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Abstract

From the classical notion of uniform integrability of a sequence of random variables, a new c
of integrability (calledh-integrability) is introduced for an array of random variables, concern
an array of constants. We prove that this concept is weaker than other previous related no
integrability, such as Cesàro uniform integrability [Chandra, Sankhyā Ser. A 51 (1989) 309–317
uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121
and Cesàroα-integrability [Chandra and Goswami, J. Theoret. Probab. 16 (2003) 655–669].

Under this condition of integrability and appropriate conditions on the array of weights,
convergence theorems and weak laws of large numbers for weighted sums of an array of
variables are obtained when the random variables are subject to some special kinds of depe
(a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c
the sequence of random variables in every row isϕ-mixing. Finally, we consider the general we

* Corresponding author.
E-mail address:cabrera@us.es (M. Ordóñez Cabrera).

1 The research has been partially supported by DGICYT grant BFM2000-0344-C02-01 and Junta de An
FQM 127.

2 The research has been partially supported by the National Science and Engineering Research C

Canada.

0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.12.025



M. Ordóñez Cabrera, A.I. Volodin / J. Math. Anal. Appl. 305 (2005) 644–658 645

is new

ce;

in the
ntical
el or
ditions.

pairwise
mixing
itions
iable or,
are

t in
law of

ich is

ndom
hich
rticu-
irwise
can be

a-
k
ey also
f
.
s
r than

mbers
riables
array of
law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49–52] under th
condition of integrability for a Banach space setting.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Laws of large numbers for sequences of random variables play a central role
area of limit theorems in Probability Theory. Conditions of independence and ide
distribution of random variables are basic in historic results due to Bernoulli, Bor
Kolmogorov. Since then, serious attempts have been made to relax these strong con
Hence, for example, independence has been relaxed to pairwise independence or
non-positive correlation or, even replaced by conditions of dependence such as
or martingale models. In order to relax the identical distribution, several other cond
have been considered, such as stochastic domination by an integrable random var
in the case of the weak law, uniform integrability. It is in this condition in which we
interested.

Landers and Rogge [9] prove that the uniform integrability condition is sufficien
order that a sequence of pairwise independent random variables verifies the weak
large numbers.

Chandra [3] obtains the weak law of large numbers under a new condition wh
weaker than uniform integrability: the condition of Cesàro uniform integrability.

Ordóñez Cabrera [10], by studying the weak convergence for weighted sums of ra
variables, introduces the condition of uniform integrability concerning the weights, w
is weaker than uniform integrability, and leads to Cesàro uniform integrability as a pa
lar case. Under this condition, a weak law of large numbers for weighted sums of pa
independent random variables is obtained; this condition of pairwise independence
even dropped, at the price of slightly strengthening the conditions on the weights.

Chandra and Goswami [5] introduce the condition of Cesàroα-integrability (α > 0),
and show that Cesàroα-integrability for anyα > 0 is weaker than Cesàro uniform integr
bility. Under the Cesàroα-integrability condition for someα > 1/2, they obtain the wea
law of large numbers for a sequence of pairwise independent random variables. Th
prove that Cesàroα-integrability for appropriateα is also sufficient for the weak law o
large numbers to hold for certain special dependent sequences of random variables

In this paper, we introduce the notion ofh-integrability for an array of random variable
concerning an array of constant weights, and we prove that this concept is weake
Cesàro uniform integrability,{ank}-uniform integrability and Cesàroα-integrability.

Under appropriate conditions on the weights, we prove thath-integrability concerning
the weights is sufficient for a mean convergence theorem and a weak law of large nu
to hold for weighted sums of an array of random variables, when these random va
are subject to some special kind of rowwise dependence, and, of course, when the

random variables is pairwise independent.
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2. Definitions and relations between the new concept and some previous ones

The classical notion of uniform integrability of a sequence{Xn, n � 1} of integrable
random variables is defined through the condition

lim
a→∞ sup

n�1
E|Xn|I

[|Xn| > a
] = 0.

Let Φ = {φ : (0,∞) → (0,∞), φ(t)/t ↑ ∞ ast ↑ ∞}. Forφ ∈ Φ we putφ(0) = 0.
It is well known the classical result of La Vallée-Poussin:{Xn} is uniformly integrable

if, and only if, there existsφ ∈ Φ such that supn�1 Eφ(|Xn|) < ∞.
Chandra [3] introduces the notion of Cesàro uniform integrability, which is weaker

the notion of uniform integrability, through the condition

lim
a→∞ sup

n�1

1

n

n∑
k=1

E|Xk|I
[|Xk| > a

] = 0.

Chandra and Goswami [4] obtained a characterization of this concept in the sam
as the one of La Vallée-Poussin for uniform integrability.

Ordóñez Cabrera [10] introduces the notion of{ank}-uniform integrability or uniform
integrability concerning an array{ank} of weights, which is weaker than Cesàro unifo
integrability.

In the following let {un, n � 1} and {vn, n � 1} be two sequences of integers (n
necessary positive or finite) such thatvn > un for all n � 1 andvn − un → ∞ asn → ∞.

Definition. Let {Xnk, un � k � vn, n � 1} be an array of random variables and{ank,

un � k � vn, n � 1} an array of constants with
∑vn

k=un
|ank| � C for all n ∈ N and some

constantC > 0. The array{Xnk} is {ank}-uniformly integrable if

lim
a→∞ sup

n�1

vn∑
k=un

|ank|E|Xnk|I
[|Xnk| > a

] = 0.

In a similar way to the classical extension of La Vallée-Poussin, Ordóñez Cabrer
proved that{Xnk} is {ank}-uniformly integrable if and only if there existsφ ∈ Φ such that

sup
n�1

vn∑
k=un

|ank|Eφ
(|Xnk|

)
< ∞.

Chandra and Goswami [5] introduce the following concept, weaker than Cesàro un
integrability, which is again related with the tail probability of the random variables:

Definition. Let α > 0. A sequence{Xn,n � 1} of random variables is said to be Cesà
α-integrable if the following two conditions hold:

sup
1

n∑
E|Xk| < ∞ and lim

1
n∑

E|Xk|I
[|Xk| > kα

] = 0.

n�1 n

k=1
n→∞ n

k=1
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We now introduce a new concept of integrability.

Definition. Let {Xnk, un � k � vn, n � 1} be an array of random variables and{ank, un �
k � vn, n � 1} an array of constants with

∑vn

k=un
|ank| � C for all n ∈ N and some constan

C > 0. Let moreover{h(n), n � 1} be an increasing sequence of positive constants
h(n) ↑ ∞ asn ↑ ∞. The array{Xnk} is said to beh-integrable with respect to the array
constants{ank} if the following conditions hold:

sup
n�1

vn∑
k=un

|ank|E|Xnk| < ∞ and lim
n→∞

vn∑
k=un

|ank|E|Xnk|I
[|Xnk| > h(n)

] = 0.

Remark 1. For theclassical triangular arrays, as in [5]:

ank =
{

1
n

if 1 � k � n,

0 if k > n,
Xnk =

{
Xk if 1 � k � n,

0 if k > n,

and

h(n) = nα, α > 0,

we can write:

n∑
k=1

|ank|E|Xnk|I
[|Xnk| > h(n)

] = 1

n

n∑
k=1

E|Xk|I
[|Xk| > nα

]

� 1

n

n∑
k=1

E|Xk|I
[|Xk| > kα

]
for eachn � 1. Moreover:

n∑
k=1

|ank|E|Xnk| = 1

n

n∑
k=1

E|Xk|

for eachn � 1. Therefore if{Xn} is Cesàroα-integrable, then{Xnk} is h-integrable con-
cerning the array of constants{ank} for these arrays{Xnk} and{ank} and sequenceh.

Hence, our condition of beingh-integrable concerning the array of constants{ank}
is not only more general, it is also weaker than Cesàroα-integrability of Chandra and
Goswami [5].

The following lemma relates the new concept with the concept of{ank}-uniform inte-
grability.

Lemma 1. If {Xnk, un � k � vn, n � 1} is {ank}-uniformly integrable, then{Xnk, un �
k � vn, n � 1} is h-integrable concerning the array of constants{ank} for all monotone
increasing to infinity sequencesh.
Proof. (1) If {Xnk} is {ank}-uniformly integrable, then there existsa > 0 such that
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sup
n�1

vn∑
k=un

|ank|E|Xnk|I
[|Xnk| > a

]
< 1

⇒ sup
n�1

vn∑
k=un

|ank|E|Xnk| = sup
n�1

(
vn∑

k=un

|ank|E|Xnk|I
[|Xnk| � a

]

+ sup
n�1

vn∑
k=un

|ank|E|Xnk|I
[|Xnk| > a

])

� aC + 1< ∞.

The first condition in the definition is verified.
(2) An array{Xnk} is {ank}-uniformly integrable if, and only if, there existsφ ∈ Φ such

that

sup
n�1

vn∑
k=un

|ank|Eφ
(|Xnk|

)
< ∞

(see [10]). Then, for all increasing to infinity sequence{h(n), n � 1}, note that

|Xnk| > h(n) ⇒ φ(|Xnk|)
|Xnk| � φ(h(n))

h(n)
,

and so

E|Xnk|I
[|Xnk| > h(n)

]
� h(n)

φ(h(n))
Eφ

(|Xnk|
)
.

It follows that, for everyn � 1:
vn∑

k=un

|ank|E|Xnk|I
[|Xnk| > h(n)

]
� h(n)

φ(h(n))

vn∑
k=un

|ank|Eφ
(|Xnk|

)
and, since

sup
n�1

vn∑
k=un

|ank|Eφ
(|Xnk|

)
< ∞ and lim

n→∞
h(n)

φ(h(n))
= 0,

we have

lim
n→∞

vn∑
k=un

|ank|E|Xnk|I
[|Xnk| > h(n)

] = 0,

which is the second condition in the definition.�
Remark 2. The concept ofh-integrability concerning the array{ank} is strictly weaker
than the concept of{ank}-uniform integrability, i.e., there exist arrays{Xnk} and{ank} such
that{Xnk} is h-integrable concerning the array of constants{ank}, but not{ank}-uniformly
integrable.

We refer to [5, Example 2.2] for such an example for the case of the classical trian

arrays from Remark 1.



M. Ordóñez Cabrera, A.I. Volodin / J. Math. Anal. Appl. 305 (2005) 644–658 649

o

of ar-
ly, we

ive de-

wise
trunca-
of large
y

ly

pair-
ertain

, for

m
hat
Remark 3. Let {h1(n), n � 1} and {h2(n), n � 1} be two monotonically increasing t
infinity positive sequences such thath2(n) � h1(n) for all sufficiently largen. Thenh1-
integrability concerning the array of constants{ank} implies h2-integrability concerning
the same array of constants.

3. Mean convergence theorems and weak laws of large numbers for weighted sums
of random variables with some conditions of dependence

In this section we obtain some weak laws of large numbers for weighted sums
rays ofh-integrable random variables under some conditions of dependence. Name
consider the following rowwise dependence structures for an array: low case negat
pendence, non-positive correlation, andϕ-mixing.

3.1. Low case negatively dependent random variables

In the first theorem of this section, we are going to show that, for an array of row
pairwise low case negatively dependent random variables, a certain technique of
tion which preserves the negative dependence can be used to obtain a weak law
numbers for the weighted sums under the condition ofh-integrability concerning the arra
of constants{ank}.

Definition. Random variablesX andY are lower case negatively dependent(LCND, in
short) if

P [X � x, Y � y] � P [X � x]P [Y � y] for all x, y ∈ R.

A sequence of random variables{Xn, n � 1} is said to bepairwise lower case negative
dependentif every pair of random variables in the sequence are LCND.

The following lemmas are well known (cf., for example, [6]). Lemma 2 states that
wise LCND random variables are non-positive correlated, while Lemma 3 gives a c
technique of truncation that preserves the negative dependence property.

Lemma 2. If {Xn, n � 1} is a sequence of pairwise LCND random variables, then

E(XiXj ) � EXiEXj , i �= j.

Lemma 3. Let {Xn, n � 1} be a sequence of pairwise LCND random variables. Then
any sequences{an, n � 1} and {bn, n � 1} of constants such thatan < bn for all n ∈ N,
the sequence{Yn, n � 1} is a sequence of pairwise LCND random variables, where

Yn = XnI [an � Xn � bn] + anI [Xn < an] + bnI [Xn > bn].

Theorem 1. Let{Xnk, un � k � vn, n � 1} be an array of rowwise pairwise LCND rando
variables and{ank, un � k � vn, n � 1} be an array of non-negative constants such t∑vn

k=un
ank � C for all n � 1 and some constantC > 0. Let moreover{h(n), n � 1} be a
sequence of increasing to infinity positive constants. Suppose that
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(a) {Xnk} is h-integrable concerning the array of constants{ank},
(b) h2(n)

∑vn

k=un
a2
nk → 0 asn → ∞.

Let Sn = ∑vn

k=un
ank(Xnk − EXnk), for all n � 1. ThenSn → 0 asn → ∞ in L1 and

hence in probability.

Proof. For eachn ∈ N, un � k � vn, let

Ynk = XnkI
[|Xnk| � h(n)

] − h(n)I
[
Xnk < −h(n)

] + h(n)I
[
Xnk > h(n)

]
,

A1n =
vn∑

k=un

ank(Xnk − Ynk), A2n =
vn∑

k=un

ank(Ynk − EYnk), and

A3n =
vn∑

k=un

ankE(Ynk − Xnk).

It follows from the following that in the case of infiniteun and/orvn, the seriesA1n, A2n,
andA3n converge absolutely inL1. Hence, we can write that

Sn = A1n + A2n + A3n

and we will estimate each of these terms separately.
The seriesA1n andA3n can be estimated:

|EA1n| = |A3n| �
vn∑

k=un

ankE|Xnk − Ynk| �
vn∑

k=un

ankE|Xnk|I
[|Xnk| > h(n)

] → 0

asn → ∞, because

|Xnk − Ynk| =
{0 if |Xnk| � h(n),

|Xnk + h(n)| if Xnk < −h(n),
|Xnk − h(n)| if Xnk > h(n).

HenceA1n → 0 in L1, and, in the same way,A3n → 0.
ForA2n we actually prove thatA2n → 0 in L2 and hence inL1.

0 � E

[
vn∑

k=un

ank(Ynk − EYnk)

]2

=
∑

k

a2
nkE(Ynk − EYnk)

2 +
∑
j �=k

anj ank

[
E(YnjYnk) − EYnjEYnk

]

�
∑

k

a2
nkEY 2

nk +
∑
j �=k

anj ank

[
E(YnjYnk) − EYnjEYnk

] = B1n + B2n, say.
But
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B1n =
vn∑

k=un

a2
nkE

[
X2

nkI
[|Xnk| � h(n)

] + h2(n)I
[|Xnk| > h(n)

]]

� 2h2(n)

vn∑
k=un

a2
nk → 0 asn → ∞.

With regard toB2n, by applying Lemmas 2 and 3, we have:

E(YnjYnk) − EYnjEYnk � 0, j �= k, for eachn � 1,

and hence

0� EA2
2n �

∑
k

a2
nkEY 2

nk → 0 asn → ∞,

andA2n → 0 in L2, and hence inL1. �
A particular case of pairwise LCND random variables is the case of pairwise ind

dent random variables. Therefore, we get the following corollary of Theorem 1, whi
in various senses, an extension of [5, Theorem 2.2(a)].

Corollary 1. Let {Xnk, un � k � vn, n � 1} be an array of rowwise pairwise independe
random variables. Let{ank, un � k � vn, n � 1} be an array of non-negative constan
such that

∑vn

k=un
ank � C for all n � 1 and some constantC > 0 and {h(n), n � 1} be a

sequence of increasing to infinity positive constants. Suppose that

(a) {Xnk} is h-integrable concerning the array of constants{ank},
(b) h2(n)

∑vn

k=un
a2
nk → 0 asn → ∞.

Let Sn = ∑vn

k=un
ank(Xnk − EXnk), for all n � 1. ThenSn → 0 asn → ∞, in L1 and

hence in probability.

3.2. Non-positively correlated random variables

The careful analysis of the proof of Theorem 1 shows that the most important pro
of LCND random variables we use in the proof of Theorem 1 is that the specially
cated random variables are non-positive correlated (cf. estimation of the termB2 applying
Lemmas 2 and 3). Hence it is interesting to establish the weak law of large numbe
non-positively correlated random variables. In the following theorem we show that the
dition of negative dependence can be replaced by the conditions of non-positive corr
and non-negativity of random variables.

Theorem 2. Let {Xnk, un � k � vn, n � 1} be an array of non-negative random variabl
satisfyingE(XnjXnk) − EXnjEXnk � 0, j �= k, for eachn � 1.

Let {ank, un � k � vn, n � 1} be an array of non-negative constants such t∑vn

k=un
ank � C for all n � 1 and some constantC > 0 and {h(n), n � 1} be a sequenc
of increasing to infinity positive constants. Suppose that
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(a) {Xnk} is h-integrable concerning the array of constants{ank},
(b) h2(n)

∑vn

k=un
a2
nk → 0 asn → ∞.

Let Sn = ∑vn

k=un
ank(Xnk − EXnk), for all n � 1. ThenSn → 0 asn → ∞, in L1 and

hence in probability.

Proof. The proof is similar to the proof of Theorem 1, only now we can use usual tru
tion technique. Hence, for eachn � 1, un � k � vn, let

Ynk = XnkI
[
Xnk � h(n)

]
,

A1n =
vn∑

k=un

ank(Xnk − Ynk), A2n =
vn∑

k=un

ank(Ynk − EYnk), and

A3n =
vn∑

k=un

ankE(Ynk − Xnk).

It follows from the following that in the case of infiniteun and/orvn, the seriesA1n, A2n,
andA3n converge absolutely inL1. Hence, we can write that

Sn = A1n + A2n + A3n

and we will estimate each of these terms separately.
The seriesA1n andA3n can be estimated:

E|A1n| = EA1n = −A3n = |A3n| =
vn∑

k=un

ankEXnkI
[
Xnk > h(n)

] → 0

asn → ∞. So,A1n → 0 in L1 and, in the same wayA3n → 0.
ForA2n we actually prove thatA2n → 0 in L2 and hence inL1.

0� E

[
vn∑

k=un

ank(Ynk − EYnk)

]2

�
∑

k

a2
nkEY 2

nk +
∑
j �=k

anj ank

[
E(YnjYnk) − EYnjEYnk

] = B1n + B2n, say.

But

B1n =
vn∑

k=un

a2
nkEY 2

nk � h2(n)

vn∑
k=un

a2
nk → 0, whenn → ∞.

Next, it suffices to show that lim supn→∞ B2n � 0. Since every random variableXnk
and every constantank are non-negative:
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∑
j �=k

anj ankE(YnjYnk − EYnjEYnk)

�
∑
j �=k

anj ankE(XnjXnk − EYnjEYnk)

(by the hypothesis of non-positive correlation)

�
∑
j �=k

anj ank(EXnjEXnk − EYnjEYnk)

�
vn∑

j,k=un

anj ank(EXnjEXnk − EYnjEYnk)

=
vn∑

j,k=un

anj ank

[
(EXnj − EYnj )EXnk + (EXnk − EYnk)EYnj

]

=
vn∑

j,k=un

anj ank

[
EXnkEXnj I

[
Xnj > h(n)

] + EYnjEXnkI
[
Xnk > h(n)

]]

=
(

vn∑
j=un

anjEXnj I
[
Xnj > h(n)

])(
vn∑

k=un

ankEXnk

)

+
(

vn∑
j=un

anjEYnj

)(
vn∑

k=un

ankEXnkI
[
Xnk > h(n)

])

� 2

(
vn∑

j=un

anjEXnj

)(
vn∑

k=un

ankEXnkI
[
Xnk > h(n)

]) → 0

asn → ∞, because{Xnk} is h-integrable concerning the array of constants{ank}. �
Remark 4. The conditionh-integrability concerning the array of constants{ank} is weaker
than the condition Cesàroα-integrability in the case of theclassical weightsin Remark 2.
Moreover, ifα ∈ (0,1/2) and since for the classical weightsh(n) = nα we have:

h2(n)

n∑
k=1

a2
nk = h2(n)

n∑
k=1

1

n2
= h2(n)

n
→ 0 asn → ∞.

Hence Theorem 2 contains as a particular case [5, Theorem 2.1(a)].

3.3. ϕ-mixing random variables

Definition. Let {Xn, −∞ < n < ∞} be a sequence of random variables. LetBk be the
σ -algebra generated by{Xn, n � k}, andBk theσ -algebra generated by{Xn, n � k}. We
say that{Xn, −∞ < n < ∞} is ϕ-mixing if there exists a non-negative sequence{ϕ(i),

i � 1}, with limi→∞ ϕ(i) = 0, such that, for each−∞ < k < ∞ and for eachi � 1,∣∣ ∣∣ k
P(E2|E1) − P(E2) � ϕ(i) for E1 ∈ B , E2 ∈ Bk+i .
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The following lemma is in Billingsley [2]:

Lemma 4. Let ζ be aBk-measurable random variable, andη be aBi+k-measurable ran-
dom variable, with|ζ | � C1 and |η| � C2. Then:∣∣Cov(ζ, η)

∣∣ � 2C1C2ϕ(i).

Definition. Let m be a positive integer. The sequence of random variables{Xn, −∞ <

n < ∞} is said to bem-dependentif the random vectors(Xl, . . . ,Xk) and(Xk+i , . . . ,Xj )

are independent for all integersi, j, k, l satisfyingi > m, l < k andk + i < j . It is imme-
diate that such a sequence isϕ-mixing with ϕ(i) = 0 for i > m.

Theorem 3. Let {Xnk, un � k � vn, n � 1} be an array of random variables such that f
eachn � 1 the row{Xnk, un � k � vn} is aϕn-mixing sequence of random variables w

lim sup
n→∞

vn−un∑
i=1

ϕn(i) < ∞.

Let {ank, un � k � vn, n � 1} be an array of non-negative constants such t∑vn

k=un
ank � C for all n ∈ N and some constantC > 0, and anj � ani if i < j for all

n � 1. Let moreover{h(n), n � 1} be a sequence of increasing to infinity positive c
stants. Suppose that

(a) {Xnk} is h-integrable concerning the array of constants{ank},
(b) h2(n)

∑vn

k=un
a2
nk → 0 asn → ∞.

Let Sn = ∑vn

k=un
ank (Xnk − EXnk), for all n � 1. ThenSn → 0 asn → ∞, in L1 and

hence in probability.

Proof. Let Ynk , A1n, A2n, A3n, B1n, andB2n be the same as in the proof of Theorem
We proceed as in the proof of Theorem 2 in order to prove thatA1n → 0 in L1, A3n → 0,
andB1n → 0 whenn → ∞.

We only need to prove that

lim sup
n→∞

vn∑
k,j=un

k<j

ankanj Cov(YnkYnj ) � 0.

By applying Lemma 4:

vn∑
k,j=un

k<j

ankanj Cov(YnkYnj )

=
vn−un∑ vn−i∑

ankan(k+i)Cov(YnkYnj ) � 2h2(n)

vn−un∑ vn−i∑
a2
nkϕn(i)
i=1 k=un i=1 k=un



M. Ordóñez Cabrera, A.I. Volodin / J. Math. Anal. Appl. 305 (2005) 644–658 655

or
ith

-

ed)
be es-

eights
les
tion

the joint
ace
ed

of
neral-
ere
The-
rge

ability
an

, the

t

� 2h2(n)

vn∑
k=un

a2
nk

vn−un∑
i=1

ϕn(i) → 0. �

Corollary 2. Let {Xnk, un � k � vn, n � 1} be an array of random variables such that f
eachn � 1, {Xnk, un � k � vn} is a m(n)-dependent sequence of random variables w
lim supn→∞ m(n) < ∞. Let the other conditions of Theorem3 be satisfied.

ThenSn → 0 asn → ∞, in L1 and hence in probability.

Proof. We only have to note that we can considerϕn(i) = 0 for i > m(n) andϕn(i) = 1
for i � m(n), and so

∑vn−un

i=1 ϕn(i) � m(n) for all n � 1. �

4. Gut’s general mean convergence theorem and weak law of large numbers
in a Banach space setting

Consider an array of random elements{Vnk, un � k � vn, n � 1} defined on a proba
bility space(Ω , F , P) and taking values in a real separable Banach spaceX with norm
‖ · ‖. Let {cnk, un � k � vn, n � 1} be a “centering” array consisting of (suitably select
conditional expectations. In this section, a general mean convergence theorem will
tablished. This convergence result is of the form∥∥∥∥∥

vn∑
k=un

ank(Vnk − cnk)

∥∥∥∥∥ Lr−→ 0.

The hypotheses to Theorem 4 impose conditions on the growth behavior of the w
{ank, un � k � vn, n � 1} and on the marginal distributions of the random variab
{‖Vnk‖, un � k � vn, n � 1}. The random elements in the array under our considera
are not assumed to be rowwise independent. Indeed, no conditions are imposed on
distributions of the random elements comprising the array. However, the Banach spX
is assumed to be of martingale typep. (Technical definitions such as this will be discuss
below.)

Theorem 4 is an extension to a martingale type-p Banach space setting of results
Gut [7] which were proved for arrays of (real-valued) random variables and the ge
ization toh-integrable arrays of results of Adler, Rosalsky, and Volodin [1] which w
proved under the uniform integrability concerning an array of weights condition.
orem 4, which establishes theLr convergence result and hence the weak law of la
numbers concerns arrays of random elements satisfying theh-integrability concerning the
array of constants condition which is more general than the Cesàro uniform integr
condition employed by Gut [7] and the condition of uniform integrability concerning
array of weights employed by Adler, Rosalsky, and Volodin [1]. As will be apparent
proof of Theorem 4 owes much to this earlier article.

Technical definitions relevant to the current section will now be discussed.
Scalora [12] introduced the idea of theconditional expectationof a random elemen

in a Banach space. For a random element V and subσ -algebraG of F , the conditional

expectationE(V | G) is defined analogously to that in the random variable case and enjoys
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similar properties. See [12] for a complete development, as well as for a developm
Banach space valued martingales including martingale convergence theorems.

Definition. A real separable Banach spaceX is said to be ofmartingale typep (1� p � 2)

if there exists a finite constant C such that for all martingales{Sn, n � 1} with values inX ,

sup
n�1

E‖Sn‖p � C

∞∑
n=1

E‖Sn − Sn−1‖p whereS0 ≡ 0.

It can be shown using classical methods from martingale theory that ifX is of mar-
tingale typep, then for all 1� r < ∞ there exists a finite constantC′ such that for all
X -valued martingales{Sn, n � 1}

E sup
n�1

‖Sn‖r � C′E
( ∞∑

n=1

‖Sn − Sn−1‖p

)r/p

.

Clearly every real separable Banach space is of martingale type 1. It follows fro
Hoffmann–Jørgensen and Pisier [8] characterization of Rademacher typep Banach space
that if a Banach space is of martingale typep, then it is of Rademacher typep. But the
notion of martingale typep is only superficially similar to that of Rademacher typep and
has a geometric characterization in terms of smoothness. For proofs and more det
reader may refer to [11].

With these preliminaries accounted for, the theorem may now be stated and prov

Theorem 4. Let 1 � r � p � 2 and {h(n), n � 1} be a sequence of increasing to infin
positive constants. Let{Vnk, un � k � vn, n � 1} be an array of random elements in a re
separable, martingale typep Banach space and let{ank, un � k � vn, n � 1} be an array
of constants such that

∑vn

k=un
|ank| � C for all n � 1 and some constantC > 0. Suppose

that

(a) {‖Vnk‖r , un � k � vn, n � 1} is hr -integrable concerning the array of constan
{|ank|r },

(b) hp(n)
∑vn

k=un
|ank|p → 0 asn → ∞.

Then∥∥∥∥∥
vn∑

k=un

ank

(
Vnk − E(Vnk | Fn,k−1)

)∥∥∥∥∥ → 0

in Lr and, a fortiori, in probability, whereFnk = σ(Vni, un � i � k), un � k � vn, n � 1,
andFn,un−1 = {∅,Ω}, n � 1.

Proof. For anyn � 1, set

V ′
nk = (Vnk − µnk)I

[‖Vnk − µnk‖ � h(n)
]
, un � k � vn, n � 1,[ ]
V ′′
nk = (Vnk − µnk)I ‖Vnk − µnk‖ > h(n) , un � k � vn, n � 1,
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whereµnk = E(Vnk | Fn,k−1), un � k � vn, n � 1. Note that for eachn � 1 the row
{Vnk − µnk, un � k � vn} forms a martingale difference sequence. Then

E

∥∥∥∥∥
vn∑

k=un

ank

(
Vnk − E(Vnk | Fn,k−1)

)∥∥∥∥∥
r

� C′E
(

vn∑
k=un

(|ank| ‖Vnk − µnk‖
)p

)r/p

(by martingale type property)

� C′2(p−1)r/pE

(
vn∑

k=un

|ank|p‖V ′
nk‖p +

vn∑
k=un

|ank|p‖V ′′
nk‖p

)r/p

� C′′E
((

vn∑
k=un

|ank|p‖V ′
nk‖p

)r/p

+
vn∑

k=un

|ank|r‖V ′′
nk‖r

) (
since

r

p
� 1

)

� C′′
(

hp(n)

vn∑
k=un

|ank|p
)r/p

+ C′′
vn∑

k=un

|ank|rE‖V ′′
nk‖r .

Next, the array{‖Vnk − µnk‖r , un � k � vn, n � 1} is hr -integrable concerning the arra
{|anj |r} by using the approach of Gut [7]. (The only modification needed in the argum
that the definition ofh integrability concerning the array is used instead of [3, Theorem
The conclusion follows by lettingn → ∞. �
Remark 5. Theorem 4 should be compared with [10, Theorem 6] which establishesLr

convergence result (0< r < 1) for weighted sums of random elements where there is
any martingale typep condition (or any other geometric condition) given on the Ban
space.

The real line, as is any Hilbert space, is of martingale type 2. Hence we can form
the following corollary to Theorem 4.

Corollary 3. Let {Xnk, un � k � vn, n � 1} be an array of random variables and{ank,

un � k � vn, n � 1} be an array of constants such that
∑vn

k=un
|ank| � C for all n � 1

and some constantC > 0. Let1 � r � 2 and{h(n), n � 1} be a sequence of increasing
infinity positive constants. Suppose that

(a) {|Xnk|r} is hr -integrable concerning the array of constants{|ank|r},
(b) h2(n)

∑vn

k=un
a2
nk → 0 asn → ∞.

LetSn = ∑vn

k=un
ank(Xnk − E(Xnk | Fn,k−1)), for all n � 1, whereFnk = σ(Xni, un �

i � k), un � k � vn, n � 1 andFn,un−1 = {∅,Ω}, n � 1. ThenSn → 0 asn → ∞, in Lr
and, a fortiori, in probability.
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Finally, we would like to mention that there are two special cases ensuring for us th
conditions (b) of Theorems 1–3 and Corollaries 1–3 is satisfied. A proof of the follo
proposition is obvious and hence omitted.

Proposition. If (i) supun�k�vn
|ank| = o(h−2(n)) or (ii) un andvn are finite for alln � 1

and(vn − un)supun�k�vn
a2
nk = o(h−2(n)), then condition(b) holds, that is,

h2(n)

vn∑
k=un

a2
nk → 0 asn → ∞.
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