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Weak Laws with Random Indices for Arrays
of Random Elements in Rademacher
Type p Banach Spaces
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For a sequence of constants {a,,n>1}, an array of rowwise independent and
stochastically dominated random elements {V,;, /=1, n= 1} in a real separable
Rademacher type p (1< p<2) Banach space, and a sequence of positive
integer-valued random variables { T,,, n > 1}, a general weak law of large numbers
of the form X1 | a;(V,, — c.y)/b(a —£5 0 is established where {c,,, j= 1, n3= 1},
«, = oc, b, — o are suitable sequences. Some related results are also presented.
No assumption is made concerning the existence of expected values or absolute
moments of the { V,;, j= 1, n2 L }. Illustrative examples include one wherein the
strong law of large numbers fails.

KEY WORDS: Rademacher type p Banach space; array of rowwise inde-
pendent random elements; weighted sums; weak law of large numbers; random
indices.

1. INTRODUCTION

In this paper, for an array {V,;, j=>1,n>1} of rowwise independent
Banach space valued random elements, general weak laws of large numbers
(WLLNs) will be established for the weighted sums 37" a,V, where T,

MR
is random. The general setting will now be described. Let (2, #,P) be

a probability space and let & be a real separable Banach space with
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norm |- ||. The expected value or mean of a random element V, denoted
by EV, is defined to be the Pettis integral provided it exists. That is, V" has
expected value EVe & if f(EV) = E(f(V)) for every f € Z* where Z* is the
(dual) space of all continuous linear functionals on Z.

Let {V,;, j=1,n>1} be an array of rowwise independent % -valued
random elements defined on (2, #, P) and let {a,#0,n>1}, {b,, n>1},
and {a,,n>1} be sequences of constants with 0 <b,— o0, I <a, > co.
Let {T,,n>1} be a sequence of positive integer-valued random variables
and let {c,, j>1,n21} be a “centering” array consisting of (suitably
selected) elements in €. In this paper, general WLLNs of the forms

ZJTZI a/( nj cnj) P
—5 90

b[m,,]

(1.1)

and

0 4 —) e (1.2)

an

will be established. The number of terms in the sums in (1.1) and (1.2) is
random, and the {7,, n>1} are referred to as random indices.

For normed weighted sums of the form 37_,a;V;/b, where
{V,,n=1} is a sequence of Banach space valued random elements the
strong law of large numbers (SLLN) problem (wherein the convergence to
0 is almost certain (a.c.)) was studied by Mikosch and Norvaisa''" '* and
by Adler et al.'* and the WLLN problem was studied by Adler et al.'® In
Adler et al,*® the corresponding SLLN need not necessarily hold.

In the current work, the Banach space & is assumed to satisfy the
geometric condition of being of Rademacher type p (1 < p <2). (Technical
definitions such as this will be discussed in Section 2.) Conditions are
placed on the growth behavior of the constants {a,,n>1} and {b,,n>1}.
The random elements {V,y, j=zln= 1} are assumed to be stochastically
dominated by a random element V in the sense that (2.2) holds. The tail
P{|IV| >t} of the distribution of | V|| as t— oo is controlled by (4.4).
Moreover, conditions are imposed on the marginal distributions of the
random indices {7,,n>1}. Examples are provided to illustrate various
aspects of the results.

For convenience, technical definitions will be consolidated into Section 2.
The lemmata which are needed to establish the WLLNs will be presented
in Section 3. Finally, the symbol C denotes throughout a generic constant
(0 < C< o0) which is not necessarily the same one in each appearance.
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2. PRELIMINARY DEFINITIONS

Technical definitions relevant to the current work will be discussed in
this section.

Let {¢,,n=1} be a symmetric Bernoulli sequence, that is, {¢,,n>1}
are independent and identically distributed (iid.) random variables with
P{le,=1}=Ple,=—1}=1/2. Let X*=IxIxXx--- and define
C(X)={(vy,03,... )EX™: X7 ,¢&,v, converges in probability}. Let
1<p<2 Then & is said to be of Rademacher type p if there exists a
finite constant C such that E[X7 6,0, 1”7<CYZ, {v,1? for all
(v, 3,..) €6(Z). Hoffmann-Jgrgensen and Pisier''* proved for 1 <p <2
that a real separable Banach space is of Rademacher type p if and only if

there exists a finite constant C such that

n

IRY

i=1

E ‘<CcY B 21

Jj=1

for every finite collection {V|,.., ¥,} of independent random elements with
EV,=0, 1<j<n.

Random elements {V,, j=>1,n>1} are said to be stochastically
dominated by a random element V if for some finite constant D,

P{|IV, I >t} <DP{|DV| >z}, 20, j=1, n2l (22

This condition is, of course, automatic with V="V, and D=1 if the
{V,,Ji=1n=1} are identically distributed. It follows from Lemma 52.2
of Taylor,®® p. 123 (or Lemma 3 of Wei and Taylor®®) that stochastic
dominance can be accomplished by the array of random elements having a
bounded absolute rth moment (r >0). Specifically, if sup,. ;> E IV, |"
< oo for some r >0, then there exists a random element ¥ with E | V||” < o
for all 0 < p < r such that (2.2) holds with D= 1. (The proviso that r>1 in
Lemma 5.2.2 of Taylor,'* p. 123 (or Lemma 3 of Wei and Taylor®®) is
not needed as was pointed out by Adler et al.‘®).

3. PRELIMINARY LEMMATA

In this section, lemmata needed to establish the results in this paper
will be presented. Some of them may be of independent interest. The first
lemma, due to Etemadi,''" provides a maximal inequality for a sum of
independent random elements and will be used to give a proof of a
Kolmogorov type maximal inequality (Lemma 2) for random elements in
Rademacher type p Banach spaces. Lemma | may also be found in
Billingsley,'® p. 288. For some related results see Etemadi.''?



608 Adler, Rosalsky, and Volodin

Lemma 1 (Etemadi''V). Let {¥,, I <j<n} be independent random
elements in a real separable Banach space. Then

k

RS

j=1

k
Y

J=1

P{ max

I<ks<sn

>t}<4 max P{

I<hks=sn

t
- t>0
>4},

The next lemma is a Kolmogorov type maximal inequality for random
elements in Rademacher type p (1 < p <2) Banach spaces. It was obtained
by Jain'> and Woyczyfiski*® when p =2 and perhaps is also known when
1 <p<2 but the authors are not able to find it in the literature. Two
proofs of it will be provided and the arguments are completely different
from those of Jain''*’ and Woyczynski.**

Lemma 2. Let {V,, j=1} be independent mean 0 random elements in
a real separable Rademacher type p (1 <p <2) Banach space. Then for all
nz1

k

>V

Jj=1

P{ max

lsk<gn

>%SF.IE”%W’ t>0
J=

where C is a constant independent of .

Proof No. 1. Let #,=0o(V,,.., V,), n=1. Now it is well known but
appears to have first been observed by Scalora®®® that {|X7_, V,ll, %,
n>1} is a real submartingale and hence so is (see eg, Chow and
Teicher,” p. 236) {IX/_, V|7, #,, n> 1} via convexity and monotonicity
of the function ¢(x)=x?, 0 <x < co. Then employing the Doob submar-
tingale maximal inequality (see e.g., Doob,'® p. 314; or Rao,'” p. 173; or
Shiryayev,®" p. 464) and (2.1), it follows for all n>1 and ¢ > 0 that

P
>t”}

k

P{max YV

Il<k<sn =1

k

Y

Jj=1

>t}=P{ max
1<k<n

P

1
<—=F V
1P jglf
C n
<;;§EH%W 0

Proof No. 2. Employing Lemma 1, the Markov inequality, and (2.1),
it follows for all =1 and 7> 0 that
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i

ZV

Jj=1

}<4 max P{

I<hk<n

max
I<i<sn
k

RS

j=1

4r+1 P

< max F
t? 1<k<n

4p+l

c
max Z E|V,I”

1<k SnA‘

<

4P+'C

ZEIIVII” O

Jj=1

4. MAINSTREAM

With the preliminaries accounted for, the main result of this paper,
Theorem 1, may be established. Theorem 1 extends the WLLN of Adler
et al® in three directions, namely:

(1) Theorem 1 involves an array rather than a sequence of random
elements.

(i) Random indices {T,,n>1} determine the number of terms in
the row sums.

(iii) Less restrictive conditions are imposed on the {a,,n>1} and
{b,,n=1}.

For a sequence of iid. random variables, Adler and Rosalsky'? proved a
very special case of Theorem 1 in that substantially stronger restrictions
were placed on the {a,,n>1} and {b,,n>1}.

It should be noted that in Theorem 1, it is not being assumed that the
{V.,,i=1,n=1} have expected values or absolute moments. Moreover,
the first condition of (4.1} ensures that &, > co. However, it is not assumed
that {b,,n>1} is monotone. In addition, no assumptions are made
regarding the joint distributions of the random indices {7,,n>1} whose
marginal distributions are constrained solely by (4.2). Nor is it assumed
that the stochastic processes {T,,n=1} and {V,,j=1,n>1} are
independent of each other. It should be noted that the condition (4.2) is
considerably weaker than T,/x,~% ¢ for some constant ce[0, o).
Finally, observe that the condition (4.4) is of the spirit of the condition
nP{|X,|>n} =0(1) of the classical WLLN with random indices for iid.
random variables (see e.g., Chow and Teicher,®’ p. 131), that the condition
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(4.3) is automatic (with x,=[a,],n=1) if 0 <A<, and that if A>1 and
either

[Ae,] fe,]
Z |aj|f’=(0<2 Iaj|p> or b[m,,]=(9(b[an])

ji=1 Jj=1

then (4.3) holds with x,=[a,], n21, or k,=[4«,], n =1, respectively.

Theorem 1. Let { V.,,jzl,n> 1} be an array of rowwise inde-
pendent random elements in a real separable Rademacher type p (1< p<2)
Banach space, and suppose that {V,, j>1,n>1} is stochastically domi-
nated by a random element V. Let {a,,n>1} and {b,, n>1} be constants
with a,#0, b,>0, n2 1, and suppose that b,/la,|T and

X lalr =067, X lg))"=0(nla,|”)

J=1 J=1

and

5 o (9< b > (4.1)

j:ijzlajlp_ 27 lail”
Let {T,,n>1} be positive integer-valued random variables and

1 €a,— o be constants such that

T
p {—” > A} =0(1) for some constant 0 <A< oo (42)
Suppose that there exists a sequence of integers {k,, n> 1} such that

[ Ax,] K,
K, z[0,],n>1  and b7 Y laj|ﬁ=@<b,fﬁﬂ y |a,.1p> (4.3)

j=1 J=1

Then if

nP{HDVH >£"—,}=0(1) (4.4)

where D is as in (2.2), the WLLN

S a (V= EV IV < (bra 1 /lap D) »
b —_—
[a,]

0 (4.5)

obtains.
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Proof. Let the three conditions of (4.1) be referred to as (4.1a)
(4.1b), and (4.1c), respectively, and set

b,
Unj= anl( I an < C[zﬂ]),

C0~_—O, cn=|a I;
n

Note at the outset that E||U, <o, j=1, nz1 and so (see eg,
j=1,n=1} all have expected values

Taylor,?? p. 40) the {U,,, j>
Firstly, it will be verified that

/T;la.(V'U_U'U)—P+O
b[a,,]

(4.6)

For arbitrary ¢>0 and all large n
nj Un') “ }

>¢&
%,]

P{I\Zf;la(V

”

Y aV, # Z a, Un,}

gh

VAN

] [T,,<Aa,,]}+P{T,,>xa,,}

VAN

r{[gorst

P{_U [l ,,,||>c[1"]]}+o(1> (by (4))

[ Ao, ]
Z P{iiV, 1l > ey} +o0(1)

< D[, ] P{IDVII >y ) +o(1)  (by(2.2))

=(1+o(1)) DAla,] P{IDV] > cp, 1} +ol1

=o(l)  (by (44))

thereby establishing (4.6).
The proof will thus be completed if it can be demonstrated that

J,_la(Unj EUnj)_—P_’ O (47)

b[ln]
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To this end, for arbitrary ¢ >0 and all large n,

P {ll j21a(Uy—EUI >8}
bra,)

T U,—EU,
<P{[”Z’ : ’Z )H>8][TnSAoc,,]}+P{T,,>/la,,}
[e,]
[Aw, ] k
SP{ {Z A(U,—EU,) >ab[an]H+o(l) (by (4.2))
k=1 Jj=1
k
=P{ max Y a(U,—EU,) >£b[a]}+o(1)
1<k <[Ax,] =1 "
C [ Ao, ]
sgpbf,] Y la;l? E|U,—EU,|”+o(1) (by Lemma 2)  (4.8)
] j=1
cor U
<o Z |a,|” E | U,lI” +o(1) (4.9)
[a,]
cyr U
<o Z la; |2 (E NV ll7 NVl < €pa 1)
[a,] j

+ e, \PUIV 1 > e} ) +0(1)
cor el [etn] B
Terhe > layl” J pt? PV |l >t} dt

Lo, ] j=1

+o(1) (by integration by parts)

CD2P [ Ao, ] [a,]
<= L lalr Y [* pr PUDYI > dr+o(l)  (by (22))
fo,] j=1 k*l -1
<E Sl ¥ [* per=tP{DVI >t} di+o(1)  (by (43))
\bf Jj=1 ! k=1 ('k—lp Y .

W N —ck

C
pr Z Ia}'|p Z
g j=1

L kPLIDV] > e} +o(1 (4.10)
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Now for n=2,

7 i

I ) cL—cf_
(3 S ) § 4t

n j=1 k=1

L2 E )

n j=1

(5
<3 L1arr) (%4 3 Cf)

noj=1 k=1

=0(1)+0(1)  (by(4.1b)and (4.1¢))
=0(1)

Moreover, (4.1a) ensures that

< p ZI ,|”>< C“)-»O as n— oo for all fixed k> 1
noy=1
Since for n =2
nP{|DV|>c,_,} =(1+0(1))(n—1) P{|DV] > ¢t =o(l) (by (4.4))
it follows from the Toeplitz lemma (see e.g., Loéve,"'®’ p. 250) that
(55 £ 1ai) & E=Eeepiprise, ) —ott)
noj=1 iy

implying (4.7) via (4.10) and x,>[«,] — c0. =

Remarks 1.

(i) The authors had originally proved Theorem 1 using a condition
slightly stronger than (4.3) and with condition (4.1) replaced by the
assumption that either

" b? bl’
2 I Z la;|” =o0(b?),  and Y 5L —=0 (f——>
i

n|an| Jj=1 j:]] |a}'|p I‘alp

{4.11)
or

b n
“ — 00, Z Iajlp = C((n lanlp)

j=1
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and
n b? b? >
—— =0 u (4.12)
,; ¥ lal? < iy lal”
or
bn n
p>1, 1, and Y. la;|?=0(nla,|”) (4.13)
n |anl j=t1 ’
or
b : n lanl>
" 1= A hediRY 1
n lanl T and ,’gl Ia]! ¢ (log n (4 4)

hold. The referee so kindly pointed out to the authors the unified set of
conditions (4.1) and (4.3) in Theorem | and indeed the referee supplied the
modifications needed to adapt the proof of the initial version of Theorem
1 to the new improved conditions. The conditions (4.11)—(4.14) will now be
compared with this new condition (4.1). As in the proof of Theorem 1, let
the three conditions of (4.1) be referred to as (4.1a)—(4.1c), respectively,
and set ¢,=b,/|a,|, n=1. Note that if ¥.7_, ¢”/n* = o0 (a fortiori, c,/n is
bounded from 0) and (4.1c) holds, then (4.1a) holds. If ¢#/n| (a fortiori,
¢,/nl) and (4.1c) holds, then

et ¢
n‘anlp n i=1 j2 2;1:1 |a'\p

implying (4.1b). If ¢?/n*1 for some a>1 (a fortiori, p>1 and ¢,/n 1) and

(4.1b) holds, then X7 ¢#/n*= o0 and

Ce? Ch?

s JrTAK A ——
P ~ ~
g * Z‘:l nooo i lal”

implying (4.1a) as noted above. Similarly, if ¢//nT and X/_, |a,|”=
O(n |a,|”/log n), then (4.1b) holds, 3 *_, ¢/ /n*= o0, and

ig’i<c_,’1 u l<Cc£logn< Ch?
<oy Lo <
j=17 n2J n o1 layl

again implying (4.1a). It follows in particular from these observations that
the conditions (4.11)-(4.13) each imply (4.1). Moreover, if (4.14) holds,
then without any loss of generality p may be taken to be 1 and so it also
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follows from the above that (4.1) (with p=1) holds. The sequences a, = |
and b, =n (n odd), b, =n+ 1 (n even) satisfy (4.1) for any 1 < p <2 but fail
to satisfy (4.11)-(4.14).

{(ii) I p =1, the hypothesis of independence is not needed. To see this,
observe that (4.8) with C=1 follows immediately from the Markov inequality
when p = 1 without independence and without invoking Lemma 2. A perusal
of the argument reveals that independence was not used anywhere else.

(iii) Moreover, if the hypotheses of Theorem 1 obtain with p=1,
then (as will be shown later)

}:i.lajEanI(“an”<c[:xn])_[’)0 (4.15)
IO
and, consequently,
jrl 14V .0
bra

To prove (4.15), observe that
1320 @, EV, IV, |l <epa )

b[i,,]
<( T |ai| E “ an“ I( ” an” Sc[an])) I( T,,SA(X”)

j=1

~

bra,y
(S E 1V | K1V, Seio ) KT, > Ja,)

=1

bs,
SZZ";] la;| E NV, A IV, SC[a,,])_)_
bis,)
=o(l)+ox(1)=0p(1)

op(1)  (by(42))

noting that it was shown in the proof of (4.7) that the expression in (4.9)
is o(1). O

(iv) Since p may be taken to be | under (4.14) without any loss of
generality, it follows in view of the previous two remarks that

obtains under (4.14) without assuming independence provided the other
hypotheses of Theorem 1 remain in force.
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(v) Apropos of (4.13) and (4.14), the example of Beck'” considered
by Adler et al.'® shows that Theorem 1 can fail for well-behaved sequences
{a,,n=1} and {b,,n>1} when

b” n
—T and Z |a,|=(9(n |an|)

nlan| =1

Take T,=n, a,=n, n=1, and A=1 (hence (4.2) holds) and refer to the
discussion given in Adler es al'® Since the sequences {a,,n>1} and
{b,, n=1} in this example satisfy (4.1) for all p in (1, 2], this example also
shows that Theorem 1 can fail if the Rademacher type p hypothesis is
dispensed with.

(vi) It is natural to ask whether Theorem 1 holds if the norming
sequence is replaced by {by,, n>1}. The answer is negative in view of the
following example of Adler and Rosalsky.” Let {V,,n>1} be iid.

random variables with V| having probability density function

4

f(v)

=——1;, . (V) -0 << 0
vilogv [ Y

where ¢ is a constant and let V,;=V, j=21,n>1.Seta,=1,b,=nn=1
The condition (4.1) holds with p=2. Let T, =[n'?], «,=n, n>1 and let
A=1. Now for all n>=3,

nP{|V,|>n} =ncf%

C
dv < =o(l
. vilogv 'S oth)

ogn
Thus by Theorem 1 (with D=1 and V'=V,),
S V= EV AV <m) B (V= BV IVl <m) o

j=1 J=1
n bm]

However, Adler and Rosalsky‘® showed that

SNV, —EV IV <),
[nl/Z] 7(_—}0

whence

i (Vn/'—EV I(IVn;’Sn)) P
— 0

j=1 nj

b Ty

Sails.
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(vii) The ensuing theorem shows that if the hypotheses to Theorem
1 are suitably strengthened, then the conclusion holds with the norming
sequence replaced by {b,,n>1}. The pair of conditions (4.2) and (4.17)
is equivalent to the single condition

T
p {/1’ s—”si} -1 for some constants 0<A' <A< o (4.16)

%y

which is substantially weaker than T, /a, —= ¢ for some constant 0 < ¢ < c0.
Clearly the sequence {T,,n> 1} in the example in Remark 1(v) does not
satisfy (4.17).

Theorem 2. Let {V,V, j=l,nx=1}, {a,n=1}, {b,n=1},
{a,,n>1}, and {T,, n> 1} satisfy the hypotheses of Theorem 1 and sup-
pose, additionally, that 5,1 and for some constant 0 <A’ < co that

P{£<,{’}=o(1) (4.17)

[

n

and b, 1=0(b; ;. ;). Then the WLLN

He aj(V,,j—EV,,jIZ()II Vil Sbpflag,yD) v 0 (4.18)
Ty

obtains.

Proof. In view of Theorem 1, it suffices to show that by, 1/b7, = Op(1)
and this follows as in Corollary 4 of Adler and Rosalsky.'? O

Example 1. For 1 <p < o, consider the real separable Banach space
¢, of absolute pth power summable real sequences v={v,, k>1} with
norm |v| =X, lvk|?)'”?. Let {K,, n=1} be iid. positive integer-valued
random variables and let {Y,,n>1} be iid. random variables with the
generalized St. Petersburg distribution

P{Y,=q; ¥} =p,q)"", y=12,.

where 0<p,=1—g,<1. Furthermore, suppose that {K,,n>1} and
{Y,,n>1} are independent stochastic processes. Let V,={Y [(K,=k),
k=1}, n>=1 Then {V,,n>1} are iid. random elements in ¢/, for each
l<p<oc and E||V,|=EY,=co. Let V,,=V,, j=1, n=1. Let q,=n"
n=1, by=Log2, b,=n*""'Logn, n=>2 where «a > —1 and Log denotes
the logarithm to the base ¢;'. Let {T,,n>1} be positive integer-valued
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random variables with T,/n—5 1 and let «,=n, n>1. Let 1 <p<2 be
such that «> —1/p. Now /, is of Rademacher type p, (2.2) holds with
D=1 and V=V,, and (4.13) also holds since ap > — 1. It was shown by
Adler and Rosalsky'!! that P(Y,>a)<(g,a)" ", a>0, whence

b
nP{HDVl | > la"l}=nP{ Y, >nLogn! =o(1)

The other hypotheses of Theorem 2 are easily seen to be satisfied. Thus by
Theorem 2

jTl]ja(an_EV]nd(“ an[|<nL0gn))__p;O (4.19)
75" LogT,

Now o > —1 ensures that

j-1 /" 1
nac+l —)CX+1

and so it follows from 7, /n —£» 1 and Lemma 3.3.2 of Chow and Teicher,®’
(p. 67) that

ZjTl] j“ P 1
72+ — r1 (4.20)
Similarly,
LogT, »
— 1 4.21
Logn ( )

It was shown by Adler and Rosalsky'!’ that
p.4; '((Loga)—~1)<EY I(Y,<a)<p,q;' Loga,azq,"
and so
EY,\ (Y, <nLlogn)~p,q; ' Logn (4.22)
Set v,={P{K, =k}, k>=1}. Then by (4.20)-(4.22)

jTll J°EV, (V|| <nLogn) _Z_,Tll JHEY, (Y, <nLogn))v,
T*+'Log T, h T*+'Log T,

—1
P Poq
a1 b (4.23)
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Adding (4.19) and (4.23) yields

7, 33 -1
Zj; 1J V"j P Pod,
—_— v

T**'Log T, w41 °° (4.24)
Next, suppose that 7, =n, n>1. Then
XSV » paq,!
—_— v
n**!Logn a+l °
However, according to Theorem 2 of Adler and Rosalsky,® either
{1_ e Vn. . {l= ‘JV"‘
h,,r{l. irclf %Tllj?;l” =0 ac.  or llinﬁsgp %I%c?;in = a.c.
and so
LV -
Z1 —ll J 7] _}poq() vo ac.
n*'Logn a+l
Sails.

Remark 2. The conclusion (4.24) is stronger the closer p is chosen to
1 in view of the Pringsheim-Jensen inequality (see e.g., Hardy, Littlewood,
and Pélya,'® p. 28) which asserts that

3 p oC A\
<Z |vk|”> 2(2 lvk|”> for O<p<p'<oo  (4.25)
k=1 k=1

For any > — 1, the choice of pe{(], 2] satisfying o« > — 1/p can always be
made to be arbitrarily close to 1. Hence, in view of (4.25), the conclusion
(4.24) must then hold for any pe (1, o).

Remark 3. Suppose that {V,V,, j=1, n>1}, {a,, n=1}, {b,,
n>=1}, {T,,n>1}, and {a,, n>1} satisfy the hypotheses of Theorem 2
with T, /x, %> ¢ where 0 < ¢ < co. It is natural to ask whether

2 a)(Vy— EV IVl <br1yer/lag7,a1)) _r,
bT‘"

0 (4.26)

necessarily holds. The following example shows that the answer is negative.
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Example 2. Let {V,,n>1} be nonnegative iid. nonintegrable
random variables with nP{V,>n} =o(1) and let V,;=V}, j=1, n>1. Set
a,=1 and b,=a,=n, n>=1. Since V, is nonintegrable, there exists an
integer sequence {4,,n>1} with EV I(n<V,;<4,)— . Let {T,,n>1}
be a sequence of random variables independent of {V,,n>1} with
P{T,=A,}=p,=1—P{T,=n}, n>1 where p,=o0(1). Then T,/n-5
c=1. Now (4.1) holds for 1<p<2 and so all of the hypotheses of
Theorem 2 are satisfied with 1 <p<2, D=1, and V=1V,. Then sub-
tracting the expression in (4.26) from that in (4.18) (which is 0,(1) by
Theorem 2) yields

EV,I(V,<T,) —EV,V,<n)
=EV,Kn<V,<T,)
=E{(VIn<V,<T,)KT,=n)} +E{V,In<V,<T,)KT,=A4,)}
=0+E{(VIn<V,<A)KT,=4,)}

=(EVI(n<V,<4,)p,

Thus, (4.26) prevails if and only if p, =o((EV,Kn<V,<4,)) ™).

The next theorem provides sufficient conditions for (4.26) to hold with
c¢=1. Note that the condition (4.28) is considerably stronger than (4.16)
and that the condition (4.27) is automatic if |a,|T.

Theorem 3. Let {V,V,,j=1l,n21}, {a, n>1}, and {b,,n=1}
satisfy the hypotheses of Theorem 1 with 5, 7 and

2 lal=0(nla,l) (4.27)
J=1
Let {T,,n>1} be positive integer-valued random variables and

1 <a,— o be constants such that

T,
V<" <hac for some constants 0<A' <A< 0 (4.28)

a”

Moreover, suppose that

b[l”‘a”] = (D(b[/l x ]) (4'29)

* %y
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where A*=Av 1and A, =4" A 1. Then the WLLN

Z]'Tll a,( an_EanI( I an” <bT,,/|aT,,|)) _r,

s 0 (4.30)

obtains.

Proof. Set c,=b,/|a,|, n=1. Note that with probability 1,

”Zr"la( w— EVllVyl <er) EZa(Vy EanI(IIVnJ-IISC[a"]))”

br, br,
1 5
<%, L gl BV Wyl < ) = KNV <o)}
1 [A*x,]
<b Z la LE|V, nj I I(C[A*a”] < an” Sc[pan]) (by (4.28))
[de%] j=1
1 [A*a,]
5 Y 1] ¢pimn 1 PUIV il > i}
[Aean] j=1
D [A*a,]
<3 Y gl ey PUIDVI > cpa 0nb (by (22))
[A*“n] j=l
C [4*a,]

STagns] Y ol P{IDVI>cp, .} (by (429)
Ata, j=1

SC[A%, ] P{IDV > cps00) (Y (427))
< ClA,a,] P{ 1DV > C[A*a,,]}
=o(1) (by (44))

Then since (4.18) holds by Theorem 2, the conclusion (4.30) obtains. O
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