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ON THE MARCINKIEWICZ WEAK LAWS
OF LARGE NUMBERS

IN BANACH SPACES

A. L VOLODIN

Research Institute of Mathematics and Mechanics of Kazon Universily, Univer-
sitetskaya Street 17, 420008 Kazan, Rusis

ABSTRACT

Some general theorems concerning the weak law of large numbers are proved. Nucos-
sary and sufficient conditions for the validity of the weak low of large numbers and L
gtochastic boundedness of weighted sums (under some conditions on weights aee [ouud)
of i1'||!|*1'll"!|'|lil'!1l il.iNlii.tm’L'.' distribuled rendom clements with zero means ﬂ_'l.'l-'limil'lﬁ valuez
i nn arbitrary Bannch space. These reaults are applied ta certaln random elements,

INTRODUCTION

The interesting problem arising in the study of the laws of large numbers is to
find necessury and sufficient conditions for the validity of the weak law and the
stochastic boundedness of weighted sums (under certuin conditions on the weighta)
of independent identically distributed random elements with eero means assuming
values in an Benach space. Note that in applications of the law of large numbers
ity wenk variant and stechastic boundedness are of the utmost impaortance,

Let us introduce some notations and fonoulate the conditions ensuring e validily
of the mnin result of this seetion,

Let X be a random element with zero mean assuming velues in & Banach space
E, (X¢)5° be independent copies of X,

i

T, =To(X) = Y au(n)Xy,

k=1

where a = (ae(n), 1 <k < n, n e N)is a trangulur array of constants which iy
called a weight in whet follows, and let

]
S =G0X)=5 X
k=1

Lot any weight a under considernbion sutisly the following assumptions.
Forall ke N
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(1) ﬂ]j_.ﬂgulﬂ‘-{ri]] =0, ead there exists B > 0 such that for all m > n: |eg(m)| £
Blac(n)].
(i) there exists © > 1/2 such that for all n: lag(2n)| = Clag(n)|.
Introduce the sequence ¢ = (p{n)): w(n) = 1/ max lag(n)l. Since we are inber-
csted in the law of large numbers, it is natural to use the following condition:
(iii) there exist p < 2 and A > 0 such that p(n) > An'/? for all n.

Note that condition (i) is necessary even for the random variables assuming values

in R.

Let us sey a few words about condition (ii). We can assume that € < 1. Ta

simplifly the proofs of some technical results, we define the functions ag(t) and

with 1 = 1, a(z) = ae([t]), w(t) = {[t]), where [ denotes the integer part of o

mimber. Then (ii) can be rewritten as

(i) lax(in)| 2 D 7 |ag(n)| for all n € N aud t > 1, where g = log, ¢ (< 0) and
D= B¢,

Iu fact, 3f by {#) we denote the lust integer vwnhier not smaller than ¢ (2 1), then,

by f1) and (ii), we have

lax(tri)| = Blas({tyn)] = Blax(2°8:10n)| > [0 |ag(20ensith )
> BFCW8N gy (n)| 2 BICYR N ay(n)] = (B 08| ag(n)).

We sny that s sequence of random elemenls (Ya) i stochnsticnlly bounded, if
r15|.|::_L sup P{||¥u]] >t} = 0.

Let us introduee the following notations:
SBL(E) = {X € Lg(E): EX =0, and the sequence (T,( X))
is stochastically bounded},
WLLNL(E)={X € L(E): EX =0, T,(X) =0
as n — oo in probability},
WLLNL(E) = {X € Ly(E): EX =0, 5,(X)/n"* 2 0asn— oo
in probability], 1<p <2

In the sequel, we often use the following inequalities. In their formulutions given
below Xy are independent random elements and t > 0.

0.1. Levy's inequality (Vakhania et al., 1987, Proposition V.2.3)

H X} are symmetdc, then

Plggs, 1% > 1} S 2P X4l > )

0.2. Kolmagorav's inequality (Kwapien and Woyczynski, 1987)
If X} have zerg meany, When, whenever the right-hand side below is positive,

AT
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E|| L Xull < 308 max | Xl +86)/(1 - 12P(] Z Xl > t}).
L k=1 k=1

0.3. Kwapien's inequality {Vakhania et. al., 1987, Lemma V.4.1 {a})

If X, are symmetric and |Bi] 2 o/, then

PIIY . crXall > 1} <2P{IY . BeXell > t).
1 k=1 k=1

0.4. Hoffmaan-Jorgencen’s ineguality { Hoffmann—Jorgencen, 1974}
IF Xy wee symunetrie, then

t P{||Z Xuf| > 3t} < 4P={||Z Xall > ¢+ P{ max 1%l > ¢}

l: ke k=i
I 0.5. Contraction principle (Vakhania et al., 1087, Lemma V.41 (2])
i If ap € R, then

=

I::Hl.up"lk“ <2 s !Uk|h'ﬂi}lk”

1§ k) L

i 0.6. de Acosta's mnequelily (Acoatn, 1081)
There exisls © > 0 such thut

FJILZ X

k=] k1=!
i 0.7, luequality for means (Arawjo and Gine, 1980, Lemuns [11,2.7)
i HEX; =0, then E||X,]| < E|X, + X
0.8. Elementary inequality
For all £ < 00

XL (Il Xell = tHl = ¢}

P{n}jxm >t} <

kwal L=
Note that one usually regards the relation

P{JLZM}&H >1) < 2P{ max o] i}Zmn > ¢}

k=1 k=1

as Kwspien's inequality.
Our inequality follows easily from this one, hecanse

P{l| 3 cxXell > 1} S P{I D (aw/Be)feXel >t}

E=1 k=1

< 2P {mex foe/ Bl IIEJ:&X;;II >t < EP{Iflﬁk-ka > t}.

=] k=1
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1. CONDITIONS OF STOCHASTIC BOUNDEDNESS i
In this section we state the necessary and suficient candition for stachastic bound- §~ %
edness of weighed sums of 1.i.d. random elements zero iweans. Note that in this it 3
scetion we do not use condition (). L3

Let us formulate and prove some technical results with the aid of which we shall
prove the mam siutement of this section.
For 3= 0and ¢ > 0 set ¥ ,(tn)= ap(tn)XpI{||as{tn} Xy < s}

LEMMA 1.1. Let X be a symmetric random element. Conaider the canditions
) ]im m:pil"-’”}f” > ap(t)} =0,

b) Jim sup (B 22 ¥ia(al/s) =0,

c) Lfn:n. urm- u> ﬂ such that

P

TR A S T e T

e T e e e e
i O

B 3 Yil(tn)]

k=1
SUpsUpsupR —
adE m 1'21 ]

Condlitions ) and b} are sufficient, and conditions o) and <) are necesary for the
inclusion X € SB.(E).

Proof, Sufficiency. Let a) and b) hald true. Set

——

To =D au(n)Xed {lax(m)Xall € s} = ¥ Vau(n),
k=1

promsr] i

T =Y ax(n)XaI{las(n) Xa]| > a}.

k=1 ]

£

In this notation, Ty, = 17 + T7, and it suffices to show that sup P{||1%|| = a} — 0 %f

and sup P{||T}/]| = 4] —+ 0 as 3 — oa.
n

Hy Chebyshev's inequality and condition h),

g B Yl

.......... - sup P{||T,|| > s} < sup— = sup k"lg 0 ws s — oo
: " " 3 :

ST R T e

it

L

Furthermore, we have

{Iz51 >

={ Zﬂk m) Xl {lax(n)Xs] > s)ff = 0} C U {llae(n)Xe > s},
k=1 k=1
hewuce, by condition a),

st {7yl = o}

et

P{ITII > s} £ 3 P{llae(m)Xill > s} < 3 P{I[Xil| > sip(n))
k=1 k=1

=aP{[|X|| > se(n)} =0 as s — .




5

stochastic bound-
WNote that in this

of which we shall

"

der (he conditions

& necessary for the

1),

P{ITull > 8} = 0

ag 5 -3 oG,

K| = s},

= sp(n))

s

e et

1

i
i
i}
:
?

i e e S
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Necessity.  Now let X € SB{E). Then f(s) = supP{||Ta|| > s} — 0 as
L]

s — co. By Levy's inequality (0.1), for all n f{s) = P{ max |ag(n)| Il£e]| > 41/2
ar -7

L~ 2f(s) < P{ max Xl < sp(n))

= P{[V{I1Xxll < s(m}}} = P{]IX]| < sip(n)}.

k=]

Hence, P{lX]| > se(n)} < 1= (1 - f(s))'/" < ~log(l — 2f{a))/n. So,
.ll-'ﬁafﬂﬂ”P{“X” > ap(t)} =0

Furthermore, for all v, 0 < u < 24, we have

P=P{ 3 Vi(tn)]

k=)

> u}

4
n

=P{| Y au(tn) Xy — 3 aultn) XuT {flas(tn) Xl > )| > u)

k=1 ko)

< PYIY aultn) X4 > 5} + P Y as(tn) XoI{||au(tn) Xe|| > s} > ’;:

ks L=1

We estimate the first term in the right-hend side of the previous inequality by
Kwapien's inequality (0.3) taking into nceount (i) and ¢ > 1 and the second teom
Ly elementary insquality (0.8), As u result, we abtain

PP {|Ta)l > 5=} + P {las(tmXeT{flasttm) Xl > o} > 5}

n i
. = )
+P {||Eua{tn]hf{?lﬂz{!n}hi! > a{ lax(tn) Xl < }}
By the choice of u < 2s, the latter event is impossible and
u ug(n)
< — —_—
PHEP{HTHH}E}-}nP{HXﬂ} : }

Since X € SBL(E) and &) takes p[é.m, there exists U > 0 such that forall s > U/2

zupsup P IH Z ViJin)| =0y = ,.i
= 221 l k=t =

Then, by Kolmogorov's inequality (0.2),
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. ’S{E mm: %%, (tn)]] -+ BL7}
E|Y Yi.ltn)] = i < G+ B
k=] 1—12P {!| Y Yi.tn)| > U}
k=]

For any £ > 0 and any random element X define p, (X} = suptP{||T(X)|| =
£
s}. Recall (see (ii)') that ¢ = log, € and C is given by {ii).

LEMMA 1.2. There exists H > 0 such that BT (X)| < Hs(pa.(X) |

” T"'I"[.J‘i'}]l for all symumelic rapdows clements X and 8 > 0,

Proof  For the seke of bravity, we put p = p (X ). We have

L)

FIT(O = [ PLITON > th
1]
- /mi*{u?‘..ll > at)dt = .-;(jP{||T“[| > _d}:.h!) - fP { LLYEN .~.} dt

Ll

< .«.(p+]t'”‘P{(i‘”"]"]i‘l"..|| > ,}f'ﬁrm) < a(p i pft'“:u).
P

P

Sinec we have C > 1/2 in condition (ii), it follows thet ¢ > -1 and the last integral
converges. The straightforvard computation campletes the prool
On the ground of these lemmas, we prove

THEOREM 1.1, Let X he a symmetric random eloment. The inclusion X €
SBa(E) holds, if and enly i lim supp, ,(X) = 0.
¥ "

Proof, Neeessity, Let X € SBL(E), L = 3V and 0 < ¢ < £/2. We
shall prove that there exists an sy = sg{e) such that py, (X)) = € [or wll & =
sp and n & N, Note that p, (X)) = mlptP{t"‘"T (X)]] = 4} = supDH2) =

¢

wax( sup D{t), aup D(t), hLlpD“” “'-fmu.l[r., sup D(t), supﬂ'ﬁ] Moreaver,
[ e eate e<tsl

snp D) < P{E'FITT | = s} a.nd since X £ SB.(F), there Emsts gy = s,(e) such
z{l

that, sup Dt} < ¢ forall 5 > 2.
el

Furthermore, there exists 53 = s2(2) sueh that for all 3 > 33 and n € N we have

PUTA(X) > 5} < £ < 2 (1)

{the last inequality follows from the chaice of £). By assertion (1) of Lemma 1.1,
there exists s1 = s3(z) such that

sup tP{[LX]| > sp(8)} < £ (2)
£

ERR R L

T o A e T R




6=+ 8L7).
P (T (X)]| >
0

E H'ql:ﬂu.l{xj -+

B

Il > o f
i f E”qrﬂ).
IJ

o] Alve Juat inteprenl
aof.

The mmelusion X &

<& < LfZ We
D) = og forall & >

s} = supD(t) =
20

w X)), Moreover,

-1

isty 4y = 5 [£) such

wd 12 & N we Lave

(1)
(1) of Lemma 1.1,

(2}

e ""‘t‘!t“-\-é

bt T T
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for all s > 3.
Let s > sq(c) = max{s;,53,53) and A > L. Then, aceurding to inequality (1),

fl4)= *l-p tP{|T.]| = s} = sup D{t)4 sup D]

1< 1950 Lt

S LP{||T,ll = s) + sup D(t) <

L<i<a

+ sup (P{37||T, (X} > 3s}.
LeteA

o |

Furthenmore, by the chaice of L,

HA)S S+ sup  ZP{u'T,| > 3s}.
& acmeay L

Applying Hoffmann-Jorgensen inequality (0.4), we obtain

¥

:{.-1*-5; | L“ mip  wP{|ulT|| > 9} +

'I\f'-lnl:_'."l.lu"f.
- sup  uP{ max [|u¥ai(n)Xi > 4})
1CncAfL 1gk<n
& 4 i
B worhos P{Tall > #} sup uP||u"Ts| = &)+
. L l<ucAfL

supu Y- Pllsta(mXi] > o} ).
(=g ks

Then, by condition (i)', in view of the inequality L > 1, aud by virtue of (1) and
(2], we have

I(A) < % +4P{|IT.]l > 5} D up :.%P[”MI“” > )

la

e IiA)
+ { — e L
bLIl‘lunP{” 1f|| = .5\,;1(1:[;” Z + 5 + 4|

Hence, I{A) < e, Thus, p, (X} < £ for s > 4.

Sufficiency. By Chebyshev's inequality and Temma 1.2,
sup P{ITl > o} < sup 1k < H(po ,(X) 4 /(X)) =0 as 3+ o0

Put
X)) =sup E”T“fX:IH

for a random element X and introduce the space

SB(E) = {X € Ly(E): EX =0 and 1,(X) < oo},
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This is a linear space, and A,(-) is a norm. Let us prove, for example, the triangular
inequality, Let X, ¥ € SB2(E). If (X, V3) is & sequence of independent copies
of the vector (X, Y), then

ST T i

3ol X +Y) = sup ETW(X + V)| = sup B Y as(n)}(Xi + ¥i)|

k=1

= sup B[| Tu(X) + Tu(¥)[| £ Aa(X) + Aal¥).

It is ensy to show that SB®(E) is a Banach space.
TuzoREM 1.2. SBL{E)=8BF{E).

Proaf. If X € SB2(E), then X* € SB,(E), where X* is the symunelrizalion :
ol X. By lneguality (0.7) for means and by Lemma 1.2, we have ;

Aa(X) = sup E||TW(X)]] € supE|Tu(X")]] < aH(pn (X} +pﬁt1‘f"{xﬂ =

for any & > 0 (wherein the last inequality follows from Theorem 1.1),
The reverse i evident by Chebyshev's inequality,

2, WEAK LAWS OF LARGE NUMBERS FOR THE WEIGHTED
SUM

Ini this section we strte necessary und sufficient conditions for the wealk law of large
numbers ta hold for weighted sums of independent identically distributed random
elerments with zero means. Wa shall prove that the set of all sueh elements is the
closure of the set of step random elements (i.e., taking on a finite number of values
only) by the norm A.(-) introduced ot the end of the previous section. This rasult
in an analogue of the well-known results of G. Plsier for the cases of the central
limit theorem and the law of the iterated logasnithm (Pisier, 1975); it iv also an
exlension of the result of R Norvaisa to the case of the Marcinkiewicz law of large
mumbers (Norvaisa, 1984).

Let us formulate and prove some technical results which enable us to obtain the
main results of this section. Reeall the notation

S s

R e e

¥i,.(tn) = ap(tn)Xed|lar(nt) X e < s}

LEwua 2.1, Let X be a symmetric random elemment. Consider the conditions
a) bm tP{|X] > sp(t)} =10,

f—o2 “ :
b) lim sup E|| ¥ Yelltn)]| =0 E

e 3 k=1

In order for the inclusion ¥ € WLLNL(E) to hold, i is sufficient that a) and L)
are satisfied for ai least ooe s > 0 end it js necessary that a) and b) are satisfied
for all ¢ = 0.

Proof. Sufficiency. Let a) and b) be satisfied for some s > 0. Define
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n

o= emXer{la(m) ] <51 =3 Yiuln),

=1 k=1

™

T = 3 au(n)Xed{[lox(n) Xl > s}

=]

In this notetion, Ty = T8 + T2, and it is sufficient to show that P{||Z]| > ¢] -+ 0
and P{|7Y]| > ¢} wO0aen—ocoforalle >0,
By Chebyshev's incqualily and condition h),

F{I|T;:r:>s}<_~'§Eims|=§E:|§n..fnm—-u P

Furthermore, we have

(N30l > e} = {ITJ|| > 0}

SN artm)Xad{flan(m)Xall > shl > 0} © | J {llax(n) Xl > s},

ke=] k]

hence, by condition aj,

PUITY > €) €3 Pllae(n)Xull > 5} < 3 P{IXLll > sia(n)}
k=1

kma]

= aP{||X]| > sp(n)} =0 as n— oo

Necessity, Let X € WLLN,(E). Fix some s > 0, Then f(n) = P{|T.(X)|| >
3} — 0 us i — oo, By Levy's inequality (0.1), for all n we have

7(m) 2 5P s faa()] (Xl > <)

L?Fén
or
1= 2f(n) < P max [ Xl < s(n))

=P{ [:] {1Xe]| = sp{n)}} = P{||X]] < sp(n)}.

k=1

Hence, P{|X| > s¢(n)} £ 1= (1= f(n))}/". So, nP{||X]| > sw(r]} — 0 a«
o=+ 00,
Furthermore, for all £ such that 0 < £ < 2s and for all ¢ 2> 1 we obtain

P =P{| 3 Viultn)] > <]
k=

=P{|| > arltn) Xz - 3 axlin)Xel{llax(tr) Xa]| > s}|| > £}
k=1

k=1
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<P {ll D> ax(tn)Xil| > %} +P {H Z a(tn)Xe I {|las(tn)X]| > o}l > %} :

re=1 kel

We estimate the first term in the cght-hand side of the provious inequality by
Kswapien's inequality (0.3) taking into account (i) and ¢ > 1 and the second term
— by clementary inequality (0.8). As a result, we have

P<oP{ITl> 55} + g P {llas(tm) Xud llas(tn)Xall > o)) > 5}

P {n Zau;zn:.n.r{i|n,,{rnjhrl > a)f {”n&{tn}fl_” < g} | > g.} ,
h=1 ! "

By the choice of u < 23, the last event is impossible and
2
Sinee X € WLLNL(E) and a) takes ploce, there exists N = N{e) such that

II" l
sup sup P {” L Vi (tn)|| > f} 5 91"

nxMN 121 kel e

P <oP {17l > g5} e {1l > A}

Applying Hoffmann-Jorgencen's inequality (0.4) to the integral

" H 403 "
f{4)= fP {Ir‘ > Yiu(tn)] > u} du = f P {EI S Yia(tn)| > 31.1} d,
0 k=1 ! k=1
we obtun .
A3 .,
IfA) <304 f p* {” Z Vi (in) = t.l} i
i k=1
Aj3
+ [ P fauin)] I XeT{las(em) Xall < s} > v}
: kg
L LH
<12 [P ) Vi ltn)] > v}do
b k=1
Aja .

412 [ P{IYS Veatm)l > P Y Fiale)l > b}
r =l k=1

T LT

4 T S A A A A A

T




Gl > 9}l > g}.

Ao inequality by
wl the second term

>l > 3}

"}||>-2.},

1]

Bafm

&) such that

)| = .‘Ju} dv,

w}du

o }dw

Lt

WLLN tn Banoch Spoces a7

+3 f P{ s lax(tn)l [ Xal > v)dv.
]

By Lhe previous reasonings, the fimst multiplier in the second integral is not greater
than 1/24. Applying Levy's inequality (0.1) to the last integral, we have

A n e n
I{A) < 12 + %fP{IiEYa.-{MJH 5 v}{l'-.l+ﬁfP{|iEuan]Xall il
] k=1 0

o msfp{nnu > uhdy

<12 4 A4
2
by condition (i). So, I{A) < 24 + 248 [P{||T.|| = v}dv. The lnst integral
0

converges to zero ai 1 -+ oo by the Lebesgue dominated convergence thaorern,
Henee,

lim E Yt = lim I =10,
S, 0T ) Yolini = Mo, o)

LeMMa 2.2, Lety be o positive randons vardable and (8) be e positive function
such that 1%!?{1; > Wt)] =0 for any a = 0, then tEnl{n < sb{t)}/b{t) — 0 as
1 =4 0o,

Proof,  Applylog the formule of integrution by purts and using the subatitulbion
v = ul{t), we find

b{i)

E 1. P e ‘L " -
ﬁi&.lf{ 1< b)) = B uf}dl"[u > v
; 8]
= —iP{n > i)} + ;“—]I E[ P{n > v}de

1
= —tP{n = K3} +ffP{q > ub(t)}du — 0
]

us t — oc by the Lehosguse daminated convergence thesrem.

Ledma 23 FX ¢ WLLN,(E), then for all k€ M and s > 0

L sup ntE[|¥e (tn)]* = 0.
>1

H—'-CI'JI

P iarEiIYE
LU BRI
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Proof. We have

dn = sup B[ Ve o (tn)|]* = sup uai(u)B|| Xl ||laeu )Xl < s}
I=1 120

Let Wu) = &° r’r“h“} and n = |EX4,!|'J. In this uotation, by Lemme 2.2, we hove
da = sup{uEnl{ns < Hu)}/bu)) — 0 as n = oo, since P{nf{n < b{n)} =

BT
uP{||las{1)Xe] > 5} < uP{n > Hu)] o n — oo, With the aid of these lemmas,
we prove the following thecrem. Reeall the notation g, (X)) = sup tP{17||T.{X )|
20

> 5}, where ¢ = log, C and the constunt © is tuken from condition (i)

TuroreM 2.1, Let X he a symmetrc random alement, Next statemaonts arn
equivalent;
a) X € WLLNL(E),
b)) paa X)) —0asn = oo foralls =0,
c) thjrc.rv exists 8 > 0 such that pa (X)) — 0 w3 n —v oo,

Proof. a)=th]. Let us show that for all £ such that (0 < £ < 1 and for all & =0
there exists N = N(e, s) such that p, (X)) < ¢ for all e > &N, We have:

-

Pral X) = suptP (|| To(X)|| > 2} = sup D(¢)
tx0 [ 3=131}

= max{ sup D(t), sup

e E ] <t

Dt} sup D(1)) < max(s, sup D), sup D)),
131 i1

1 ei2]

Moreover, sup D{t) < P{c7(|T%|| > 3] and, since X € WLLNL(E), there exists
eat<]

Ny = Ny(e) such thet for all n > N,

Pt Za(X)]| > s} < .

It remains to estimate the last supremum, that is, to prove that 4 = sup D(¢) < ¢
t1

for sufficiently large n.

Note that, by Lemmps 2.1 and 2.3, there exists Np = N[, 9) such that for all

n>MNyand k<n

sup uP (||| > s} < 5 i
sup B[¥e..(tn)]| < 5. W
=1 e
. G 3 a €

fgli:- tE|Ye,(tm)f* < ¢ 1608 i

where the constant C is taken from de Acoste's inequality (0.6).
By condition (i)', A < sup DtP{|| 35, ae(in)Xe| > s}. Now, applying elemen-
>l

tary inequalizy (0.8), we get

T S A S e A e

pries

T




I < s,

mma A2, we have
ni{n = b(u)} =

T of these lemmas,
sup tP {77, (X}
t20

tion (ii).

b statements are

1 el foe ndl =00
Ve have:

H), mup D(4)),

11

nf E'L there caiuty

4= sul[: Dit) < ¢
11

b auch that for all

(3)

(5)

applyving elemen-

i e m“-—_m“_‘__._wml
g TE v by
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n
A< 2(51192 iP{[las(tn)Xe|| > 5}

21 =1

FauptP{| ‘Z altn) Xed ([|ap(tn) X)) < aHl = a}).

tz1 k=1

Let u= estimate each term separately. Using the substitution u = tn and laking into
account (3), we obtain the follawiing estimate I} < supuP{[|X]| > sp(u)) < (e/4)
urn

for the first term. For the second temm, we have, h}'_fq']'T

™ LH] n
I = fgf'“’{ll Y Yau(tn)] > 3} < suptP{]| Y Vil (tn)|-E Y Yeltn)ll] > =,
= k=1 21 =1 k=] &

Applying Chebyshev's inequality, de Acosta's inequalily (0.6), nud (5), we ubtain

il =
I <457° EAEHI 2 Yaa(tn)ll - EIN Y ¥a ()]

k=i k=1

<487 Caup y‘llﬂ||}",g_,{£n]]f“ < -y
2140 *

So, there exists N = N(g,s) = mux{Ny, N3) such that p, ,(X) < ¢ forall n > N,
Luplication bj=+c) 15 trivial, and ¢)=+a) follows from Chebyshey's inequalily aud
Lemma 1.2: for any ¢ > (),

TN B3 ) 4 2R 0 38 1—s oo

P{|To{X)|| = £} <
CoronLLany . The inelusion X & WLLN.{E] holds for & random: element X
with the zero mean, if and only if E||T,(X)|| — 0 as n — oo,

Proof. If X satisfies X € WLLN,(E), then its synunctrizalion X* satisfies
the law of large numbers also. By inequality for means (0.7}, Lemma 1.2, and
condition (5) of the previous theorem, B|T,{X)|| £ Hslpn (X )+ ok /(X)) = 0
as n +— oo, The convergence follows easily from Chebyshev's inequality.

From the Corollury and Theorem 1.2 we conclude that

WLLN,(E) C 8B.(E) =5B_™(E).

Tueorem 2.2. The linear set WLLNL(E) is closed in the Banach space
{5B.(E), Ael-)) or, equivalently, X € WLLNL(E), if and only if for any ¢ > 0
there casts ¥ € WLLNL( E) such that A(X - YY) <e.

Proof. Takeany X & WLLNL(E)™"™. Then for any ¢ > 0 and & > 0 there
exists ¥ € WLLN,(E) such that (X — ¥) < £6/2. By the corollary to Theo-
rem 2.1, there exists N = N(z, &) such that E||To(Y)|| < 24/2. Dy Chebyshev's
meguality,

LIRS
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P{IZUX)] > €} € EIT. () £ HEIT-LX = V)l + EITY))

!
£
and, mince £ and § are arbitrary, X € WLLN( E).

In the next asction we shall need the following resnlt which is originelly due to I
Norvaisa ( Norvaisa,. 1684, Lemma 3.6).

We use the notation

<

(Aa(X Y]+ E|Ta(¥)][} < &-

WLLNp(E) = {X € Lo(E): EX =0 and §,(X)/n'/* 0

a5 n — oo in probability}, 1<p<2

CoroLLary . The space WLLN( E) is closed in the sense of the normn Ay X ) =
sup Bl|5,(X)| or, equivalently, X € WLLN{E), if and only if for any £ = 0 there
exists ¥ € WLLNy(E) such that Ap(X — ¥) < &

Let E[ E) be the set of all step random elements (i.e., those assuming only b finite
murmhber of vilues) with zero means. It is easy to note that condition (i) implics
the inclusion E( E) © WLLNL(E). In fact, an element from E{ E) is supported on

u Bnite-dimensionn] wnd bounded spuce, henee, it satisfics the low of larga amhors
{Marcus and Woyczynski, 1987, Theorem 3.1},

THEOREM 2.3. The space WLLNL(E) is the clasure of the set E(E) in
LSB.[E}.J'I..{-}J_

Praoof.  Since the space WLLNL(E) is closed, it i3 sullicienl b fod o any
X € WLLN,(E) a sequence from E( E) which converges to X in the sense of the

norm Aa{:}
Let F; € F, € ... be finite g-algebras such that thic o-algebra generated by the
il

random element X is contained in the o-algebra generated by |J Fy. Consider
k=l

the martingale M = E{X|F:) € E{(F) and ahow that Aa(X — M) — 0 oa & - oo,
We have

TalX) = Ta(Mi) = (Ta(X) = Ta( M) — (Tu{ M) — T“{.Mlj]
= (Ta(X) = Tu(M)) = E(To(X) — Tu( M, )| 7).

Hence, Ellan:-x o Mk}l] = El|T(X) — Ta( Me)|| < 2E||Ta( X} - T"(MI)”'
By the corollary to Theorem 2.1, for any € > 0 there exista N = N(z) such that
BlTu(X) = Te(M)|| <gf2foralln = N, ie, foral k e N and n = ¥

ElT.(X - M)l e (6)

Morcover, since My — X as k — oo i L(£), (Vakhania et al, 1987, Theorem
IL.4.1) thereexists & = K(z)suchthat forellm il Sn € Nand b 2 K- ET, (X -
M)l < e.

Combining this inequality and (&), we obiain

oM,

b e e e e =

T —

Py




E[|Tu(¥)1)

wiginally due to I

ME LD

fithe nomn A (X) =
“for any £ > 0 thers

wming only a finite
aclition (i) implies
LB b supporled on
aw of large nombers

f the set E{E} in

enl Lo lind for puy
in il sense of the

‘& generated by the
LY

y U F. Consder
b=l

i) -+ Dos k — co.

Tn{Mlj}

k-

~ (M)l
T = N{e) such that
wdnz=N

(6)

al., 1987, Theorem
1k= K B|T(X -

..-\-ﬁ.-::-:%
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Aal X = M) = max({ sup EfT.(X — M), sup ElT. X —-M)) <=
Igkzn s -

for k > K,

Note that the case of the classical law of large mumbers {::u,(n] =l/nforall k € N}
is not cavered by our rewuita. This is coused by the fact that ¢ > 1/2 in coudition
{ii) while iu the clasyical case O = 1/2. It 15 evident that the exdstence of EX is
not necessary for the proof of the classical weak Inw of large numbers (sven the
strong law takes place),

2. AN APPLICATION

Using Pimer's inequality (see helow) wad the results of the previous section, we
examine the weok law of large numbers for cerlain random elements with valnes
in an arbitrary Batach space,

Let 1 < 5 < coand let (bi)izy be u sequence of real numbers, Set ||(bs)icnll o0 =

mux ;_-II!E-I. where (b )y <y 1o the nonincreasing permutation of (e} xgn. Deline
=A

AJE) = (sup*P{lE| = i‘.}}”' for a randomn variable £
10

To fucilitate the formulation of the theorem, we introduce the random element X =
iy iz (with the series converging almest surely), where () is a nonrandem
sequence of clements in E and (n;) is & sequence of independent random variables
with zero means. Note that we do not require the sequence (n:) to be identically
distributed. It should be mentivued that 1. K. Matsak (Matsalk, 1088) proved the
Central Limit Theorem for such random slements,

By fiy denote the symmetne random variable whose absolute value has tha Weiball
distnbution with & parameter g > 0, 12, P{|8,] = t} = exp{—t1}, and lat (Baidizi
be independent copies of ;.

=
THEOREM 3.1. Lel X = ) mux, and lot the weight satisfy condition (1ii) only.
v =1 '

If there exisis 5: 2 > 5 > p such that

o
a] W= Elﬁ"l,-r[ converges o.s. for ;‘—l . % =1,

g
b) ﬁ-{t';;PImIl < oo,
ixl
then X € WLLNL(E).
In order to prove this theorem, we need some leminas, In the sequel, we shall uge

the seme notation as in the formulation of the theorem.

i
LEMMA 3.1, W = ¥ A, iz converges a.5., then it converges in L,(E).
=1
Proof It is suilicient to show that W € L,(E) (Vakhania et al., 1987, corollary
to Theormn V.3.2). Tt suffices to prove the following inequality for all t > 0
{Vakhanis et al., 1987, Theorem V.5.1):

k=]

[PUd > st < o, > 4,
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3
j where the constant  does nat depend an #. In the particular case 3; of a Weibull i
4 random varisble this inequality can be rewritten as . l'?-
e ! i
4| . - |
= fcx'p{—u‘?}u’_ldu < Cif exp{ 1], i
— J :
i
m§ In fact, even o more precise estimation holds: :
i o ' |
3 fg:xp{—u‘]u”"’du < Ot exp {17}, (7 ! ;
§ £
i since ;
i .
¥ TS gl 7 8§78,y :
ot cxpl-11) £ 0~ exp(-19) (g4 L ®
o !
i and p < 2 < ¢. The terms of this inequality are the derivatives of the correspond-
== ing Lerms of (7) taken with the opposite sign, hence, (7) follows from (B) after
o | integration of I:E'j en the half-line (¢, co).
Illlllﬂlal . ) . . . ; [
P | Pisier's inequulity (Pisier, 1086, Lemma 2.7). Suppase 1 < 3 < 2, ¢ is the
|

conjugate of s: (1/g) + (1/3) = 1, (be)icn € R, and let (£4)s<n be indepewdenl
Bernoulli random vasiables (i.e., P{e;, — £1} = 1/2). Then, for k, = q(q —2)/2

n 4 ! )
F“ Z bkikl - f.} E zcxp { — I:.k‘”{h*hgﬂ”“mjw} . |

k=1

The following lemma is just a reformulation of Pisier's inequality.

LEMMA 3.2 Let 7 = Y hiep and v = ||(be)i<nlls.00fqs whore (bi)izn C R,
=1 r
and let (£,) be a seuence of independent Bernaulli random varinbles. The, for i

any t >0

P{lr| = t} < 2P{k,|v| > t}.

Let (ny,:Ja»1 be independent copies of the sequence [rhj We introduce the random
varisbles p(f, 5,n) = ||(7,: )i galls o0

e e e

LEMMA 3.3. Let 5; be a sequence of symmeiric random vmabl—:.u X
= Eqn'l. Ne iTis ﬂ.ﬂd? Z.—;_ ﬂg,l.u{‘ J,ﬁ}:ﬁ Thm ‘h-ﬁ]ﬂ&quanr]tyF” Ei—l ‘I'.{"'IlF =
CE|Y||F holds, where C = 2'¥Pk,,

Proof. First consider the case of g3 ; = £4,ibx i, where bz ; € R and £, are
independent Bernoulll random variables. Define

A

= brgerg and = B ill(8e)eznlla,me- 3

k=1




wie Hy of & Weibull

) L ®

of the correspond-
owns from (8] alter

< 4 <2, q s the
<n be independent
r k= glg - 2)/2

iy,
here {E’k]kfn Cch

ariables, Then, for

roduce the randorn

om m;iabies, Xy
ity B Lkay Xell* =

i € R and g4 e

y
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i e
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It follows from Lemma 3.2 that P{jn| > 1} < EP{k,’fpd :, 4} fm-*': ii f'_ w : :
Ulilizing Theoren V.4.5 (Vakhania et al., lgﬂ},mmmludathu PR

- o g e s
El Y Xl =Bl Y nxillP < 2+2R2E) Y nzll? = CEIYP.
k=1 il =1
In the general case, the desired result follows from this relation by a standard
procedure. Replace the symunetric random variables n; by the random variibles
5:£; which have the same distributions. Here &; are independent Bernonlli random
vurinbles which are independent of n;. The left-hand side of the inequality from
the statement of Lemma 3.3 is everaged over £; for a fixed n;, and, fually, Fubini's
thecrem ie appliad (see, for example, the proof of Lemma V.2.1 (Vakhania et al.,

1987}).

Proof of Theorem 3.1. First consider the case of a symumelric 5. Let Xy =

}: iz be independent copies of X, Applying Kwapien's inequality (0.3, we
=1
see Lhat

PT(X)] > ) <20 { LN ;ap{w;m}

1/p
max |a II
452 | l }l

by eondition (iii). Hence, it iu suilicient to prove that S.(X)/ n'fP — 0 in prob-
m r L]

phility s n — co. Let 2, = ¥ iz and let Zp,. = r ne,ity be independent
1=

copies of Z,. By Launme 3.3 and inequelity from I{"-"nlchnnm at al, 1987, V.4,
exercise 1(a)):

L”MH < CEI[L“‘""H"‘“{' a,n) ||

nllp

< %E[suppf_i,nlnjjpﬁ|| Z A x:|P-
121 ioem

Note that, by Lemma 3.1, E|| 3 #;2ill® — 0 as m — ca. Furthermore,

120
E(sup (i, s;m))? € (14 j P{sup (78, )t ulco > E1et?)
i1 i21

mr'u{agplm-ﬂ
<1 +2£:1f =l

P
1

by Marcus-Pisier's result (Pisier, 1986, Lemme 4.11), Since s > p, we have

dt?

1. :
=E(sup p(i, 5,n))F < CA,(sup|ml) + 1,
n iml izl

whence sup E||52(X = 2 /0 PP — 0 a5 m — 20.
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Note that the random vector Z. tnkes on its values in the finite-dimensional
space Span {21,...,2m) and Ay(]|Z2.]|) < oo, since A, (sup|pi}) < w0 and s > p.
]

Then 5,(Zs)/n'/F —= 0 in probability as n — oo (Marcus and Wayczynski, 1078,
Theorem 3.1). By the corollaxy to Theorem 2.2, we couchude that Su(X)/n'/? — 0
in probebility as n — oc.

If X is an arbitrary not necessarily symmetric centered random element satisfying
the hypotheses of Theorem 1, then its symmetrization X" also satisfles the same
hypotheses and inequality for means (0.7):

To(X = Zm)
nlfp

TalX' = 2l
niie

0

|
| < supE
| "

supE
n

nam —+ oo, It remogns to apply the corollery to Theorem 2.2,

Mention should be mode of an imporiant pacticular cnse, namely, the enae of

random vanables (n; ) which are nondegenerate, .., inf Ejn,| > 0. Then condition
i

= =]
a) of Theorem | is not neceasary, since the canvergence of the aeries 37 g3 follows

im

- e
from the couvergence of the senes )7 f 7, (Vekhanin et al, Lemma V.51 und
=

Proposition V.5.5).
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