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Introduction

Consider an array of constants {anj, j ≥ 1, n ≥ 1} and an array of random elements
{Vnj, j ≥ 1, n ≥ 1} defined on a probability space (Ω, F ,P ) and taking values in a real
separable Banach space X with norm || · ||. Let {cnj, j ≥ 1, n ≥ 1} be a “centering”
array consisting of (suitably selected) conditional expectations and {Nn, n ≥ 1} be a
sequence of positive integer-valued random variables. In this paper, a general weak
law of large numbers (WLLN) will be established. This convergence result is of the
form

Nn∑
j=1

anj(Vnj − cnj)
P→ 0

as n → ∞. This expression is referred to as weighted sums with weights {anj, j ≥
1, n ≥ 1}. The hypotheses to the main result impose conditions on the growth
behavior of the weights {anj, j ≥ 1, n ≥ 1} and on the marginal distributions of the
random variables {||Vnj||, j ≥ 1, n ≥ 1}. The random elements in the array under
consideration are not assumed to be rowwise independent. Indeed, no conditions are
imposed on the joint distributions of the random elements comprising the array. Also,
no conditions are imposed on the joint distributions of {Nn, n ≥ 1}. Moreover, no
conditions are imposed on the joint distribution of the sequence {Vnj, j ≥ 1, n ≥ 1}
and the sequence {Nn, n ≥ 1}. However, the Banach space X is assumed to be of
martingale type p, i.e., there exists a finite constant C such that for all martingales
{Sn, n ≥ 1} with values in X , supn≥1 E||Sn||p ≤ C

∑∞
n=1 E||Sn−Sn−1||pwhereS0 ≡ 0.

Clearly every real separable Banach space is of martingale type 1, while the Lp-spaces
and lp-spaces (1 ≤ p < ∞) are of martingale type p ∧ 2. It is well known that if a
Banach space is of martingale type p, then it is of Rademacher type p. The notion of
martingale type p is only superficially similar to that of Rademacher type p, but it has
a geometric characterization in terms of smoothness: a Banach space is of martingale
type p (1 ≤ p ≤ 2) if, and only if, it is p-smooth. For more details, the reader may
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refer to [9]. The main result is an extension, generalization and improvement to a
martingale type p Banach space setting and weighted sums of results in [3], [4], [5], [6]
and [10] which were proved for arrays of (real-valued) random variables. Moreover,
it is an extension on randomly indexed sums of results in [1] and [7]. The WLLN is
proved assuming a Cesàro type condition of Hong and Oh ([5]) which is weaker than
Cesàro uniform integrability.

Mainstream

In [6], the following Theorem was proved.
THEOREM 1. Let {Vnj, j ≥ 1, n ≥ 1} be an array of random elements in a real
separable, martingale type p (1 ≤ p ≤ 2) Banach space, and {Nn, n ≥ 1} be a sequence
of positive integer-valued random variables such that for some nonrandom sequence
of positive integers kn →∞ we have

P{Nn > kn} = o(1) as n→∞. (1)

Let {anj, j ≥ 1, n ≥ 1} be an array of constants and let the sequence {f(n), n ≥ 1},
where f(n) = 1/ max

1≤j≤kn
|anj|, satisfying

knf
−p(n) = o(1)as n→∞. (2)

Suppose that there exists a positive nondecreasing sequence {g(m),m ≥ 0} such that

kn−1∑
m=1

gp(m+ 1)− gp(m)

m
= O(fp(n)/kn) as n→∞. (3)

Suppose the uniform Cesàro type condition

lim
m→∞

sup
n≥1

1

kn

kn∑
j=1

mP{||Vnj|| > g(m)} = 0 (4)

holds. Then the WLLN

Nn∑
j=1

anj(Vnj − E(V ′nj|Fn,j−1))
P→ 0 as n→∞ (5)

follows where V ′nj = VnjI(||Vnj|| ≤ g(kn)),Fnj = σ(Vni, 1 ≤ i ≤ j), j ≥ 1, n ≥ 1, and
Fn0 = {∅,Ω}, n ≥ 1.

Now we formulate the main result of the paper.
THEOREM 2. Let all the hypotheses of Theorem 1 hold, except that (3) is changed
on:

g(kn)−1∑
m=1

mp−1

h(m)
= O(fp(n)/kn) as n→∞ (6)
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where h(m) = min{n ≥ 0 : g(n) ≥ m} is the inverse sequence to g(m). Then (5)
holds.

We need the following lemma in order to prove the Theorem 2.
LEMMA. If (4) holds then

lim
m→∞

sup
n≥1

1

kn

kn∑
j=1

h(m)P{||Vnj|| > m} = 0 (4′)

Proof. First, we consider that {g(n), n ≥ 1} is bounded. Say, g(n) ≤ α. By (4),

1

kn

kn∑
j=1

mP{‖Vnj‖ > α} ≤ sup
n≥1

1

kn

kn∑
j=1

mP{‖Vnj‖ > g(m)} → 0

as m→∞. Hence, we have P{‖Vnj‖ > α} = 0 for all j and n. So, (4′) follows easily.
Now, we consider g(m)→∞. By the definition of h(m),

g(h(m)− 1) < m ≤ g(h(m)) for m ≥ 1.

Since g(m)→∞, h(m)→∞. Thus, there exists an integer M such that h(m) ≥ 2 if
m ≥M. For m ≥M , it follows that

1

kn

kn∑
j=1

h(m)P{‖Vnj‖ > m}

≤ 1

kn

kn∑
j=1

2(h(m)− 1)P{‖Vnj‖ > g(h(m)− 1)}.

Thus (4′) follows by (4). 2

Remark. The implication (4′) ⇒ (4) does not necessarily hold (see the following
counterexample).

Counterexample. Let {Vnj, j ≥ 1, n ≥ 1} be an array of i.i.d. with P{‖V11‖ =
n} = c/22n for n ≥ 1, where c = 1/

∑∞
n=1( 1

22n ). Define g(n) = [log log n] for n ≥ 1,
where log x has base 2. Then, it follows that h(n) = 22n . Thus, we have

sup
n≥1

1

kn

kn∑
j=1

h(m)P{‖Vnj‖ > m} = 22m(
∞∑

i=m+1

c

22i
) ≤ 22m 2c

22m+1 → 0

as m→∞. Hence (4′) holds. Now, we show that (4) does not hold for m = 22l − 1.
Noting that g(m) = l − 1, we have

sup
n≥1

1

kn

kn∑
j=1

mP{‖Vnj‖ > g(m)} = (22l − 1)(
∞∑
i=l

c

22i
) ≥ (22l − 1)

c

22l
→ c
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as l→∞. Thus (4) does not hold for m = 22l − 1.

Sketch of proof of THEOREM 2. By (1) and (4), it suffices to show that

Nn∑
j=1

anjV
′
nj −

Nn∑
j=1

anjcnj
P→ 0,

where cnj = E(V ′nj|Fn,j−1). For arbitrary ε > 0 and n ≥ 1, denote

Dn =
kn⋃
m=1

Bn
m =

kn⋃
m=1

||
m∑
j=1

anjV
′
nj −

m∑
j=1

anjcnj|| > ε


Since for every n ≥ 1 the sequence {V ′nj − cnj, 1 ≤ j ≤ kn} is a martingale difference
sequence and since underlying Banach space is of martingale type p,

P{Dn} ≤ C
kn∑
j=1

E(|anj| ||V ′nj − cnj||)p ≤ C2pf−p(n)
kn∑
j=1

E||V ′nj||p.

Moreover

kn∑
j=1

E||V ′nj||p =
kn∑
j=1

g(kn)∑
m=1

E||Vnj||pI(m− 1 < ||Vnj|| ≤ m)

≤
kn∑
j=1

g(kn)∑
m=1

mp (P{||Vnj|| > m− 1} − P{||Vnj|| > m})

=
kn∑
j=1

[P{||Vnj|| > 0}+ gp(kn)P{||Vnj|| > kn}

+
g(kn)−1∑
m=1

((m+ 1)p −mp)P{||Vnj|| > m}]

≤ kn + p2p−1
kn∑
j=1

g(kn)−1∑
m=1

mp−1P{||Vnj|| > m}]

= kn + Ckn

g(kn)−1∑
m=1

mp−1

h(m)
bnm,

where bnm = 1
kn

∑kn
j=1 h(m)P{||Vnj|| > m}. By (2), knf

−p(n) = o(1) as n → ∞. By
uniform Cesàro type condition (4’), sup

n≥1
bnm = o(1) as m → ∞. Then, by (6) and

the Toeplitz lemma, the expression P{Dn} is o(1) thereby completing the proof of
Theorem 2.
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