
On the Kolmogorov exponential inequality
for negatively dependent random variables

Andrei Volodin

Department of Mathematics and Statistics,
University of Regina, Regina, SK, S4S 0A2, Canada

e-mail: volodin@math.uregina.ca

Abstract. The classical exponential Kolmogorov inequality is slightly improved
and generalized on the case of negatively dependent random variables.
Key words: Exponential inequalities, negative dependence.

AMS subject classifications: 60E15, 60F15.

Dedicated to Professor Syed Ejaz Ahmed

1 Introduction

It is a great pleasure for me to contribute to this issue in honour of Professor
Syed Ejaz Ahmed.

Bosrgnia, Patterson and Taylor [2] mentioned that in many stochastic
models, the assumption that random variables are independent is not plau-
sible. Increases in some random variables are often related to decreases in
other random variables so an assumption of negative dependence is more
appropriate than an assumption of independence. Lehmann [3] investigated
various concepts of positive and negative dependence in the bivariate case.
In this paper, we present an improvement and generalization of the classical
Kolmogorov exponential inequality (cf. for example, Stout [5], p.260 - 263)
on the case of negative dependent random variables. The result is of course
true for independent random variables.
Definition. The random variables X1, · · · , Xn are said to be negatively
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dependent if we have

P
{
∪nj=1(Xj ≤ xj)

}
≤ Πn

j=1P {Xj ≤ xj} ,

and
P
{
∪nj=1(Xj ≥ xj)

}
≤ Πn

j=1P {Xj ≥ xj}
for all real x1, · · · , xn.

One of the most interesting and useful examples of negative dependent
random variables arises in the situation of a sample from finite population
without of replacement. Hence we can apply our result to so-called dependent
bootstrap, that is, the sample drawn without replacement form the collection
of items made up of copies of sample observations. Smith and Taylor [4]
obtained consistency of the bootstrap mean. With the help of the present
paper we can prove the law of iterated logarithm type results for dependent
bootstrap analogous to the results of Ahmed, Li, Rosalsky and Volodin [1]
for independent bootstrap.

2 Lemata

The following two lemmas are used to obtain the main result in the next
section. The first lemma is a simple corollary of the observation that if
X1, · · · , Xn is a sequence of negatively dependent random variables, then
eX1 , · · · , eXn is also negatively dependent. The same argument is used in
Bosrgnia, Patterson and Taylor ([2] p.1167) in the proof of Lemma 3.3.

Lemma 1. If X1, · · · , Xn is a sequence of negatively dependent random
variables, then

E exp

{
n∑
k=1

Xk

}
≤ Πn

k=1E exp{Xk}.

The second lemma is only a technical result that will help us to improve
a constant in the Kolmogorov exponential inequality.
Lemma 2. Let a > 0 and 0 < α ≤ a3

2(ea−1−a−a2/2)
. Then

ex − 1− x− x2

2
≤ x3

2α
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for all 0 ≤ x ≤ a.

Proof. Consider the function

f(x, α) = ln

(
1 + x+

x2

2
+
x3

2α

)
− x.

We need to prove that f(x, α) ≥ 0 for all 0 < α ≤ a3

2(ea−1−a−a2/2)
and 0 ≤

x ≤ a.
Take the derivative

∂f

∂x
= − x2 (x− (3− α))

2α (1 + x+ x2/2 + x3/(2α))
.

Hence f is increasing by x on the interval (0, 3 − α) and decreasing on the
interval (3− α, a).

Note that f(0, α) = 0 and f(a, α) ≥ 0 since α ≤ a3

2(ea−1−a−a2/2)
.2

3 Main result

Now we can formulate and prove our main result.

Theorem. Let X1, · · · , Xn be a sequence of negatively dependent random

variables with zero means and finite variances. Let s2
n =

n∑
k=1

EX2
k and assume

that |Xk| ≤ Csn almost surely for each 1 ≤ k ≤ n and n ≥ 1. Then for each
a > 0 and n ≥ 1, the assumptions εC ≤ a and 0 < α ≤ a3

2(ea−1−a−a2/2)
imply

that

P{Sn/sn > ε} ≤ exp

{
−ε

2

2

(
1− εC

α

)}
,

where Sn =
n∑
k=1

Xk as usual.

Proof. We will follow the proof of the classical Kolmogorov exponential
inequality (cf. Stout [5], p.263). Fix n ≥ 1 and a > 0. Suppose x = εC ≤ a.
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For each 1 ≤ k ≤ n,

E exp{εXk/sk} = 1 +
ε2EX2

k

2!s2
n

+
ε3X3

k

3!s3
n

+ · · ·

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

εC

3
+
ε2C2

3 · 4
+ · · ·

)

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

x

3
+

x2

3 · 4
+ · · ·

)

= 1 +
ε2EX2

k

2s2
n

(
ex − x− x2

2

)

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

x

α

)
by Lemma 2

≤ exp

{
ε2EX2

k

2s2
n

(
1 +

x

α

)}
since 1 + t ≤ et for all t. By Lemma 1,

E exp{εSn/sn} ≤ exp

{
ε2

2

(
1 +

εC

α

)}
.

Thus
P{Sn/sn > ε} ≤ exp{−ε2}E exp{εSn/sn}

≤ exp

{
−ε

2

2

(
1 +

εC

α

)}
.2

Remarks. 1. Even for a = 1, our theorem gives better constant α = 1
2e−5

=
2.2906 > 2, while in the Kolmogorov original inequality we have α = 2 (cf.
Stout, p.263).
2. If a → 0 then α → 3. As a → ∞ then α → 2. We need a → 0 for the
proof of the law of iterated logarithm.
3. Another interesting advantage of the theorem is that we can consider any
positive a, while in Kolmogorov inequality a = 1. In our inequality, the upper
bound involves a fixed (given) c and fixed ε and a variable α. Now, α is a
function of a, for a ≥ εc. Note that the left-hand side of the inequality doesn’t
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involve a anywhere, whereas the right-hand side is, in effect, a function of
a. So the best possible inequality occurs when a is chosen so that α(a) is
maximized on the interval [ε,∞]. However, α is a decreasing function of a, so
the maximum value of the upper bound occurs when a is as small as possible;
i.e., when a = εc.

In short, then technically we have a family of inequalities – one for each
value of a ≥ εc. However, the special case where α = α(εc) implies the
validity of the inequality for all larger values of α – so there is really only
one inequality, for one specific value of α.
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