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1. INTRODUCTION

The basic theory of U-statistics was developed by W. Hoeffding (1948). Since then the role of U-
statistics has gradually increased both in Theoretical Probability and Statistics. We refer to the mono-
graph by Koroljuk and Borovskich (1994) for not only the basic definitions, notions, and inequalities
(moment and maximal inequalities), but also for laws of large numbers, weak convergence, functional
limit theorems, approximations in limit theorems, asymptotic expansions, large deviations, and laws
of the iterated logarithm for U-statistics based on a sequence of dependent random variables, that are
discussed in detail in this book.

In the present paper, we provide strong laws of large numbers for certain multilinear-type U-statistics
based on negatively associated random variables.

Recall that a finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated
(sometimes abbreviated to NA) if, for any disjoint subsets A and B of {1, 2, · · · , n} and any real
coordinate-wise nondecreasing functions f on RA and g on RB ,

Cov (f(Xi, i ∈ A), g(Xj , j ∈ B)) ≤ 0

whenever the covariance exists.
An infinite family is negatively associated if every finite subfamily is negatively associated.
This definition was introduced by Alam and Saxena (1981) and Joag-Dev and Proschan (1983).

Joag-Dev and Proschan (1983) pointed and proved that a number of well known multivariate distribu-
tions posses the NA property, such as

(a) the multinomial distributions,
(b) the convolutions of various polynomial distributions,
(c) the multivariate hypergeometric distributions,
(d) the Dirichlet distributions,
(e) the generalized Dirichlet multinomial distributions,
(f) the negatively correlated normal distributions,
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(g) the permutation distributions,
(h) the joint sample distributions in the simple random sampling without replacement,
(i) the joint distributions of ranks.
Because of their wide applications in multivariate statistical analysis and Reliability Theory, the

notion of negatively associated random variables attracts more and more attention. We refer the reader
to Joag-Dev and Proschan (1983) for fundamental properties, to Newman (1984) for the central
limit theorem, to Matula (1992) for the three series theorem, to Barbour et al. (1992) for Poisson
approximation, to Shao (2000) for the moment and exponential inequalities, and to Shao and Su (1999)
for the law of the iterated logarithm.

Trough this paper, C always stands for a positive constant which differs from one place to another.

2. MAIN RESULTS

Now we state the main results. The proofs will be presented in the next Section.
Theorem 1. Let {X, Xn, n ≥ 1} be a negatively associated sequence of identically distributed

random variables with E|X|p < ∞ for some p ≥ 1 and EX = 0. Let {kn, n ≥ 1} be a sequence of
positive integers and {ani, 1 ≤ i ≤ kn, n ≥ 1} be an array of real numbers satisfying the conditions

kn ≤ Mn for all n ≥ 1,

sup
n≥1

max
1≤i≤kn

|ani| < ∞,

kn∑
i=1

a2
ni = O(nδ) for some δ < min{1, 2/p}.

Then, for every integer m ≥ 1,

n−m/p
∑

1≤i1<···<im≤kn

m∏
j=1

anijXij → 0 a.s.

The second theorem sharpens Theorem 1 in the case p = 1.
Theorem 2. Let {X, Xn, n ≥ 1} be a sequence of identically distributed negatively associated

mean zero random variables. Let {ani, 1 ≤ i ≤ kn, n ≥ 1} be an array of real numbers under the
conditions kn ≤ Mn for some integer M ≥ 1 and supn≥1 max1≤i≤kn |ani| < ∞. Then, for every
integer m ≥ 1,

n−m
∑

1≤i1<···<im≤kn

m∏
j=1

anijXij → 0 a.s.

3. LEMMAS

Hoffmann-Jørgensen’s inequality (Hoffmann-Jørgensen, 1974) has now become a standard tech-
nique in proving strong limit theorems in the case of independent summands. But in the case of
negatively associated random variables, we do not know whether the inequality of Hoffmann-Jørgensen
holds or not. Recently, Shao (2000) proved exponential inequalities which may play the same role as
Hoffmann-Jørgensen’s inequality in the case of independent summands.

Lemma 1 (Shao, 2000). Let p ≥ 1 and let {Yn, n ≥ 1} be a sequence of negatively associated
mean zero random variables, with E|Yi|p < ∞ for every 1 ≤ i ≤ n. Then

E max
1≤k≤n

|
k∑

i=1

Yi|p ≤ 23−p
n∑

i=1

E|Yi|p if 1 ≤ p ≤ 2
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and

E max
1≤k≤n

|
k∑

i=1

Yi|p ≤ 2(15p/ log p)p


(

n∑
i=1

EY 2
i

)p/2

+
n∑

i=1

E|Yi|p
 if p > 2.

Lemma 2 (Shao, 2000). Let {Yk, 1 ≤ k ≤ n} be a sequence of negatively associated random
variables with zero means and finite second moments. Let Sk =

∑k
i=1 Yi and Bn =

∑n
i=1 EY 2

i .
Then, for all x > 0 and a > 0,

P ( max
1≤k≤n

|Sk| ≥ x) ≤ 2P

(
max

1≤k≤n
|Yk| ≥ a

)
+ 4 exp

(
− x2

8Bn

)
+ 4

(
Bn

4(xa + Bn)

)x/(12a)

.

We also need the following result.
Lemma 3 (Wang et al., 2001). Let {xn, n ≥ 1} be an array of real numbers. Then, for all n ≥ m ≥ 1,

∑
1≤i1<···<im≤n

m∏
j=1

xij =
∑

Pm
j=1 ljrj=m

A(m)(lj , rj : 1 ≤ j ≤ m)
m∏

j=1

(
n∑

i=1

x
rj

i

)lj

,

where A(m)(lj , rj : 1 ≤ j ≤ m) and
∑m

j=1 ljrj = m do not depend on n and {xn, n ≥ 1}.

4. PROOFS

In this Section, we present proofs of the main results of the paper.
Proof of Theorem 1. By the same argument as that in the proof of Theorem 3.1 in Li et al. (1995), we

assume that kn = n. We can also assume that ani ≥ 0 for all 1 ≤ i ≤ n and n ≥ 1. Otherwise, we can
reduce the problem to the case of positive weights {a+

ni, 1 ≤ i ≤ n, n ≥ 1} and {a−ni, 1 ≤ i ≤ n, n ≥ 1},
where a+

ni = max(ani, 0) and a−ni = max(−ani, 0) are the respective positive and negative parts of a
number.

Case 1 (m = 1). This case generalizes Theorem 3.1 in Li et al. (1995) to the case of NA random
variables.

First of all, we show that

n−1/p
n∑

i=1

aniXi → 0 in probability . (1)

We start with the case 1 ≤ p ≤ 2. By Chebyshev’s inequality, Lemma 1, and Hölder’s inequality, we
obtain that, for all ε > 0,

P (|
n∑

i=1

aniXi| ≥ εn1/p) ≤ Cn−1E|
n∑

i=1

aniXi|p

≤ Cn−1
n∑

i=1

|ani|pE|X|p ≤ Cn−1(
n∑

i=1

a2
ni)

p/2n1−p/2

≤ Cn(δ−1)p/2 → 0.

We now consider the case p > 2. By Chebyshev’s inequality and Lemma 1, we obtain that, for all ε > 0,

P (|
n∑

i=1

aniXi| ≥ εn1/p) ≤ Cn−2/pE|
n∑

i=1

aniXi|2

≤ Cn−2/p
n∑

i=1

a2
niEX2 ≤ Cn−2/p+δ → 0.
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Hence, (1) holds.

By Theorem 3.2.1 in Stout (1974), it suffices to prove that

n−1/p
n∑

i=1

aniX
s
i → 0 a.s.,

where {Xs
n, n ≥ 1} is a symmetrized version of the sequence {Xn, n ≥ 1}.

By the fundamental property of negatively associated random variables, one can prove (see Joag-Dev
and Proschan, 1983) that {Xs

n, n ≥ 1} is also a sequence of negatively associated random variables.
Hence we need only to prove the result for symmetric {Xn, n ≥ 1}.

For an arbitrary fixed ε > 0, define X ′
ni = −εzb−1n1/pI(Xi < −εzb−1n1/p) +XiI(|Xi| ≤ εzb−1n1/p) +

εzb−1n1/pI(Xi > εzb−1n1/p) and X ′′
ni = Xi −X ′

ni for 1 ≤ i ≤ n and n ≥ 1, where b = supn,i |ani| and
0 < z < (min{1, 2/p} − δ)/12.

Note that the condition E|X|p < ∞ is equivalent to
∑∞

n=1 P (|Xn| > αn1/p) < ∞ for any α > 0.
Hence, by the Borel-Cantelli lemma,

∑n
i=1 |X ′′

ni| is bounded with probability 1. From here it follows
that

n−1/p|
n∑

i=1

aniX
′′
ni| ≤ max

1≤i≤n
|ani|n−1/p

n∑
i=1

|X ′′
ni| → 0 a.s. (2)

If the statement

lim sup
n→∞

n−1/p|
n∑

i=1

aniX
′
ni| ≤ ε a.s. (3)

is true then, by (2),

lim sup
n→∞

n−1/p|
n∑

i=1

aniXi| ≤ ε a.s.

Since ε > 0 is arbitrary, we obtain the statement of the theorem.

Hence it suffices to prove (3). By the Borel-Cantelli lemma, it suffices to show that

∞∑
n=1

P (|
n∑

i=1

aniX
′
ni| ≥ εn1/p) < ∞.

Further,

Bn =
n∑

i=1

a2
niE(X ′

ni)
2

= C{n2/pP (|X| > εzb−1n1/p) + EX2I(|X| ≤ εzb−1n1/p)}
n∑

k=1

a2
nk

≤

 Cn2/p−1+δ,

Cnδ,

if 1 ≤ p ≤ 2

if p > 2
≤ Cnp′ ,

where p′ = max{2/p− 1 + δ, δ}, and 2/p− p′ > 0 by the assumption.

Take x = εn1/p and a = εyn1/p, where z < y < min{1, 2/p} − δ)/12. By Lemma 2, we have that
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P (|
n∑

i=1

aniX
′
ni| ≥ εn1/p)

≤ 2P ( max
1≤i≤n

|aniX
′
ni| ≥ a) + 4 exp

(
− x2

8Bn

)
+ 4

(
Bn

4(xa + Bn)

)x/(12a)

≤ 2P ( max
1≤i≤n

|aniX
′
ni| ≥ εyn1/p) + 4 exp

(
−Cn2/p−p′

)
+ Cn−(2/p−p′)/(12y).

Note that
∞∑

n=1

exp
(
−Cn2/p−p′

)
< ∞ and

∞∑
n=1

n−(2/p−p′)/(12y) < ∞.

Hence it remains to show
∞∑

n=1

P ( max
1≤i≤n

|aniX
′
ni| ≥ εyn1/p) < ∞.

Note that

max
1≤i≤n

|aniX
′
ni| ≤ sup

n,i
|ani|εzn1/p(sup

n,i
|ani|)−1 = εzn1/p < εyn1/p.

Hence, P (max1≤i≤n |aniX
′
ni| ≥ εyn1/p) = 0 and we obtain the desired statement. �

Case 2 (m ≥ 2). By Lemma 3, it suffices to show that

n−r/p
n∑

i=1

ar
niX

r
i → 0 a.s. (4)

for r = 1, · · · ,m. Note the following inequality which holds for all real numbers {bi, i ≥ 1} and r ≥ 2:( ∞∑
i=1

|bi|r
)2/r

≤
∞∑
i=1

b2
i .

Hence it suffices to prove (4) in the case r = 1 and r = 2.

If r = 1 then relation (4) holds by Case 1.

If r = 2 and 1 ≤ p < 2 then 2/p > 1 and E|X2|p/2 < ∞. Hence, by the Marcinkiewicz-Zygmund
strong law of large number (see Sawyer, 1966),

n−2/p
n∑

i=1

X2
i → 0 a.s.

Hence, (4) holds.

If r = 2 and p ≥ 2 then, in order to prove (4), it suffices to show that

n−2/p
n∑

i=1

a2
niX

2
i I(Xi ≥ 0) → 0 a.s.

and

n−2/p
n∑

i=1

a2
niX

2
i I(Xi < 0) → 0 a.s.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 19 No. 4 2009



230 BUDSABA at al.

By the definition of negatively associated random variables (see Joag-Dev and Proschan, 1983),
{X2

nI(Xn ≥ 0), n ≥ 1} and {−X2
nI(Xn < 0), n ≥ 1} are also sequences of negatively associated ran-

dom variables. Notice that
n∑

i=1

(a2
ni)

2 ≤ sup
n,i

a2
ni

n∑
i=1

a2
ni = O(nδ) as n →∞,

and δ ≤ min{1, 2/p} ≤ min{1, 4/p}. Using Case 1 with p/2, we obtain

n−2/p
n∑

i=1

a2
ni(X

2
i I(Xi ≥ 0)− EX2I(X ≥ 0)) → 0 a.s.

and

n−2/p
n∑

i=1

a2
ni(X

2
i I(Xi < 0)− EX2I(X < 0)) → 0 a.s.

Taking the relation

n−2/p
n∑

i=1

a2
ni → 0 as n →∞

into account, we obtain (4). �

Proof of Theorem 2. As in the previous proof, we assume without loss generality that ani ≥ 0 for all
1 ≤ i ≤ n and n ≥ 1.

Case 1 (m = 1). This case generalizes the result of Choi and Sung (1987) to the case of NA random
variables. Note that the result of Choi and Sung (1987) sharpens Theorem 3.1 of Li et al. in the case
p = 1. Fix ∆ > 0 and define

X(1)
n = XnI(Xn > ∆), X(2)

n = XnI(Xn < −∆),

X(3)
n = −∆I(Xn < −∆) + XnI(|Xn| ≤ ∆) + ∆I(Xi > ∆),

X(4)
n = ∆I(Xn < −∆)−∆I(Xn > ∆).

Then Xn = X
(1)
n + X

(2)
n + X

(3)
n + X

(4)
n , and by the definition of negatively associated random variables

(see, Joag-Dev and Proschan, 1983), {X(j)
n , n ≥ 1} is also a sequence of negatively associated random

variables for each j = 1, 2, 3, 4.

By Theorem 1 of Matula (1992), we have

n−1|
n∑

i=1

aniX
(1)
i | ≤ sup

n,i
|ani|n−1

n∑
i=1

X
(1)
i → sup

n,i
|ani|EXI(X > ∆) a.s.

and

n−1|
n∑

i=1

aniX
(2)
i | ≤ − sup

n,i
|ani|n−1

n∑
i=1

X
(2)
i → − sup

n,i
|ani|EXI(X < −∆) a.s.

Choosing ∆ large enough, we have supn,i |ani|EXI(X > ∆) and − supn,i |ani|EXI(X < −∆) can be

made as small as desired. Also by choosing ∆ large enough, we can make |E
∑n

i=1 aniX
(3)
i |/n and

|E
∑n

i=1 aniX
(4)
i |/n as small as desired since EX = 0. It remains to show that

n−1
n∑

i=1

ani(X
(3)
i − EX

(3)
i ) → 0 a.s.
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and

n−1
n∑

i=1

ani(X
(4)
i − EX

(4)
i ) → 0 a.s.

These relations follow from the fact that
∞∑

n=1

P (|
n∑

i=1

ani(X
(3)
i − EX

(3)
i )| ≥ εn) < ∞

and
∞∑

n=1

P (|
n∑

i=1

ani(X
(4)
i − EX

(4)
i )| ≥ εn) < ∞

for all ε > 0. In fact, taking t > 2, by Lemma 1, we have
∞∑

n=1

P (|
n∑

i=1

ani(X
(3)
i − EX

(3)
i )| ≥ εn)

≤ C
∞∑
i=1

n−t

(
(

n∑
i=1

a2
niE(X(3)

i − EX
(3)
i )2)t/2 +

n∑
i=1

|ani|tE|X(3)
i − EX

(3)
i |t

)

≤ C

∞∑
n=1

n−t/2 + C

∞∑
n=1

n−t+1 < ∞.

By the same argument,
∞∑

n=1

P (|
n∑

i=1

ani(X
(4)
i − EX

(4)
i )| ≥ εn) < ∞.�

Case 2 (m ≥ 2) repeats the proof of the corresponding part of Theorem 1 and it is omitted. �
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