} P\left\{\left\|Y_{n}\right\|>\varepsilon\right\}$ converges.

In what follows a Banach space E is of stable type $p, 1 \leq p \leq 2 ;\left(n_{k}\right)$ is a sequence of strictly increasing integers; $\left(X_{k}\right)$ is a sequence of independent mean-zero random elements taking values in E. Consider the complete convergence of weighted sums $T_{n}=\sum_{k=1}^{n} a_{k}(n) X_{k}$, where $\left\{a_{k}(n): 1 \leq k \leq n\right\}, n \in N$ is a triangular array of constants. Introduce the sequence $\varphi(n)=1 / \max _{1 \leq k \leq n}\left|a_{k}(n)\right|$.

Let $\left(X_{k}\right)$ be stochastically dominated by a positive random variable ξ (that is,

$$
\sup _{k} P\left\{\left\|X_{k}\right\| \geq t\right\} \leq C P\{\xi \geq t\}
$$

for all $t \geq 0$) with $E \xi^{r}<\infty$ for some $p<r<p(E)$ and $E M(\varkappa(\psi(2 \xi)))<\infty$, where $M(t)=$ $\sum_{k \leq t} n_{k}, \varkappa(t)=\operatorname{card}\left\{k: n_{k} \leq t\right\}$ and $\psi(t)=\operatorname{card}\{n: \varphi(n) \leq t\}, t>0$.

Theorem 1. Under these conditions $T_{n_{k}}$ converges completely as $k \rightarrow \infty$.
Now let $\left(b_{k}\right)$ be a sequence of positive constants with $\lim \sup b_{k}<1$ and

$$
\sum_{k=1}^{\infty} b_{k} \varphi^{p-r}\left(n_{k}\right)<\infty
$$

and let (v_{k}) be a sequence of integer-valued random variables with $\sum_{k=1}^{\infty} P\left\{\left|v_{k} / n_{k}\right| \geq b_{k}\right\}<$ ∞. Note that we do not put assumptions on the independence of $\left(v_{k}\right)$ and $\left(X_{k}\right)$. Moreover, let sequence φ satisfies the condition $\varphi\left(2 n_{k}\right) \leq C \varphi\left(n_{k}\right)$ for all k and some $C>0$.

Theorem 2. Under these conditions $T_{\nu_{n}}$ converges completely as $n \rightarrow \infty$.
These investigations will be continued by the author and A. Adler (Illinois Institute of Technology).

REFERENCES

[1] Gut A, On complete convergence in the law of large numbers for subsequences, Ann. Probab., 13 (1985), pp. 1286-1291.
[2] Adler A, On complete convergence of the sum of a random number of random variables, Calcutta Statist. Assoc. Bull., 1988, N 147-148, pp. 161-169.

S. E. Vorobeichikov and V. V. Konev (Tomsk), On detection of stationarity violation in a dynamic system.

Let (x_{n}, y_{n}), $x_{n} \in R^{p}, y_{n} \in R^{q}$, be a multidimensional random process described by the system of stochastic equations

$$
\begin{aligned}
x_{n+1} & =\mu+A x_{n}+\xi_{n+1}, \quad n \geq 1, \\
y_{n} & =Q x_{n}+\eta_{n},
\end{aligned}
$$

where x_{n} is a stable AR-process (all eigenvalues of the matrix A lie within the unit disk), y_{n} is the observed process, ξ_{n} and η_{n} are independent sequences of independent Gaussian random vectors with zero means and respective covariance matrices B and $C C>0$, and x_{0} is a Gaussian vector independent of $\left(\xi_{n}, \eta_{n}\right)$. Assume that at some unknown time (change time) θ the set of parameters $\lambda=(\mu, A, B, Q, C)$ of the process jump from value $\lambda_{0}=$ ($\mu_{0}, A_{0}, B_{0}, Q_{0}, C_{0}$) to $\lambda_{1}=\left(\mu_{1}, A_{1}, B_{1}, Q_{1}, C_{1}\right)$ which are known and $\lambda_{0} \neq \lambda_{1}$. It is required to construct a procedure for detecting the change point from the observations of the process y_{n} that would allow are to determine characteristics of false alarms and delay time.

It is suggested that to detect the change point, forecasts should be made for y_{n+1} based on the k preceding values y_{n}, \ldots, y_{n-k+1} in accordance with each of the alternative models. This is a cyclic procedure, i.e., after the data required for deciding whether there is a change or not has been accumulated, a new observation cycle starts. The durations of cycles are random and are determined by the time of exceeding some threshold H by the sum of conditional Kullback divergences between the conditional distributions of y_{n+1} for the competing models, given the values of y_{n}, \ldots, y_{n-k+1}. The decision that a change (disorder) has occurred is made with the help of statistics which are increments of the functional of the least-squares method on corresponding observation cycles.

Formulas are found for the mean time between false alarms T_{0} and for the mean delay T_{1} in detecting the change point. The asymptotic properties of the procedure are contained in the following.

Theorem. Let the parameters λ_{0} and λ_{1} of the process $\left(x_{n}, y_{n}\right)$ guarantee that $\max \left(h_{0}, h_{1}\right)<\infty$. Then

1) $\lim _{T_{0} \rightarrow \infty}\left(T_{1} / \log T_{0}\right)=\gamma, \quad \gamma=-H h_{1} \varkappa / \log z$,
2) $\lim _{a \rightarrow \infty}\left(T_{0} / H h_{0} z^{a}\right)=\rho, \quad \lim _{a \rightarrow \infty}\left(T / H h_{1}+a \varkappa\right)=\nu$,
where the values $h_{0}, h_{1}, \gamma, \varkappa, \rho, \nu$, and $z(z>1)$ are determined by λ_{0} and λ_{1}, and a is the procedure parameter.

REFERENCES

[1] E. S. Vorobeichikov and V. V. Konev, On the analysis of properties of the cumulative sums algorithm, Automatics and Telemechanics, 2 (1992), pp. 58-64. (In Russian.)

