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COMPLETE CONVERGENCE FOR ARRAYS OF
ROWWISE INDEPENDENT RANDOM VARIABLES

Tien-Chung Hu, Manuel Ordóñez Cabrera,
Soo Hak Sung, and Andrei Volodin

Abstract. Under some conditions on an array of rowwise inde-
pendent random variables, Hu et al.(1998) obtained a complete
convergence result for law of large numbers with rate {an, n ≥ 1}
which is bounded away from zero. We investigate the general situ-
ation for rate {an, n ≥ 1} under similar conditions.

1. Introduction

The concept of complete convergence of a sequence of random vari-
ables was introduced by Hsu and Robbins [5] as follows. A sequence
{Un, n ≥ 1} of random variables converges completely to the constant θ
if

∞∑
n=1

P (|Un − θ| > ε) < ∞

for all ε > 0. We refer to [3] for a survey on results on complete conver-
gence related to strong laws.

Recently, Hu et al. [6] and Hu and Volodin [8] proved the follow-
ing complete convergence theorem for arrays of rowwise independent
random variables.

Theorem 1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise
independent random variables and {an, n ≥ 1} a sequence of positive
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constants bounded away from zero, that is, lim infn→∞ an > 0. Suppose
that for every ε > 0 and some δ > 0 :

(i)
∑∞

n=1 an

∑kn

i=1 P (|Xni| > ε) < ∞,
(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

EX2
niI(|Xni| ≤ δ)

)J

< ∞,

(iii)
∑kn

i=1 EXniI(|Xni| ≤ δ) → 0 as n →∞.

Then
∑∞

n=1 anP (|∑kn

i=1 Xni| > ε) < ∞ for all ε > 0.

This result was generalized on Banach space setting in [7].
The proof of Theorem 1 is based on the fact that

(1)
kn∑

i=1

Xni → 0 in probability

as n → ∞. We mention that (1) does not necessarily follow from the
conditions of Theorem 1 if {an, n ≥ 1} is not bounded away from zero.
To give such an example, we will need the following lemma.

Lemma 1. If the random variable X is N(0, 1), then for every ε > 0

P (X > ε) ≤ e−
ε2
2 .

Proof. For any t > 0,

P (X > ε) = P (tX > tε) = P (etX > etε) ≤ e−tεE[etX ] = e−tε+ t2
2 ,

since X has moment generating function e
t2
2 . The result follows by

putting t = ε. ¤

Remark 1. It is well known that P (X > ε) ≤ 1
ε
√

2π
exp(− ε2

2 )(see
[2], p. 175). Hence, the upper bound of P (X > ε) in Lemma 1 is good
when 0 < ε < 1√

2π
.
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Example 1. Define a sequence {an, n ≥ 1} by

an =
{

1/n2, if n is odd,
1/n, if n is even.

Let X1, X2, · · · be independent and identically distributed N(0, 1) ran-
dom variables. Define an array {Xni, 1 ≤ i ≤ n, n ≥ 1} by

Xni =
{

Xi/
√

n, if n is odd and 1 ≤ i ≤ n,

Xi/n, if n is even and 1 ≤ i ≤ n.

Then we have by Lemma 1 that

P (|Xn1| > ε) ≤
{

2 exp(−nε2/2), if n is odd,
2 exp(−n2ε2/2), if n is even.

It follows that
∞∑

n=1

an

n∑

i=1

P (|Xni| > ε) =
∑

n is odd

1
n

P (|Xn1| > ε) +
∑

n is even

P (|Xn1| > ε)

≤ 2
[ ∑

n is odd

exp(−nε2

2
)/n +

∑

n is even

exp(−n2ε2

2
)
]

< ∞,

and so the condition (i) of Theorem 1 holds. Next, we claim that con-
ditions (ii) and (iii) hold. Noting that

EX2
n1 =

{
1/n, if n is odd,
1/n2, if n is even,

we get
∞∑

n=1

an

( n∑

i=1

EX2
niI(|Xni| ≤ δ)

)J

≤
∞∑

n=1

an(nEX2
n1)

J

=
∑

n is odd

1
n2

+
∑

n is even

1
n1+J

< ∞,

which implies (ii). Since Xni is symmetric, EXniI(|Xni| ≤ δ) = 0. Thus
(iii) holds. But, (1) does not hold, since for odd n

n∑

i=1

Xni =
X1 + · · ·+ Xn√

n
∼ N(0, 1).

However, it is easy to see that
∑∞

n=1 anP (|∑kn

i=1 Xni| > ε) < ∞ for all
ε > 0.
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Remark 2. For a different example and a general discussion about
Theorem 1 we refer to [8].

It is an interesting project to investigate whether Theorem 1 is true
or not for general sequences. In this paper, we obtain a complete conver-
gence result without assuming that {an, n ≥ 1} is bounded away from
zero, but under slightly modified conditions of Theorem 1. The proof is
different from that of Hu et al. [6] and it does not use symmetrization
procedure.

2. Main result

To prove the main result, we will need the following lemma which is
a version of Hoffmann-Jørgensen [4] inequality for independent, but not
necessarily symmetric, random variables.

Lemma 2. Let X1, · · · , Xn be independent random variables. Let

Si =
∑i

l=1 Xl, 1 ≤ i ≤ n, and let S0 ≡ 0. Then for every integer j ≥ 1
and t > 0
(2)

P (|Sn| > 6jt) ≤ CjP ( max
1≤i≤n

|Xi| > t

4j−1
) + Dj max

1≤i≤n

[
P (|Si| > t

4j
)
]2j

for some positive constants Cj and Dj depending only on j.

Proof. From Lemma 1 and Lemma 2 in [1], it follows that

(3) P (|Sn| > 6t) ≤ P ( max
1≤i≤n

|Xi| > t) + 64 max
1≤i≤n

[
P (|Si| > t

4
)
]2

.

Thus (2) holds for j = 1 with C1 = 1 and D1 = 64. Assume that (2)
holds for some j for some positive constants Cj and Dj . Then using (3),
we have

P (|Sn| > 6j+1t)

≤ P ( max
1≤i≤n

|Xi| > 6jt) + 64 max
1≤i≤n

[
P (|Si| > 6jt

4
)
]2

≤ P ( max
1≤i≤n

|Xi| > 6jt)
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+ 64 max
1≤i≤n

[
CjP (max

1≤l≤i
|Xl| > t

4j
) + Dj max

1≤l≤i

[
P (|Sl| > t

4j+1
)
]2j ]2

= P ( max
1≤i≤n

|Xi| > 6jt) + 64
[
C2

j

[
P ( max

1≤i≤n
|Xi| > t

4j
)
]2

+ 2CjDjP ( max
1≤i≤n

|Xi| > t

4j
) max

1≤i≤n

[
P (|Si| > t

4j+1
)
]2j

+ D2
j max

1≤i≤n

[
P (|Si| > t

4j+1
)
]2j+1]

≤ P ( max
1≤i≤n

|Xi| > 6jt)

+ 64C2
j P ( max

1≤i≤n
|Xi| > t

4j
) + 128CjDjP ( max

1≤i≤n
|Xi| > t

4j
)

+ 64D2
j max

1≤i≤n

[
P (|Si| > t

4j+1
)
]2j+1

≤ (1 + 64C2
j + 128CjDj)P ( max

1≤i≤n
|Xi| > t

4j
)

+ 64D2
j max

1≤i≤n

[
P (|Si| > t

4j+1
)
]2j+1

.

Hence, we can take Cj+1 = 1 + 64C2
j + 128CjDj and Dj+1 = 64D2

j . ¤

Now, let {an, n ≥ 1} be a sequence of positive constants without the
assumption that it is of bounded away from zero. We state and prove
our main result.

Theorem 2. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 1 except
that (ii) and (iii) are replaced by (ii′) and (iii′), respectively:

(ii′) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

V ar(XniI(|Xni| ≤ δ))
)J

< ∞,

(iii′) max1≤i≤kn |
∑i

l=1 EXnlI(|Xnl| ≤ δ)| → 0 as n →∞.

Then
∑∞

n=1 anP (|∑kn

i=1 Xni| > ε) < ∞ for all ε > 0.
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Proof. Let X ′
ni = XniI(|Xni| ≤ δ), X ′′

ni = XniI(|Xni| > δ) for
1 ≤ i ≤ kn, n ≥ 1. Then

P (|
kn∑

i=1

Xni| > ε) ≤ P (|
kn∑

i=1

X ′
ni| >

ε

2
) + P (|

kn∑

i=1

X ′′
ni| >

ε

2
)

≤ P (|
kn∑

i=1

X ′
ni| >

ε

2
) +

kn∑

i=1

P (|Xni| > δ).

By (i), it suffices to estimate P (|∑kn

i=1 X ′
ni| > ε

2 ). Take j such that
2j ≥ J. Then we have by Lemma 2 that

P (|
kn∑

i=1

X ′
ni| >

ε

2
)

≤ CjP ( max
1≤i≤kn

|X ′
ni| >

2ε

24j
) + Dj max

1≤i≤kn

P (|
i∑

l=1

X ′
nl| >

ε

2 · 24j
)2

j

≤ Cj

kn∑

i=1

P (|Xni| > 2ε

24j
) + Dj max

1≤i≤kn

P (|
i∑

l=1

X ′
nl| >

ε

2 · 24j
)J .

Hence by (i) it suffices to estimate max1≤i≤kn P (|∑i
l=1 X ′

nl| > ε
2·24j )J .

On the other hand, condition (iii′) implies that there exists an integer
N such that

max
1≤i≤kn

|
i∑

l=1

EX ′
nl| <

ε

4 · 24j
if n ≥ N.

For n ≥ N, we get by the Markov’s inequality that

max
1≤i≤kn

P (|
i∑

l=1

X ′
nl| >

ε

2 · 24j
)J

≤ max
1≤i≤kn

P (|
i∑

l=1

(X ′
nl − EX ′

nl)|+ |
i∑

l=1

EX ′
nl| >

ε

2 · 24j
)J

≤ max
1≤i≤kn

P (|
i∑

l=1

(X ′
nl − EX ′

nl)| >
ε

4 · 24j
)J
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≤ (
4 · 24j

ε
)2J max

1≤i≤kn

(
V ar(

i∑

l=1

X ′
nl)

)J

= (
4 · 24j

ε
)2J

( kn∑

i=1

V ar(X ′
ni)

)J

.

In view of (ii′), the proof is complete. ¤

Remark 3. Condition (ii′) in Theorem 2 is a slight modification of
condition (ii) in Theorem 1. Although condition (iii′) in Theorem 2 is
stronger than condition (iii) in Theorem 1, Corollary 1 and Corollary 2
in [6] can be proved by Theorem 2.

Theorem 2 can be generalized to Banach space setting. Recall that a
real separable Banach space (B, ‖ ‖) is said to be of (Rademacher) type
p, 1 ≤ p ≤ 2, if there exists a positive constant C such that

E‖
n∑

i=1

Xi‖p ≤ C

n∑

i=1

E‖Xi‖p

for all independent mean zero and finite p-th moment random elements
X1, · · · , Xn with values in B. For discussion of this notion and some
equivalent definitions, see [10].

Let us mention that a version of Hoffmann-Jørgensen [4] inequality
(Lemma 2) is still valid for independent, but not necessarily symmet-
ric, random elements with values in B. For a random element X with
expected value and p > 0 denote σp(X) = E‖X − EX‖p.

Theorem 3. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise
independent random elements taking values in a real separable Banach
space (B, ‖ ‖) of type p, 1 ≤ p ≤ 2, and {an, n ≥ 1} a sequence of
positive constants. Suppose that for every ε > 0 and some δ > 0 :

(i)
∑∞

n=1 an

∑kn

i=1 P (‖Xni‖ > ε) < ∞,
(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

σp(XniI(‖Xni‖ ≤ δ))
)J

< ∞,

(iii) max1≤i≤kn ‖
∑i

l=1 EXnlI(‖Xnl‖ ≤ δ)‖ → 0 as n →∞.
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Then
∑∞

n=1 anP (‖∑kn

i=1 Xni‖ > ε) < ∞ for all ε > 0.

Proof. Let X ′
ni = XniI(‖Xni‖ ≤ δ) for 1 ≤ i ≤ kn, n ≥ 1. If

kn = ∞ we have to prove that the series
∑∞

i=1 Xni converges a.s. By
Corollary 2.2.1 in [9] it is sufficient to prove that for some δ > 0:

(a)
∑∞

n=1 an

∑kn

i=1 P (‖Xni‖ > δ) < ∞,
(b)

∑∞
i=1 X ′

ni converges a.s.
Condition (a) is satisfied by (i). Since the Banach space is of type p, for
any positive integer m we have σp(

∑m
i=1 X ′

ni) ≤ C
∑m

i=1 σp(X ′
ni). By

(ii)
∑∞

i=1 σp(X ′
ni) < ∞. This implies that

∑∞
i=1(X

′
ni−EX ′

ni) converges
a.s. Hence (b) is satisfied by (iii). The rest of the proof is the same as
that in Theorem 2 except that

max
1≤i≤kn

P (‖
i∑

l=1

(X ′
nl − EX ′

nl)‖ >
ε

4 · 24j
)J

≤ (
4 · 24j

ε
)pJ max

1≤i≤kn

(
σp(

i∑

l=1

X ′
nl)

)J

≤ C(
4 · 24j

ε
)pJ

( kn∑

i=1

σp(X ′
ni)

)J

,

since B is of type p. ¤
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