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ABSTRACT

Some mean convergence theorems are established for randomly weighted

sums of the form
Pkn

j¼1 AnjVnj and
PTn

j¼1 AnjVnj where {Anj, j � 1, n � 1}

is an array of random variables, {Vnj, j � 1, n � 1} is an array of mean 0

random elements in a separable real Rademacher type p (1 � p � 2)

Banach space, and {kn, n � 1} and {Tn, n � 1} are sequences of positive

integers and positive integer-valued random variables, respectively.

The results take the form k
Pkn

j¼1 AnjVnjk�!
Lr

0 or k
PTn

j¼1 AnjVnjk�!
Lr

0
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where 1 � r � p. It is assumed that the array {AnjVnj, j � 1, n � 1} is

comprised of rowwise independent random elements and that for all

n � 1, Anj and Vnj are independent for all j � 1 and Tn and {AnjVnj, j � 1}

are independent. No conditions are imposed on the joint distributions of

the random indices {Tn, n � 1}. The sharpness of the results is illustrated

by examples.

Key Words: Separable real Rademacher type p Banach space; Array of

rowwise independent random elements; Weighted sums; Random

weights; Random indices; Mean convergence.

1. INTRODUCTION

Consider an array {Vnj, j � 1, n � 1} of mean 0 random elements defined

on a probability space (O, F , P) and taking values in a separable real Banach

space X with norm k�k. Let {Anj, j � 1, n � 1} be an array of (real-valued)

random variables (called random weights), let {kn, n � 1} be a sequence of

positive integers, and let {Tn, n � 1} be a sequence of positive integer-

valued random variables (called random indices). In the current work,

mean convergence theorems will be established for the weighted sumsPkn

j¼1 AnjVnj and
PTn

j¼1 AnjVnj. These results take the form

Xkn

j¼1

AnjVnj

�����
������!Lr

0 (1)

or

XTn

j¼1

AnjVnj

�����
������!Lr

0 (2)

where 1 � r � 2. It should be noted that each AnjVnj is automatically a random

element (see, e.g., Lemma 2.1.5 of Ref.[1], p. 24). Of course, it follows from

the Markov inequality that (1) implies the general weak law of large numbers

(WLLN)

Xkn

j¼1

AnjVnj�!
P

0

and a similar observation can be made concerning (2). It is assumed that the

array {AnjVnj, j � 1, n � 1} is comprised of rowwise independent random
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elements and that Anj and Vnj are independent for all n � 1 and j � 1. These

assumptions are of course automatic if {Anj, j � 1} and {Vnj, j � 1} are

independent sequences of independent random variables and random

elements, respectively, for all n � 1. It is not assumed that the sequences

{AnjVnj, j � 1} and {An0jVn0j, j � 1} are independent for n 6¼ n0. Moreover, it is

assumed that Tn and {AnjVnj, j � 1} are independent for all n � 1. No

conditions are imposed on the joint distributions of the {Tn, n � 1} whose

marginal distributions are constrained solely by (9). The Banach space X is

assumed to be of Rademacher type p (1 � p � 2). (Technical definitions such

as this will be discussed in Sec. 2.)

Except for some recent work on the WLLN in Banach spaces by Hu

et al.,[2] Rosalsky and Sreehari,[3] and Rosalsky et al.[4] and some recent work

on mean convergence in martingale type p Banach spaces by Rosalsky and

Sreehari,[5] we are unaware of any literature of investigation on the limiting

behavior of both randomly weighted and randomly indexed sums
PTn

j¼1 AnjVnj

even when the Vnj are random variables. The only mean convergence results

that the authors are aware of for randomly weighted sums are those of

Rosalsky and Sreehari.[5] In the current work, we establish Rademacher type

p Banach space versions of the main results of Rosalsky and Sreehari.[5] The

current work owes much to this earlier work.

In the random variable case, there is a small literature of mean conver-

gence results for randomly indexed sums; see Refs.[6–8]. The work of Gut[6]

generalizes a famous result of Pyke and Root[9] to the case of randomly

indexed partial sums.

Let ynj be a generic symbol for a (suitably selected) conditional expecta-

tion, j � 1, n � 1. Assuming X is of martingale type p, Adler et al.[10] proved

under a Cesàro type condition of Hong and Oh[11] (which is weaker than

Cesàro uniform integrability as introduced by Chandra[12]) the WLLN

Xkn

j¼1

anj(Vnj � ynj)�!
P

0

where {anj, 1 � j � kn <1, n � 1} is an array of constants with kn !1.

In a martingale type p Banach space setting, Hong et al.[13,14] gave conditions

for the WLLN (with random indices)

XTn

j¼1

anj(Vnj � ynj)�!
P

0
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to hold. Also in a martingale type p Banach space setting, Adler et al.[10]

proved the Lr convergence result

Xkn

j¼1

anj(Vnj � ynj)

�����
������!Lr

0

where 1 � r � p under a uniform integrability type condition introduced by

Ordóñez Cabrera[15] which contains Cesàro uniform integrability as a special

case.

When X is of Rademacher type p (1 � p � 2) and the array

{Vnj, j � 1, n � 1} is comprised of rowwise independent random elements,

Adler et al.[16] established a WLLN (with random indices) of the form

PTn

j¼1 aj(Vnj � mnj)

bn

�!
P

0

where {mnj, j � 1, n � 1} is an array of suitable elements of X and

{an, n � 1} and {bn, n � 1} are sequences of constants with 0 < bn !1.

Taylor and Padget,[17] Wei and Taylor,[18,19] Taylor and Calhoun,[20]

Taylor et al.,[21] Ordóñez Cabrera,[22] and Adler et al.[23] studied either the

weak or the almost sure (a.s.) limiting behavior of randomly weighted partial

sums of Banach space valued random elements. However, in all of those

articles, the number of terms in the partial sums is deterministic.

The plan of the paper is as follows. Some technical definitions will be

given in Sec. 2. The main results will be stated and proved in Sec. 3. In Sec. 4,

examples will be presented which illustrate the sharpness of the results.

Finally, the symbol C denotes a generic constant (0 < C <1) which is

not necessarily the same one in each appearance.

2. PRELIMINARIES

Technical definitions relevant to the current work will be discussed in this

section. The expected value or mean of a random element V , denoted by EV, is

defined to be the Pettis integral provided it exists. That is, V has expected

value EV 2 X if f (EV ) ¼ E[f (V )] for every f 2 X� where X� denotes the

(dual) space of all continuous linear functionals on X . A sufficient condition

for EV to exist is that EkVk <1 (see, e.g., Ref.[1], p. 40).

Let {Yn, n � 1} be a symmetric Bernoulli sequence; that is, {Yn, n � 1}

is a sequence of independent and identically distributed random variables

with P{Y1 ¼ 1} ¼ P{Y1 ¼ �1} ¼ 1=2. Let X1 ¼ X � X � X � � � � and
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define C(X ) ¼ {(v1, v2, . . . ) 2 X1:
P1

n¼1 Ynvn converges in probability}. Let

1 � r � 2. Then the separable real Banach space X is said to be of

Rademacher type r if there exists a constant 0 < C <1 such

that Ek
P1

n¼1 Ynvnk
r � C

P1
n¼1 kvnk

r for all (v1, v2, . . . ) 2 C(X ). Hoffmann-

Jørgensen and Pisier[24] proved for 1 � r � 2 that a separable real Banach

space is of Rademacher type r if and only if there exists a constant

0 < C <1 such that

E
Xn

j¼1

Vj

�����
�����

r

� C
Xn

j¼1

EkVjk
r (3)

for every finite collection {V1, . . . ,Vn} of independent mean 0 random

elements.

If a separable real Banach space is of Rademacher type p for some

1 < p � 2, then it is of Rademacher type r for all 1 � r < p. Every separable

real Banach space is of Rademacher type (at least) 1 while the Lp-spaces and

‘p-spaces are of Rademacher type 2 ^ p for p � 1. Every separable real

Hilbert space and separable real finite-dimensional Banach space is of

Rademacher type 2.

3. THE MAIN RESULTS

With the preliminaries accounted for, the main results may now be

established.

Theorem 1

Let 1 � r � p � 2 and let {Vnj, 1 � j � kn <1, n � 1} be an array of

mean 0 random elements in a separable real Rademacher type p Banach space

X . Let {Anj, 1 � j � kn, n � 1} be an array of random variables and suppose

that the array {AnjVnj, 1 � j � kn, n � 1} is comprised of rowwise independent

random elements and that Anj and Vnj are independent for all n � 1 and 1 �

j � kn. Let {cnj, 1 � j � kn, n � 1} be an array of positive constants such that

Xkn

j¼1

cr
njEjAnjj

r ¼ o(1) (4)
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and

Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k
r ¼ o(1): (5)

Then

Xkn

j¼1

AnjVnj

�����
������!Lr

0 (6)

and, a fortiori, the WLLN

Xkn

j¼1

AnjVnj�!
P

0 (7)

obtains.

Proof.

Note that for all n � 1 and 1 � j � kn,

EkAnjVnjk ¼ EkAnjVnjI (kVnjk � cnj)k þ EkAnjVnjI (kVnjk > cnj)k

� cnjEjAnjj þ EkAnjVnjI (kVnjk > cnj)k

<1 [by (4) and (5)]

implying that E(AnjVnj) exists. Then since Anj and Vnj are independent, j � 1,

n � 1, we have

E(AnjVnj) ¼ (EAnj)(EVnj) ¼ 0, j � 1, n � 1:
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Then for all n � 1, since X is of Rademacher type r, it follows from (3) with

Vj replaced by AnjVnj that

E
Xkn

j¼1

AnjVnj

�����
�����

r

� C
Xkn

j¼1

EkAnjVnjk
r

¼ C
Xkn

j¼1

EkAnjVnjI (kVnjk � cnj)k
r

þ C
Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k
r

� C
Xkn

j¼1

cr
njEjAnjj

r þ C
Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k
r

¼ o(1) [by (4) and (5)].

j

The next result is a random indices version of Theorem 1. It should be

noted that if Tn=kn!
P

c for some c 2 [0, 1), then the condition (9) of Theorem 2

holds. An example wherein the converse fails is given by a positive integer

sequence kn !1 with kn divisible by 4, n � 1 and a sequence of random

variables {Tn, n � 1} with P{Tn ¼ (1=2)kn} ¼ P{Tn ¼ (1=4)kn} ¼ 1=2,

n � 1. The condition (9) is not comparable with the condition

ETn=kn ! c 2 (0,1) assumed by Gut.[6] Finally, note in Theorem 2 that

the slower kn !1 can be taken to satisfy (9), the conditions (10) and (11)

become less stringent.

Theorem 2

Let 1 � r � p � 2 and let {Vnj, j � 1, n � 1} be an array of mean 0

random elements in a separable real Rademacher type p Banach space. Let

{Anj, j � 1, n � 1} be an array of random variables and suppose that the array

{AnjVnj, j � 1, n � 1} is comprised of rowwise independent random elements

and that Anj and Vnj are independent for all n � 1 and j � 1. Let {Tn, n � 1}

be a sequence of positive integer-valued random variables such that

Tn is independent of {AnjVnj, j � 1}, n � 1 (8)

and

P{Tn > kn} ¼ o(1) (9)
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where {kn, n � 1} is a sequence of positive integers. Let {cnj, j � 1, n � 1} be

an array of positive constants such that

Xkn

j¼1

cr
njEjAnjj

r ¼ o(1); (10)

Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k
r ¼ o(1); (11)

and for some positive integer n0

sup
n�n0

X1
j¼1

cr
njEjAnjj

r <1 (12)

and

sup
n�n0

X1
j¼1

EkAnjVnjI (kVnjk > cnj)k
r <1: (13)

Then

XTn

j¼1

AnjVnj

�����
������!Lr

0 (14)

and, a fortiori, the WLLN

XTn

j¼1

AnjVnj�!
P

0 (15)

obtains.
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Proof.

Set pnk ¼ P{Tn ¼ k}, k � 1, n � 1. Then

E
XTn

j¼1

AnjVnj

�����
�����

r

¼ E
X1
k¼1

Xk

j¼1

AnjVnj

�����
�����

r

I (Tn ¼ k)

 !

¼
X1
k¼1

E
Xk

j¼1

AnjVnj

�����
�����

r

pnk [by the Lebesgue monotone

convergence theorem and (8)]

� C
X1
k¼1

Xk

j¼1

cr
njEjAnjj

rpnk

þ C
X1
k¼1

Xk

j¼1

EkAnjVnjI (kVnjk > cnj)k
rpnk (by the

the same argument as in Theorem 1): (16)

Now for all large n

X1
k¼1

Xk

j¼1

cr
njEjAnjj

rpnk ¼
Xkn

k¼1

pnk

Xk

j¼1

cr
njEjAnjj

r þ
X1

k¼knþ1

pnk

Xk

j¼1

cr
njEjAnjj

r

�
Xkn

j¼1

cr
njEjAnjj

r þ C
X1

k¼knþ1

pnk [by (12)]

¼
Xkn

j¼1

cr
njEjAnjj

r þ CP{Tn > kn}

¼ o(1) [by (10) and (9)]: (17)

A similar argument employing (13), (11), and (9) yields

X1
k¼1

Xk

j¼1

EkAnjVnjI (kVnjk > cnj)k
rpnk ¼ o(1): (18)

The conclusion (14) follows immediately from (16)–(18). j

Remark 1

Rosalsky and Sreehari[5] obtained versions of Theorems 1 and 2 for the

case 0 < r � 1 when the underlying Banach space is not necessarily of

Rademacher type p for some p 2 (1, 2]. All of the independence assumptions
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from Theorem 1 and some of the independence assumptions from Theorem 2

are eliminated in those earlier versions.

4. SOME INTERESTING EXAMPLES

Eight illustrative examples will now be presented. For 1 � q � 2, let ‘q

denote the Banach space of absolute pth power summable real sequences

v ¼ {vi, i � 1} with norm kvk ¼ (
P1

i¼1 jvij
q)1=q. The element having 1 in its

jth position and 0 elsewhere will be denoted by v( j), j � 1. Define a sequence

{Vj, j � 1} of independent random elements in ‘1 by requiring the {Vj, j � 1}

to be independent with

P{Vj ¼ v( j)} ¼ P{Vj ¼ �v( j)} ¼
1

2
, j � 1:

Set Vnj ¼ Vj, j � 1, n � 1. Hence for all 1 � q � 2, {Vnj, j � 1, n � 1} is an

array of mean 0 random elements in ‘q.

Let {Anj, j � 1, n � 1} be an array of rowwise independent random

variables such that the sequences {Anj, j � 1} and {Vj, j � 1} are independent

for all n � 1. Then the array {AnjVnj, j � 1, n � 1} is comprised of rowwise

independent random elements and Anj and Vnj are independent for all n � 1

and j � 1.

The random elements {Vnj, j � 1, n � 1} and random variables

{Anj, j � 1, n � 1} will be used in the examples. The (marginal) distribution

of each Anj will be indicated in each example. Let {kn, n � 1} be a sequence

of positive integers with kn !1.

The first example illustrates the essential role that condition (4) plays in

Theorem 1.

Example 1

Let 1 � r � 2, and consider the Rademacher type p ¼ r Banach space ‘r

and the array {Vnj, 1 � j � kn, n � 1} of random elements in ‘r. Suppose that

P{Anj ¼ k�an } ¼ P{Anj ¼ �k�an } ¼
1

2
, 1 � j � kn, n � 1 (19)

where a > 0. Let cnj ¼ 1, 1 � j � kn, n � 1. Note that I (kVnjk > cnj) ¼ 0 a.s.,

1 � j � kn, n � 1 and so (5) holds.
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Now if a > r�1, then

Xkn

j¼1

cr
njEjAnjj

r ¼
kn

kar
n

¼ o(1)

whence (4) holds. Thus by Theorem 1

Xkn

j¼1

AnjVnj

�����
������!Lr

0 and
Xkn

j¼1

AnjVnj�!
P

0:

On the other hand, if a � r�1, then

Xkn

j¼1

cr
njEjAnjj

r ¼
kn

kar
n

6¼ o(1)

whence (4) fails. Moreover, if a � r�1, then with probability 1

Xkn

j¼1

AnjVnj

�����
����� ¼ kr�1

n

ka
n

� 1, n � 1

and so the conclusions (6) and (7) of Theorem 1 also fail.

The next example shows that in Theorem 1 the condition (5) cannot be

dispensed with.

Example 2

Let 1 � r � p � 2, and consider the Rademacher type p Banach space ‘p

and the array of random elements {Vnj, 1 � j � kn, n � 1} in ‘p. Let the

(marginal) distributions of the {Anj, 1 � j � kn, n � 1} be as in (19) where

a 2 (0, p�1]. Let cnj ¼ 2�j, 1 � j � kn, n � 1. Now (4) holds since

Xkn

j¼1

cr
njEjAnjj

r ¼
1

kar
n

Xkn

j¼1

1

2 jr
�

1

kar
n

¼ o(1):
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Now I (kVnjk > cnj) ¼ 1 a.s., 1 � j � kn, n � 1. Thus

Xkn

j¼1

EkAnjVnjI (kVnj > cnj)k
r ¼

Xkn

j¼1

EkAnjVnjk
r

¼
kn

kar
n

�
kn

k
ap
n

� 1, n � 1

and so (5) fails. Moreover, with probability 1

Xkn

j¼1

AnjVnj

�����
����� ¼ k

p�1

n

kan
� 1, n � 1

whence the conclusions (6) and (7) of Theorem 1 also fail.

In the next example, we will show apropos of Theorem 1 that the

Rademacher type p hypothesis cannot be dispensed with.

Example 3

Let 1 � q < r � p � 2, and consider the Banach space ‘q and the array of

random elements {Vnj, 1 � j � kn, n � 1} in ‘q. It is well known that ‘q is not

of Rademacher type p. Let the (marginal) distributions of the

{Anj, 1 � j � kn, n � 1} be as in (19) where a 2 (r�1, q�1]. Let cnj ¼ 1,

1 � j � kn, n � 1. All of the hypotheses of Theorem 1 are satisfied except

for the underlying Banach space being of Rademacher type p. But the

conclusions (6) and (7) of Theorem 1 fail since with probability 1

Xkn

j¼1

AnjVnj

�����
����� ¼ k

q�1

n

kan
� 1, n � 1:

It might be conjectured in view of (10) [resp. (12)] that Theorem 2 will

hold without (12) [resp. (10)]. The next two examples demonstrate the falsity

of such conjectures.

Example 4

Let p ¼ r ¼ 1, and consider the Rademacher type 1 Banach space ‘1 and

the array {Vnj, j � 1, n � 1} of random elements in ‘1. Suppose that

P{Anj ¼ b�1
n } ¼ P{Anj ¼ �b�1

n } ¼
1

2
, j � 1, n � 1
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where {bn, n � 1} is a sequence of positive constants with 2n ¼ o(bn). Let

cnj ¼ 1, j � 1, n � 1. Let {Tn, n � 1} be a sequence of identically distributed

random variables satisfying (8) and with the distribution of T1 given by

P{T1 ¼ 2j} ¼ 2�j, j � 1: (20)

Suppose that kn ¼ 2n, n � 1. Then (9) holds since

P{Tn > kn} ¼
X1

j¼nþ1

2�j ¼ o(1):

Now (11) and (13) are immediate since I (kVnjk > cnj) ¼ 0 a.s., j � 1, n � 1.

Moreover, (10) holds since

Xkn

j¼1

cnjEjAnjj ¼
2n

bn

¼ o(1):

On the other hand, (12) fails since for all n � 1

X1
j¼1

cnjEjAnjj ¼
X1
j¼1

b�1
n ¼ 1:

Finally, (14) fails since for all n � 1

E
XTn

j¼1

AnjVnj

�����
����� ¼ ETn

bn

¼ 1:

We remark, however, that (15) does hold since for arbitrary e > 0,

P
XTn

j¼1

AnjVnj

�����
����� > e

( )
¼ P

Tn

bn

> e
� �

¼ P{T1 > ebn}! 0:

Example 5

Let 1 � r � p � 2, and consider the Rademacher type p Banach space ‘p

and the array {Vnj, j � 1, n � 1} of random elements in ‘p. Suppose that

P{Anj ¼ j�a=r} ¼ P{Anj ¼ �j�a=r} ¼
1

2
, j � 1, n � 1
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where a > 1. Let cnj ¼ 1, j � 1, n � 1 and let {Tn, n � 1} be a sequence of

positive integer-valued random variables satisfying (8) and (9). Now (11) and

(13) are immediate since I (kVnjk > cnj) ¼ 0 a.s., j � 1, n � 1. Moreover,

since a > 1

sup
n�1

X1
j¼1

cr
njEjAnjj

r ¼
X1
j¼1

j�a <1

and so (12) holds. On the other hand, (10) fails since

Xkn

j¼1

cr
njEjAnjj

r ¼
Xkn

j¼1

j�a � 1, n � 1:

The conclusions of (14) and (15) of Theorem 2 also fail since with probability 1

XTn

j¼1

AnjVnj

�����
����� ¼

XTn

j¼1

j�ap=r

 !1=p

� 1, n � 1:

It might be conjectured in view of (11) [resp. (13)] that Theorem 2 will

hold without (13) [resp. (11)]. The next two examples demonstrate the falsity

of such conjectures.

Example 6

Let p ¼ r ¼ 1, and consider the Rademacher type 1 Banach space ‘1 and

the array {Vnj, j � 1, n � 1} of random elements in ‘1. Suppose that

P{Anj ¼ n�a} ¼ P{Anj ¼ �n�a} ¼
1

2
, j � 1, n � 1

where a 2 (0, 1]. Let {Tn, n � 1} be a sequence of identically distributed

random variables satisfying (8) and with the distribution of T1 given by (20).

Let d 2 (0, a) and set kn ¼ [nd], n � 1. Then

P{Tn > kn} ¼ P{T1 > kn} ¼ o(1)

and so (9) holds. Let y > 1 and set

cn1 ¼
1

2
, cnj ¼ j�y, j � 2, n � 1:
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Now

Xkn

j¼1

cnjEjAnjj �

Pkn

j¼1 j�y

na �

P1
j¼1 j�y

na ¼ o(1)

since y > 1 and so (10) holds. Also, for every positive integer n0, y > 1

ensures that

sup
n�n0

X1
j¼1

cnjEjAnjj � sup
n�n0

P1
j¼1 j�y

na ¼

P1
j¼1 j�y

na
0

<1

and so (12) holds. Now I (kVnjk > cnj) ¼ 1 a.s., j � 1, n � 1. Thus

Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k ¼
Xkn

j¼1

EkAnjVnjk

¼
kn

na ¼ [1þ o(1)]
nd

na ¼ o(1)

since d < a. Thus, (11) holds. However, for every positive integer n0

sup
n�n0

X1
j¼1

EkAnjVnjI (kVnjk > cnj)k ¼ sup
n�n0

X1
j¼1

EkAnjVnjk

¼ sup
n�n0

X1
j¼1

1

na ¼ 1

and hence (13) fails. Finally, for all n � 1

E
XTn

j¼1

AnjVnj

�����
����� ¼ ETn

na ¼ 1

and hence the conclusion (14) fails. However, (15) does hold for this example

by an argument similar to that given at the end of Example 4.

Example 7

Let p ¼ r ¼ 1, and consider the Rademacher type 1 Banach space ‘1 and

the array {Vnj, j � 1, n � 1} of random elements in ‘1. Suppose that

P{Anj ¼ j�y} ¼ P{Anj ¼ �j�y} ¼
1

2
, j � 1, n � 1
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where y > 1. Let {Tn, n � 1} be a sequence of identically distributed positive

integer-valued random variables satisfying (8). Then

P{Tn > kn} ¼ P{T1 > kn} ¼ o(1)

and so (9) holds. Set

cn1 ¼
1

2
, cnj ¼

1

n
, j � 2, n � 1:

Now

Xkn

j¼1

cnjEjAnjj �

Pkn

j¼1 j�y

n
�

P1
j¼1 j�y

n
¼ o(1)

since y > 1 and so (10) holds. Also, for every positive integer n0, y > 1

ensures that

sup
n�n0

X1
j¼1

cnjEjAnjj � sup
n�n0

P1
j¼1 j�y

n
¼

P1
j¼1 j�y

n0

<1

and so (12) holds. Now I (kVnjk > cnj) ¼ 1 a.s., j � 1, n � 1. Thus for every

positive integer n0

sup
n�n0

X1
j¼1

EkAnjVnjI (kVnjk > cnj)k ¼ sup
n�n0

X1
j¼1

EkAnjVnjk ¼
X1
j¼1

1

jy
<1

since y > 1. Thus, (13) holds. However,

Xkn

j¼1

EkAnjVnjI (kVnjk > cnj)k ¼
Xkn

j¼1

EkAnjVnjk ¼
Xkn

j¼1

1

jy
!
X1
j¼1

1

jy
> 0

and hence (11) fails. Finally, for all n � 1

E
XTn

j¼1

AnjVnj

�����
����� ¼ E

XTn

j¼1

1

jy

 !
� 1

and hence the conclusion (14) fails. It is easy to see that (15) also fails.
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Remark 2

A slight modification of Example 3 concerning the Banach space ‘q

reveals that the Rademacher type p hypothesis cannot be dispensed with in

Theorem 2. (Take Tn ¼ kn, n � 1 and take Anj ¼ 0, j > kn, n � 1.) The details

are left to the reader.

In the last example, the hypotheses of Theorem 1 are satisfied but not

those of Theorem 2.

Example 8

Let p ¼ r ¼ 1, and consider the Rademacher type 1 Banach space ‘1 and

the array {Vnj, j � 1, n � 1} of random elements in ‘1. Suppose that

P{Anj ¼ b�1
n } ¼ P{Anj ¼ �b�1

n } ¼
1

2
, j � 1, n � 1

where {bn, n � 1} is a sequence of positive constants with kn ¼ o(bn). Let

cnj ¼ 1, j � 1, n � 1 and Tn ¼ kn, n � 1. Now (4) holds since

Xkn

j¼1

cnjEjAnjj ¼
kn

bn

¼ o(1):

Moreover, I (kVnjk > cnj) ¼ 0 a.s., j � 1, n � 1 and so (5) holds. Thus, all of

the hypotheses of Theorem 1 are satisfied and so

Xkn

j¼1

AnjVnj

�����
������!L1

0:

However, Theorem 2 is not applicable because (12) fails as in Example 4. It

may be noted that all of the other hypotheses of Theorem 2 are indeed

satisfied.

Remark 3

Nevertheless, Theorem 1 can indeed be derived from Theorem 2 in the

following manner: Suppose that all of the hypotheses of Theorem 1 are

satisfied. Let Tn ¼ kn, n � 1. Let Vnj ¼ 0, cnj ¼ 0, and Anj ¼ 0, j > kn, n � 1.

Now (12) and (13) follow from (4) [or (10)] and (5) [or (11)], respectively. The

other assumptions to Theorem 2 either coincide with those of Theorem 1 or

obviously hold. Thus, by Theorem 2, the conclusion (6) of Theorem 1 holds.
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13. Hong, D.H.; Ordóñez Cabrera, M.; Sung, S.H.; Volodin, A.I. Again on

the weak law in martingale type p Banach spaces. Extracta Math. 1999,

14, 45–50.
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