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1 Introduction

It is well known that the Marcinkiewicz–Zygmund type inequality and Rosenthal type
inequality play important roles in probability limit theory and mathematical statistics.
There are many sequences of random variables satisfying the Marcinkiewicz–
Zygmund type inequality or Rosenthal type inequality under some suitable conditions.

The main purpose of the paper is to establish the Marcinkiewicz–Zygmund type
inequality and Rosenthal type inequality for a new dependent structure–m-negatively
associated random variables (m-NA, in short). In addition, we will give some appli-
cations of Marcinkiewicz–Zygmund type inequality and Rosenthal type inequality to
the strong consistency for least squares estimator in multiple linear regression models
and large deviation for least squares estimator in nonlinear regression models.

Firstly, let us recall the the definitions of negatively associated random variables
and m-negatively associated random variables. The concept of negatively associated
random variables is as follows.

Definition 1.1 A finite family of random variables {Xi , 1≤i≤ n} is said to be neg-
atively associated (NA, in short) if for every pair of disjoint subsets A and B of
{1, 2, . . . , n},

Cov( f1(Xi , i ∈ A), f2(X j , j ∈ B)) ≤ 0

whenever f1 and f2 are coordinatewise increasing and the covariance exists.
An infinite family of random variables {Xn, n ≥ 1} is NA if every finite subfamily

is NA.

The concept of NA random variables was introduced by Alam and Saxena (1981)
(1981) and carefully studied by Joag-Dev and Proschan (1983). As pointed out and
proved by Joag-Dev and Proschan (1983), a number of well-known multivariate
distributions possess the NA property, such as multinomial, convolution of unlike
multionmial, multivariate hypergeometric, Dirichlet, permutation distribution, nega-
tively correlated normal distribution, random sampling without replacement and joint
distribution of ranks. For more details about NA random variables, one can refer to
Matula (1992), Shao (2000), Chen et al. (2008), Ling (2008), Liang and Zhang (2010),
Sung (2011), Zarei and Jabbari (2011), Wang and Hu (2012, 2014), Wang et al. (2011,
2014a, b), and so on.

Inspired by the definition of NA random variables, Hu et al. (2009) introduced the
concept of m-negatively associated random variables as follows.

Definition 1.2 Let m≥1 be a fixed integer. A sequence of random variables {Xn, n ≥
1} is said to be m-negatively associated (m-NA, in short) if for any n ≥ 2 and
any i1, i2, . . . , in such that |ik − i j | ≥ m for all 1 ≤ k �= j ≤ n, we have that
Xi1 , Xi2 , . . . , Xin are NA.

An array {Xni , i ≥ 1, n ≥ 1} of random variables is said to be rowwise m-NA if
for every n ≥ 1, {Xni , i ≥ 1} is a sequence of m-NA random variables.

When m = 1, the concept of m-NA random variables reduces to the so called
NA random variables. Hence, the concept of m-NA random variables is a natural
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extension from NA random variables. On the other hand, it is well known that if for
any n ≥ 2 and any i1, i2, . . . , in such that |ik − i j | ≥ m for all 1 ≤ k �= j ≤ n,
we have that Xi1 , Xi2 , . . . , Xin are independent, then we say that {Xn, n ≥ 1} are
m-dependence. Hence, m-NA is weaker than m-dependence and NA. Studying the
probability inequalities, moment inequalities, probability limiting behavior of m-NA
random variables and their applications inmany stochasticmodels are of great interest.

Recently, Hu et al. (2009) established the Kolmogorov exponential inequality for
m-NA randomvariables. By using theKolmogorov exponential inequality, they further
investigated the complete convergence for arrays of rowwisem-NA random variables.
However, the moment inequalities for m-NA random variables haven’t been proved.
Themain purpose of the paper is to establish themoment inequalities form-NA random
variables. In addition, we will give some applications of the moment inequalities to
some stochastic models, especially in multiple linear regression models and nonlinear
regression models.

The following lemmas for NA random variables will be used to prove the
Marcinkiewicz–Zygmund type inequality and Rosenthal type inequality for m-NA
random variables.

Lemma 1.1 Let random variables X1, X2, . . . , Xn be NA, f1, f2, . . . , fn be all
nondecreasing (or all nonincreasing) functions, then random variables f1(X1),
f2(X2), . . . , fn(Xn) are NA.

Proof This follows by Property 6 of Joag-Dev and Proschan (1983) and the definition
of NA random variables immediately. ��
Lemma 1.2 (cf. Shao 2000) Let {Xn, n ≥ 1} be a sequence of NA random variables
with EXn = 0 and E |Xn|p < ∞ for some p ≥ 1 and every n ≥ 1. Then for every
n ≥ 1,

E

⎛
⎝ max

1≤ j≤n

∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣

p⎞
⎠ ≤ Cp

n∑
i=1

E |Xi |p, for 1 ≤ p ≤ 2, (1.1)

and

E

⎛
⎝ max

1≤ j≤n

∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣

p⎞
⎠ ≤ Dp

⎧⎨
⎩

n∑
i=1

E |Xi |p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ , for p > 2,

(1.2)

where Cp = 23−p and Dp = 2
(
15p
ln p

)p
.

Throughout the paper, let c, c1, c2,C denote positive constants not depending on n,
which may be different in various places. Let C1(p),C2(p), . . . be positive constants
depending only on p, and C(m, p),C1(m, p),C2(m, p), . . . be positive constants
depending only onm and p. an = O(bn) stands for an ≤ Cbn , where {an, n ≥ 1} and
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914 A. Shen et al.

{bn, n ≥ 1} are sequences of nonnegative real numbers. Denote log x = ln max(x, e),
x+ = x I (x > 0), x− = −x I (x < 0). 	x
 denotes the integer part of x .

This work is organized as follows: the Marcinkiewicz–Zygmund type inequality
and Rosenthal type inequality form-NA random variables are provided in Sect. 2. The
large deviation for least squares estimator in nonlinear regression models is provided
in Sect. 3 and the strong consistency for least squares estimator in multiple linear
regression models is established in Sect. 4, respectively.

2 Marcinkiewicz–Zygmund type inequality and Rosenthal type
inequality

In this section, we will establish the Marcinkiewicz–Zygmund type inequality and
Rosenthal type inequality for m-NA random variables, which can be applied to estab-
lish the Khintchine–Kolmogorov convergence theorem and the three series theorem.
In addition, there inequalities can be applied to prove the consistency and asymptotic
normality in many stochastic models.

To prove the main results of the paper, we need the following lemma, which will
be used frequently throughout the paper.

Lemma 2.1 Let {Xn, n ≥ 1} be a sequence of m-NA random variables. If { fn(·), n ≥
1} are all nondecreasing (or nonincreasing) functions, then random variables
{ fn(Xn), n ≥ 1} are m-NA.

This lemma can be obtained directly by the definition of m-NA random variables
and Lemma 1.1. So the details are omitted.

The next one is the maximal type moment inequality for m-NA random variables,
namely, Marcinkiewicz–Zygmund type inequality and Rosenthal type inequality.

Theorem 2.1 Let {Xn, n ≥ 1} be a sequence of m-NA random variables with EXn =
0 and E |Xn|p < ∞ for some p ≥ 1 and every n ≥ 1. Then for every n ≥ m,

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p⎞
⎠ ≤ Cm,p

n∑
i=1

E |Xi |p, for 1 ≤ p ≤ 2, (2.1)

and

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p⎞
⎠ ≤ Dm,p

⎧⎨
⎩

n∑
i=1

E |Xi |p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ , for p > 2,

(2.2)

where Cm,p = 4mp and Dm,p = 2p+1mp
(
15p
ln p

)p
.

Proof For fixed n ≥ m, let r = 	 n
m 
. For 1 ≤ k ≤ n, let s = 	 k

m 
. Define

Yi =
{
Xi , 1 ≤ i ≤ k,
0, i > k.
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Noting that
∑k

i=1 Xi = ∑m
j=1

∑s
i=0 Ymi+ j , we have

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≤
m∑
j=1

max
0≤s≤r

s∑
i=0

∣∣Ymi+ j
∣∣ .

It follows by the inequality above and Cr -inequality that

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p⎞
⎠ ≤ E

⎛
⎝

m∑
j=1

max
0≤s≤r

s∑
i=0

∣∣Ymi+ j
∣∣
⎞
⎠

p

≤ mp−1
m∑
j=1

E

(
max
0≤s≤r

s∑
i=0

∣∣Ymi+ j
∣∣
)p

≤ (2m)p−1
m∑
j=1

E

(
max
0≤s≤r

s∑
i=0

Y+
mi+ j

)p

+ (2m)p−1
m∑
j=1

E

(
max
0≤s≤r

s∑
i=0

Y−
mi+ j

)p

. (2.3)

By the definition of m-NA random variables, we can see that Y j ,Ym+ j , . . . ,Ymr+ j

are NA random variables for each j = 1, 2, . . . ,m. Hence, Y+
j ,Y+

m+ j , . . . ,Y
+
mr+ j

and Y−
j ,Y−

m+ j , . . . ,Y
−
mr+ j are both NA random variables for each j = 1, 2, . . . ,m

by Lemma 1.1.
For 1 ≤ p ≤ 2, we have by (1.1) and (2.3) that for any n ≥ m,

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p⎞
⎠ ≤ (2m)p−1Cp

m∑
j=1

r∑
i=0

E
∣∣∣Y+

mi+ j

∣∣∣p

+ (2m)p−1Cp

m∑
j=1

r∑
i=0

E
∣∣∣Y−

mi+ j

∣∣∣p

= (2m)p−1Cp

m∑
j=1

r∑
i=0

E
∣∣Ymi+ j

∣∣p

≤ Cm,p

n∑
i=1

E |Xi |p ,

which implies (2.1)
For p > 2, we have by (1.2) and (2.3) that for any n ≥ m,

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p⎞
⎠ ≤ (2m)p−1Dp

m∑
j=1

⎡
⎣

r∑
i=0

E
∣∣∣Y+

mi+ j

∣∣∣p +
(

r∑
i=0

E
∣∣∣Y+

mi+ j

∣∣∣2
)p/2

⎤
⎦
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+ (2m)p−1Dp

m∑
j=1

⎡
⎣

r∑
i=0

E
∣∣∣Y−

mi+ j

∣∣∣p +
(

r∑
i=0

E
∣∣∣Y−

mi+ j

∣∣∣2
)p/2

⎤
⎦

≤ 2pm p−1Dp

m∑
j=1

⎡
⎣

r∑
i=0

E
∣∣Ymi+ j

∣∣p +
(

r∑
i=0

EY 2
mi+ j

)p/2
⎤
⎦

≤ Dm,p

⎡
⎣

n∑
i=1

E |Xi |p +
(

n∑
i=1

EX2
i

)p/2
⎤
⎦ , (2.4)

which implies (2.2). This completes the proof of the theorem. ��
By using Theorem 2.1, we can get the following Khintchine–Kolmogorov type

convergence theorem and the three series theorem for m-NA random variables. The
proofs are standard, so we omit them.

Corollary 2.1 (Khintchine–Kolmogorov type convergence theorem) Let {Xn, n ≥ 1}
be a sequence of m-NA random variables. Assume that

∞∑
n=1

Var(Xn) < ∞,

then
∑∞

n=1(Xn − EXn) converges a.s..

Corollary 2.2 (Three series theorem) Let {Xn, n ≥ 1} be a sequence of m-NA random
variables. For some c > 0, let X (c)

n = −cI (Xn < −c) + Xn I (|Xn| ≤ c) + cI (Xn >

c). If
∞∑
n=1

P (|Xn| > c) < ∞,

∞∑
n=1

EX (c)
n converges,

∞∑
n=1

Var
(
X (c)
n

)
< ∞,

then
∑∞

n=1 Xn converges almost surely.

Remark 2.1 Let {an, n ≥ 1} be a sequence of real numbers. Under the conditions of
Theorem 2.1, we have for n ≥ m that

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ai Xi

∣∣∣∣∣
p⎞
⎠

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2p−1Cm,p

n∑
i=1

E |ai Xi |p, for 1 ≤ p ≤ 2,

2pDm,p

[
n∑

i=1
E |ai Xi |p +

(
n∑

i=1
Ea2i X

2
i

)p/2
]

, for p > 2.
(2.5)
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Actually, for fixed n ≥ m, {a+
i Xi , 1 ≤ i ≤ n} and {a−

i Xi , 1 ≤ i ≤ n} are both
m-NA random variables from Lemma 2.1. Note that ani = a+

ni − a−
ni , we have by

Cr -inequality that

E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ai Xi

∣∣∣∣∣
p⎞
⎠ ≤ 2p−1E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

a+
i Xi

∣∣∣∣∣
p⎞
⎠

+ 2p−1E

⎛
⎝ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

a−
i Xi

∣∣∣∣∣
p⎞
⎠ . (2.6)

Note that |ai |p = (
a+
i

)p + (
a−
i

)p
, the desired result (2.5) follows by (2.1), (2.2) and

(2.6) immediately.

3 Large deviation for least squares estimator in nonlinear regression
models

In the previous section, we established the Marcinkiewicz–Zygmund type inequality
and Rosenthal type inequality for m-NA random variables. As one application of the
moment inequalities form-NA random variables, we will study the large deviation for
least squares estimator in nonlinear regression models under some general conditions.

3.1 Brief review

Nonlinear regression models are widely used for modeling of stochastic phenomena
and the method of least squares plays a central role in the inference of parameters in
nonlinear regression models. The study of asymptotic properties of the least squares
estimator of parameters occurring in nonlinear regression models has been the subject
of investigation since it is in general difficult to obtain the exact distribution of the
least squares estimator for any fixed sample. For more details about the asymptotic
properties of the least squares estimator for nonlinear regression models, one can refer
to Jennrich (1969), Malinvaud (1970), Ivanov and Leonenko (1989), Ivanov (1997),
and so on.

In this section, we investigate the large deviation results of the least squares esti-
mator in the nonlinear regression model by using the moment inequalities that we
established in Sect. 2. Consider the nonlinear regression model

Xn = gn(θ) + ξn, n ≥ 1, (3.1)

where {Xn, n ≥ 1} is observed, {gn(θ), n ≥ 1} is a known sequence of continuous
functions possibly nonlinear in θ ∈ �, a closed interval on the real line, and {ξn, n ≥ 1}
is a sequence of random errors with mean zero. Let
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918 A. Shen et al.

Qn(θ) = 1

n

n∑
i=1

w2
i [Xi − gi (θ)]2,

where {wi } is a known sequence of positive numbers. An estimator θn is said to be a
least squares estimator of θ if it minimizes Qn(θ) over θ ∈ �, i.e.

Qn(θn) = inf
θ∈�

Qn(θ).

Note that Q(x1, . . . , xn; θ) = Qn(θ) is defined on R
n × �, where � is compact.

Further Q(x; θ), where x = (x1, x2, . . . , xn) is a Borel measurable function of x for
any fixed θ ∈ � and a continuous function of θ for any fixed x ∈ R

n . By Lemma 3.3
of Schmetterer (1974), there exists a Borel measurable map θn : Rn → � such that

Q(x; θn(x)) = inf
θ∈�

Qn(θ).

In the following, we consider this measurable version as the least squares estimator
θn .

Let θ0 be the true parameter and suppose θ0 ∈ interior of �. The following large
deviation result is proved by Lemma 1 of Ivanov (1976), where the errors ξn are
independent and identically distributed (i.i.d.) random variables and wi ≡ 1.

Theorem A Let {ξn, n ≥ 1} be i.i.d. random variables with E |ξ1|p < ∞ for some
p ≥ 2. Suppose that there exist some constants 0 < c1 ≤ c2 < ∞ such that

c1(θ1 − θ2)
2 ≤ 1

n

n∑
i=1

[gi (θ1) − gi (θ2)]2 ≤ c2(θ1 − θ2)
2,

for all θ1, θ2 ∈ � and for all n ≥ 1. Then for every ρ > 0 and for all n ≥ 1, it has

P
(
n1/2|θn − θ0| > ρ

)
≤ cρ−p, (3.2)

where c is a positive constant independent of n and ρ.

Prakasa Rao (1984) extended Theorem A for i.i.d. random variables to the case of
ϕ-mixing and α-mixing random variables. Hu (2002) also obtained the result (3.2)
for the martingale differences, the ϕ-mixing sequence and the NA sequence with
supn≥1 E |ξn|p < ∞ for some p > 2. Hu (2004) established the following large
deviation

P
(
n1/2|θn − θ0| > ρ

)
≤ cn1−p/2ρ−p (3.3)

for themartingale differences, theϕ-mixing sequence, theNAsequence and theweakly
stationary linear process with supn≥1 E |ξn|p < ∞ for some 1 < p ≤ 2.
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Recently, Yang and Hu (2014) obtained some large deviation results for the least
squares estimator θn in a nonlinear regression model (3.1) under some general condi-
tions.

The main purpose of this section is to establish the large deviation results for the
least squares estimator θn in model (3.1) based on m-NA errors by using the moment
inequality that we obtained in Sect. 2.

In this section, let {ξn, n ≥ 1} be a sequence of m-NA random variables. Denote

�p,n =
n∑

i=1

E |ξi |p, 	p,n =
(

n∑
i=1

(E |ξi |p)2/p
)p/2

, n ≥ 1.

3.2 Main results

Our main results in this section are as follows.

Theorem 3.1 In model (3.1), suppose that there exist positive constants c1, c2, c3, c4
such that

c1|θ1 − θ2| ≤ |gi (θ1) − gi (θ2)| ≤ c2|θ1 − θ2|, for all θ1, θ2 ∈ � and i ≥ 1,

(3.4)

and

c3 ≤ wi ≤ c4, for all i ≥ 1. (3.5)

If E |ξn|p < ∞, n ≥ 1 for some p > 2, then for all ρ > 0 and n ≥ 1,

P
(
n1/2|θn − θ0| > ρ

)
≤ C(m, p)(�p,n + 	p,n)

n p/2 ρ−p, (3.6)

where C(m, p) is a positive constant depending only on m and p.

Theorem 3.2 In model (3.1), suppose that there exist positive constants c1, c2, c3, c4
such that (3.4) and (3.5) hold. If E |ξn|p < ∞, n ≥ 1 for some p ∈ (1, 2], then for all
ρ > 0 and n ≥ 1,

P
(
n1/2|θn − θ0| > ρ

)
≤ C(m, p)�p,n

n p/2 ρ−p, (3.7)

where C(m, p) is a positive constant depending only on m and p.

As applications of Theorems 3.1 and 3.2, we can establish the complete consistency
for the least squares estimator θn in a nonlinear regression model (3.1) by taking
ρ = n1/2ε, where ε > 0 is arbitrary.
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Corollary 3.1 Let the conditions in Theorem 3.1 hold. If supn≥1 E |ξn|p < ∞ for
some p > 2, then for all ε > 0,

∞∑
n=1

P (|θn − θ0| > ε) < ∞, (3.8)

that is to say, θn → θ0 completely as n → ∞.

Corollary 3.2 Let the conditions in Theorem 3.2 hold. If E |ξn|p = O(n−δ) for some
δ > 2 − p and 1 < p ≤ 2, then for all ε > 0, (3.8) still holds.

Remark 3.1 In our Theorems 3.1 and 3.2, the condition “supn≥1 E |ξn|p < ∞” is not
needed. If the condition “supn≥1 E |ξn|p < ∞” is satisfied, then (3.6) and (3.7) imply
(3.2) and (3.3), respectively. So our results of Theorems 3.1 and 3.2 generalize and
improve the corresponding ones of Theorem 2.1 of Hu (2002) and Theorem 2.1 of Hu
(2004), respectively.

3.3 Proofs

The proofs of Theorems 3.1 and 3.2 are similar to the corresponding ones of Yang
and Hu (2014). For convenience of the reader, we will present the complete proof. In
order to prove Theorems 3.1 and 3.2, we need the following useful lemma, which can
be found in Hu (2004).

Lemma 3.1 (cf. Hu 2004) Let (�,F , P) be a probability space, [T1, T2] be a closed
interval on the real line. Assume that V (θ) = V (ω, θ) (θ ∈ [T1, T2], ω ∈ �) is a
stochastic process such that V (ω, θ) is continuous for allω ∈ �. If there exist positive
numbers α > 0, r > 0 and C = C(T1, T2) < ∞ such that

E |V (θ1) − V (θ2)|r ≤ C |θ1 − θ2|1+α, for all θ1, θ2 ∈ [T1, T2],

then

P

(
sup

θ0≤θ1,θ2≤θ0+ε

|V (θ1 − V (θ2)| ≥ a

)
≤ 8C

(α − γ + 2)(α − γ + 3)

(
8γ

γ − 2

)r
εα+1

ar

for any ε > 0, a > 0, θ0, θ0 + ε ∈ [T1, T2] and γ ∈ (2, 2 + α).

Proof of Theorem 3.1 For fixed n ≥ 1, denote

ψn(θ1, θ2) = 1

n

n∑
i=1

w2
i [gi (θ1) − gi (θ2)]2,

Vn(θ) = 1

n1/2

n∑
i=1

ξi [gi (θ) − gi (θ0)], Un(θ) = Vn(θ)

n1/2ψn(θ, θ0)
, θ �= θ0.
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Without loss of generality, we assume that wi = 1 for all i ≥ 1. The general case
follows from similar arguments in view of (3.5). By (3.4), we can get that

c21(θ1 − θ2)
2 ≤ ψn(θ1, θ2) ≤ c22(θ1 − θ2)

2 (3.9)

for all θ1, θ2 ∈ � and n ≥ 1.
For any ε > 0, denote Anε = {|θn − θ0| > ε}. For any ω ∈ Anε, we can see that

θn �= θ0, and thus

n∑
i=1

ξ2i =
n∑

i=1

[Xi − gi (θ0)]2 ≥
n∑

i=1

[Xi − gi (θn)]2

=
n∑

i=1

ξ2i − 2nUn(θn)ψn(θn, θ0) + nψn(θn, θ0),

which implies that

ψn(θn, θ0)(1 − 2Un(θn)) ≤ 0. (3.10)

Noting that ψn(θn, θ0) > 0, we have by (3.10) that Un(θn) ≥ 1/2. Hence

Anε = {|θn − θ0| > ε} ⊂ {Un(θn) ≥ 1/2},

which yields that for any ε > 0,

P(|θn − θ0| > ε) ≤ P

(
sup

|θ−θ0|>ε

|Un(θ)| ≥ 1/2

)
. (3.11)

If we take ε = ρn−1/2 in (3.11), where ρ > 0 is arbitrary, then we have

P
(
n1/2|θn − θ0| > ρ

)

≤ P

(
sup

|θ−θ0|>ρn−1/2
|Un(θ)| ≥ 1/2

)

≤ P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
+ P

(
sup

ρn−1/2<|θ−θ0|≤ρ

|Un(θ)| ≥ 1/2

)
. (3.12)

In view of (3.9), we have

P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
≤ P

(
sup

|θ−θ0|>ρ

|Vn(θ)|
n1/2ψ1/2

n (θ, θ0)
≥ 1

2
c1ρ

)
. (3.13)
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It follows from Cauchy’s inequality that

(
Vn(θ)

n1/2ψ1/2
n (θ, θ0)

)2

=
(
1

n

n∑
i=1

ξi

[
gi (θ) − gi (θ0)

ψ
1/2
n (θ, θ0)

])2

≤ 1

n

n∑
i=1

ξ2i , ∀ θ �= θ0.

(3.14)

Noting that p/2 > 1, we have by Minkowski’s inequality, Markov’s inequality and
(3.13)–(3.14) that

P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
≤

(
4

nc21ρ
2

)p/2 (
n∑

i=1

(E |ξi |p)2/p
)p/2

.= C1(p)	p,n

n p/2 ρ−p. (3.15)

For m = 0, 1, 2, . . . , 	n1/2
, denote

θ(m) = θ0 + ρ

n1/2
+ mρ

	n1/2
 , ρm = θ(m) − θ0.

It follows from (3.9) again that

P

(
sup

ρn−1/2≤θ−θ0≤ρ

|Un(θ)| ≥ 1

2

)
≤

	n1/2
−1∑
m=0

P

(
sup

ρm≤θ−θ0≤ρm+1

|Un(θ)| ≥ 1

2

)

≤
	n1/2
−1∑
m=0

P

(
sup

ρm≤θ−θ0≤ρm+1

|Vn(θ)| ≥ 1

2
c21ρ

2
mn

1/2

)
.

(3.16)

Noting that

sup
ρm≤θ−θ0≤ρm+1

|Vn(θ)| ≤ |Vn(θ(m))| + sup
θ(m)≤θ1,θ2≤θ(m+1)

|Vn(θ2) − Vn(θ1)|,

we have

P

(
sup

ρm≤θ−θ0≤ρm+1

|Vn(θ)| ≥ 1

2
c21ρ

2
mn

1/2

)

≤ P

(
|Vn(θ(m))| ≥ 1

4
c21ρ

2
mn

1/2
)

+ P

(
sup

θ(m)≤θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
c21ρ

2
mn

1/2

)
. (3.17)
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By Markov’s inequality, (3.4) and Remark 2.1, we can see that

P

(
|Vn(θ(m))| ≥ 1

4
c21ρ

2
mn

1/2
)

≤
(

4

c21ρ
2
mn

1/2

)p
C1(m, p)

n p/2

n∑
i=1

E |ξi |p|gi (θ(m)) − gi (θ0)|p

+
(

4

c21ρ
2
mn

1/2

)p
C1(m, p)

n p/2

(
n∑

i=1

Eξ2i [gi (θ(m)) − gi (θ0)]2
) p

2

≤
(

4

c21ρ
2
mn

1/2

)p
C2(m, p)

n p/2 |θ(m) − θ0|p
⎧⎨
⎩

n∑
i=1

E |ξi |p +
(

n∑
i=1

(E |ξi |p)2/p
)p/2

⎫⎬
⎭

.= C3(m, p)(�p,n + 	p,n)

n p
ρ

−p
m , (3.18)

and for all θ1, θ2 ∈ �,

E |Vn(θ2)−Vn(θ1)|p ≤ C4(m, p)

n p/2 (�p,n + 	p,n)|θ2 − θ1|p .= C(n,m, p)|θ2 − θ1|p.
(3.19)

Applying Lemma 3.1 with r = p = 1 + α, C = C(n,m, p), ε = ρ/	n1/2
, a =
1
4c

2
1ρ

2
mn

1/2 and γ ∈ (2, p + 1), we can get that

P

(
sup

θ(m)≤θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
c21ρ

2
mn

1/2

)

= P

(
sup

θ(m)≤θ1,θ2≤θ(m)+ρ/	n1/2

|Vn(θ2) − Vn(θ1)| ≥ 1

4
c21ρ

2
mn

1/2

)

≤ C5(m, p)(�p,n + 	p,n)

n3p/2
ρ pρ

−2p
m . (3.20)

Noting that ρ0 = ρn−1/2, ρm > mρn−1/2 and p > 2, we have by (3.16), (3.17),
(3.18) and (3.20) that,

P

(
sup

ρn−1/2≤θ−θ0≤ρ

|Un(θ)| ≥ 1

2

)
≤ C6(m, p)(�p,n + 	p,n)

n p/2 ρ−p. (3.21)

Similarly,

P

(
sup

ρn−1/2≤θ0−θ≤ρ

|Un(θ)| ≥ 1

2

)
≤ C7(m, p)(�p,n + 	p,n)

n p/2 ρ−p. (3.22)
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The desired result (3.6) follows from (3.12), (3.15), (3.21) and (3.22) immediately.
This completes the proof of the theorem. ��

Proof of Theorem 3.2 The proof is similar to that of Theorem 3.1. Noting that 1 <

p ≤ 2, we have by (3.4), (3.9) and the Cr inequality that

∣∣∣∣∣
Vn(θ)

n1/2ψ1/2
n (θ, θ0)

∣∣∣∣∣
p

≤ n−pn p−1
n∑

i=1

|ξi |p |gi (θ) − gi (θ0)|p
ψ

p/2
n (θ, θ0)

≤ C2(p)

n

n∑
i=1

|ξi |p, ∀ θ �= θ0. (3.23)

Combining (3.13) and (3.23), we can see that

P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
≤

(
2

c1ρ

)p C2(p)

n

n∑
i=1

E |ξi |p .= C3(p)�p,n

n
ρ−p.

(3.24)

Similarly to the proofs of (3.18) and (3.19), we have by Markov’s inequality that

P

(
|Vn(θ(m))| ≥ 1

4
c21ρ

2
mn

1/2
)

≤ C8(m, p)�p,n

n p
ρ

−p
m , (3.25)

and

E |Vn(θ2) − Vn(θ1)|p ≤ C9(m, p)�p,n

n p/2 |θ2 − θ1|p .= C(n,m, p)|θ2 − θ1|p

for all θ1, θ2 ∈ � and n ≥ 1.
Applying Lemma 3.1 with r = p = 1 + α, C = C(n,m, p), ε = ρ/	n1/2
,

a = 1
4c

2
1ρ

2
mn

1/2 and γ ∈ (2, p+ 1) again, and similarly to the proof of (3.20), we can
get that

P

(
sup

θ(m)≤θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
c21ρ

2
mn

1/2

)
≤ C10(m, p)�p,n

n3p/2
ρ pρ

−2p
m .

(3.26)

Similarly to the proof of (3.21), we have by (3.25) and (3.26) that

P

(
sup

ρn−1/2≤θ−θ0≤ρ

|Un(θ)| ≥ 1

2

)
≤ C11(m, p)�p,n

n p/2 ρ−p. (3.27)
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Similarly,

P

(
sup

ρn−1/2≤θ0−θ≤ρ

|Un(θ)| ≥ 1

2

)
≤ C12(m, p)�p,n

n p/2 ρ−p. (3.28)

The desired result (3.7) follows from (3.12), (3.24), (3.27) and (3.28) immediately.
This completes the proof of the theorem. ��

Proof of Corollary 3.1 The condition supn≥1 E |ξn|p < ∞ implies that�p,n+	p,n ≤
Cnp/2. For any ε > 0, taking ρ = n1/2ε in Theorem 3.1, we have by (3.6) and p > 2
that

∞∑
n=1

P (|θn − θ0| > ε) ≤ C(m, p)
∞∑
n=1

1

n p/2 < ∞,

which implies (3.8). The proof is completed. ��

Proof of Corollary 3.2 The condition E |ξn|p = O(n−δ) implies that �p,n ≤ Cn1−δ .
For any ε > 0, taking ρ = n1/2ε in Theorem 3.1, we have by (3.7) and δ > 2 − p
that

∞∑
n=1

P (|θn − θ0| > ε) ≤ C(m, p)
∞∑
n=1

1

nδ+p−1 < ∞,

which implies (3.8). The proof is completed. ��

4 The strong consistency for least squares estimator in multiple linear
regression models

As another application of themoment inequalities form-NA random variables, wewill
study the strong consistency for least squares estimator in multiple linear regression
models based on m-NA random variables.

Consider the following multiple regression model

yi = β1xi1 + · · · + βpxip + ei , i = 1, 2, . . . , (4.1)

where xi j ( j = 1, 2, . . . , p; i = 1, 2, . . .) are known constants, β1, . . . , βp are
unknown parameters, y1, y2, . . . are observable random variables, e1, e2, . . . are unob-
servable random variables. Throughout the sequel we shall let Xn denote the design
matrix (xi j )1≤i≤n,1≤ j≤p, and let
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Yn = (y1, . . . , yn)
′, β = (β1, . . . , βp)

′.

For n ≥ p, the least squares estimate bn = (bn1, . . . , bnp)′ of the vector β based on
the design matrix Xn and the response vector Yn , is given by

bn = (X ′
n Xn)

−1X ′
nYn

.= (
bn1, bn2, . . . , bnp

)′
, (4.2)

provided that X ′
n Xn is nonsingular.

The following concept of convergence system is needed.
Let {εn, n ≥ 1} be a sequence of random variables. If {εn, n ≥ 1} satisfies the

following condition, thenwe say {εn, n ≥ 1} is a convergence system: for any sequence
{an, n ≥ 1} of real numbers, if

∑∞
n=1 a

2
n < ∞, then

∑∞
n=1 anεn converges a.s.

Based on the convergence system, Chen et al. (1981) obtained the following general
result.

Theorem 4.1 In model (4.1), denote

Vn =
(
v

(n)
i j

)
1≤i, j≤p

= (X ′
n Xn)

−1.

Assume that the following two conditions are satisfied:
(i) for the sequence {en, n ≥ 1} of random errors,

{gnen, n ≥ 1} is a convergence system, (4.3)

where {gn, n ≥ 1} is a given sequenceof real numbers such that the sequence {|gn |, n ≥
1} is positive and non-increasing;

(ii) for fixed j = 1, 2, . . . , p,

lim
n→∞ v

(n)
j j = 0. (4.4)

Then we have

bnj − β j = O

((
f
(
v

(n)
j j

))1/2 · |gn|−1
)

a.s., j = 1, 2, . . . , p, (4.5)

where f is a positive function on (0,∞) such that

∫ A

0

dt

f (t)
< ∞ for some A > 0, and

f (t)

t2
↑ ∞ as t ↓ 0. (4.6)

By using Corollary 2.1 and Theorem 4.1, we can get the following strong consis-
tency for least squares estimator in multiple linear regression models based on m-NA
random variables.

Theorem 4.2 Let {en, n ≥ 1} be a sequence of m-NA random variables with Een = 0
and Ee2n ≤ σ 2 < ∞ for n ≥ 1. Assume further that (4.4) holds. Then for any δ > 1,
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bnj − β j = O

((
v

(n)
j j ·

∣∣∣log v
(n)
j j

∣∣∣δ
)1/2

)
a.s., j = 1, 2, . . . , p. (4.7)

Proof Firstly, we will show that {en, n ≥ 1} is a convergence system. Let {an, n ≥ 1}
be a sequence of real numbers such that

∑∞
n=1 a

2
n < ∞. Note that for fixed t =

0, 1, 2, . . . ,m − 1, {et+mk, k = 1, 2, . . .} is a sequence of NA random variables and

∞∑
k=1

Var(at+mket+mk) =
∞∑
k=1

E(at+mket+mk)
2 ≤ σ 2

∞∑
n=1

a2n < ∞. (4.8)

Hence, we have by (4.8) and Corollary 2.1 that
∑∞

k=1 at+mket+mk converges a.s., and
thus,

∞∑
i=m

ai ei =
m−1∑
t=0

∞∑
k=1

at+mket+mk converges a.s.

Therefore, {en, n ≥ 1} is a convergence system.
Taking gn ≡ 1 and f (t) = t | log t |δ for δ > 1 and 0 < t < e−1, we can see that the

conditions of Theorem 4.1 are satisfied. Hence, the desired result (4.7) follows from
(4.5) immediately. ��
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