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ON THE RATE OF COMPLETE
CONVERGENCE FOR WEIGHTED SUMS
OF ARRAYS OF RANDOM ELEMENTS

Soo Hak Sung and Andrei I. Volodin

Abstract. Let {Vnk, k ≥ 1, n ≥ 1} be an array of rowwise inde-
pendent random elements which are stochastically dominated by

a random variable X with E|X|α
γ

+θ
logρ(|X|) < ∞ for some ρ >

0, α > 0, γ > 0, θ > 0 such that θ+α/γ < 2. Let {ank, k ≥ 1, n ≥ 1}
be an array of suitable constants. A complete convergence result is
obtained for the weighted sums of the form

∑∞
k=1 ankVnk.

1. Introduction

The concept of complete convergence of a sequence of random vari-
ables was introduced by Hsu and Robbins [5] as follows. A sequence
{Un, n ≥ 1} of random variables converges completely to the constant θ
if ∞∑

n=1

P (|Un − θ| > ε) < ∞ for all ε > 0.

The classical Hsu-Robbins-Erdős theorem (Erdős [3, 4]) states that, for
a sequence {Xn, n ≥ 1} of independent and identically distributed ran-
dom variables,

∑n
k=1 Xk/n converges completely to EX1 if and only if

the variance of X1 is finite. Baum and Katz [2] obtained an elegant gen-
eralization of Hsu-Robbins-Erdős theorem, namely they proved that, for
r ≥ 1 and 1 ≤ t < 2r ≤ 2t,

∑∞
n=1 nr−2P (|∑n

k=1(Xk −EX1)| > nr/tε) <
∞ for all ε > 0 if and only if E|X1|t < ∞.

Many authors extended the above results to Banach space valued
random elements, for example, see Ahmed et al. [1], Hu et al. [6, 7],
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Kuczmaszewska and Szynal [8], Sung [9], and Wang et al. [11]. A se-
quence of Banach space valued random elements is said to converge
completely to the 0 element in the Banach space if the corresponding
sequence of norms converges completely to 0.

Hu, Rosalsky, Szynal and Volodin [7] presented a general result (cf.
Theorem 1 below) establishing complete convergence for the row sums
of an array of rowwise independent but not necessarily identically dis-
tributed Banach space valued random elements. Their result also spec-
ified the corresponding rate of convergence. The Hu, Rosalsky, Szynal
and Volodin [7] result unifies and extends previously obtained results in
the literature in that many of them (for example, results of Hsu and Rob-
bins [5], Hu et al. [6], Kuczmaszewska and Szynal [8], Sung [9], Volodin
et al. [10], and Wang et al. [11]) follow from it.

In the following we assume that {Vnk, k ≥ 1, n ≥ 1} is an array of
rowwise independent random elements in a real separable Banach space
and {ank, k ≥ 1, n ≥ 1} is an array of constants. Denote

Sn ≡
∞∑

k=1

ankVnk.

In the next theorem the weights ank are built into the array (that is,
ank = 1 for all k and n).

Theorem 1. (Hu et al. [7]) Let {cn, n ≥ 1} be a sequence of positive
constants. Suppose that

∞∑

n=1

cn

∞∑

k=1

P (||Vnk|| > ε) < ∞ for all ε > 0,(1)

∞∑

n=1

cn

( ∞∑

k=1

E||Vnk||q
)J

< ∞ for some 0 < q ≤ 2 and J ≥ 2,(2)

∞∑

k=1

Vnk
P→ 0,(3)

and

(4) if lim inf
n→∞ cn = 0, then

∞∑

k=1

P (||Vnk|| > δ) = o(1) for some δ > 0.

Then
∞∑

n=1

cnP (||Sn|| > ε) < ∞ for all ε > 0.
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It is implicitly assumed in Theorem 1 that the series Sn converges
a.s.

The article Hu et al. [6] is devoted to presenting applications of The-
orem 1 to obtain new complete convergence results. Theorem 2 gener-
alizes results of Hsu and Robbins [5], Kuczmaszewska and Szynal [8],
Sung [9], Wang et al. [11] in three directions, namely:

(i) Banach space valued random elements instead of random variables
are considered.

(ii) An array rather than a sequence is considered.
(iii) The rate of convergence is obtained.

Theorem 2. (Hu et al. [6]). Suppose that the array {Vnk, k ≥ 1,
n ≥ 1} is stochastically dominated by a random variable X. That is,

P (||Vnk||> x)
≤ CP (|X| > x) for all x > 0 and for all k ≥ 1 and n ≥ 1,

where C is a positive constant. Assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0, and

∞∑

k=1

|ank| = O(nα) for some α ∈ [0, γ).

If

E|X|1+(1+α+β)/γ < ∞ for some β ∈ (−1, γ − α− 1], and Sn
P→ 0,

then
∞∑

n=1

nβP (||Sn|| > ε) < ∞ for all ε > 0.

The proof of Theorem 2 is rather complicated once it uses the Stieltjes
integral techniques, summation by parts lemma and so on. The initial
objective of an investigation resulted in the paper Ahmed et al. [1] was
only to find a simpler proof. But it appears that they were able to estab-
lish a more general result and with simpler proof. The result presented
in Theorem 3 below is more general than the main result of Hu et al. [6],
since rates of convergence for moving averages can be established, which
cannot be proved using Theorem 2.

Theorem 3. (Ahmed et al. [1]) Suppose that the array {Vnk, k ≥
1, n ≥ 1} is stochastically dominated by a random variable X. Assume
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that

sup
k≥1

|ank| = O(n−γ) for some γ > 0,

and
∞∑

k=1

|ank| = O(nα) for some α < γ.

Let β be such that α +β 6= −1 and fix δ > 0 such that α
γ +1 < δ ≤ 2. If

E|X|ν < ∞, where ν = max{1 +
1 + α + β

γ
, δ},

and

Sn
P→ 0,

then ∞∑

n=1

nβP (||Sn|| > ε) < ∞ for all ε > 0.

Theorem 3 was slightly generalized in Volodin et al. [10] as follows.

Theorem 4. (Volodin et al. [10]) Suppose that the array {Vnk, k ≥
1, n ≥ 1} is stochastically dominated by a random variable X. Assume
that

sup
k≥1

|ank| = O(n−γ) for some γ > 0, and
∞∑

k=1

|ank|θ = O(nα)

for some 0 < θ ≤ 2 and any α such that θ + α
γ < 2. Let β be such that

α + β 6= −1 and fix δ > θ such that α
γ + θ < δ ≤ 2. If

E|X|ν < ∞, where ν = max{θ +
1 + α + β

γ
, δ}, and Sn

P→ 0,

then ∞∑

n=1

nβP (||Sn|| > ε) < ∞ for all ε > 0.

If β < −1, then the conclusions of Theorems 3 and 4 are immedi-
ate and hence Theorems 3 and 4 are of interest only for β ≥ −1. In
particular, the case β = −1 is of special interest. Ahmed et al. [1] con-
jectured that when β = −1, the assumption E|X|ν < ∞ can be replaced
by E|X|αγ +1 logρ(|X|) < ∞ (ρ > 0) in Theorem 3. In the context of
Theorem 4 this conjecture should be rewritten as: when β = −1, the
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assumption E|X|ν < ∞ can be replaced by the strictly weaker assump-
tion E|X|αγ +θ logρ(|X|) < ∞ (ρ > 0). In this paper we give the positive
answer on this conjecture.

It proves convenient to define log(x) = max{1, ln(x)}, where ln(x) de-
notes the natural logarithm. The symbol C denotes a positive constant
which is not necessarily the same one in each appearance, the symbol
[x] denotes the greatest integer in x, and for a finite set A the symbol
#A denotes the number of elements in the set A.

2. Preliminaries

In this section, we present three lemmas which will be used to prove
our main result.

Lemma 1. Let {ank, k ≥ 1, n ≥ 1} be an array of constants such that
for some θ > 0, some α, and any n ≥ 1

∞∑

k=1

|ank|θ ≤ nα.

Let {φ(j), j ≥ 1} be an increasing sequence of positive numbers and

Inj =
{

k| 1
nγφ(j + 1)

< |ank| ≤ 1
nγφ(j)

}
, j ≥ 1, n ≥ 1,

where γ is a constant. Then for any m ≥ 1
m∑

j=1

]Inj ≤ nα+γθφθ(m + 1).

Proof. Really,
m∑

j=1

]Inj =
m∑

j=1

∑

k∈Inj

|ank|θ 1
|ank|θ

≤ nγθ
m∑

j=1

φθ(j + 1)
∑

k∈Inj

|ank|θ ≤ nα+γθφθ(m + 1).

Lemma 2. Let {Vnk, k ≥ 1, n ≥ 1} be an array of random ele-
ments which are stochastically dominated by a random variable X. Let
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{ank, k ≥ 1, n ≥ 1} be an array of constants such that

sup
k≥1

|ank| ≤ n−γ for some γ > 0

and
∞∑

k=1

|ank|θ ≤ nα for some θ > 0 and some α.

Then for any ε > 0 and all n ≥ 1

∞∑

k=1

P (‖ankVnk‖ > ε) ≤ Cnα
∞∑

k=n

kγθP (k <

∣∣∣∣
X

ε

∣∣∣∣
1/γ

≤ k + 1).

Proof. In Lemma 1 consider φ(j) = jγ , j ≥ 1. Then

Inj =
{

k| 1
(n(j + 1))γ

< |ank| ≤ 1
(nj)γ

}
for j ≥ 1 and n ≥ 1

and
m∑

j=1

]Inj ≤ nα+γθ(m + 1)γθ.

Mention that the condition supk≥1 |ank| ≤ n−γ ensures us that, for any
n ≥ 1, ∪j≥1Inj = {k|ank 6= 0}. It follows that

∞∑

k=1

P (‖ankVnk‖ > ε) =
∞∑

j=1

∑

k∈Inj

P (‖ankVnk‖ > ε)

≤
∞∑

j=1

∑

k∈Inj

P (‖Vnk‖ > ε(nj)γ)

≤ C
∞∑

j=1

]InjP (|X
ε
| > (nj)γ)

= C

∞∑

j=1

]Inj

∞∑

k=nj

P (k < |X
ε
|1/γ ≤ k + 1)

= C
∞∑

k=n

P (k < |X
ε
|1/γ ≤ k + 1)

[ k
n

]∑

j=1

]Inj
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≤ C

∞∑

k=n

P (k < |X
ε
|1/γ ≤ k + 1)nα+γθ([

k

n
] + 1)γθ

≤ C2γθnα
∞∑

k=n

P (k < |X
ε
|1/γ ≤ k + 1)kγθ.

Lemma 3. Let all the conditions of Lemma 2 be satisfied and α ≥ 0.
Then for all ε > 0

∞∑

k=1

P (‖ankVnk‖ > ε) ≤ CE

∣∣∣∣
X

ε

∣∣∣∣
α
γ

+θ

I(|X| > εnγ).

Proof. By Lemma 2
∞∑

k=1

P (‖ankVnk‖ > ε)

≤ Cnα
∞∑

k=n

P

(
k <

∣∣∣∣
X

ε

∣∣∣∣
1/γ

≤ k + 1
)

kγθ

≤ C
∞∑

k=n

P

(
k <

∣∣∣∣
X

ε

∣∣∣∣
1/γ

≤ k + 1
)

kγθ+α (since α ≥ 0)

≤ CE|X
ε
|αγ +θ

I(|X| > εnγ).

3. Main result

In this section, we state and prove our main result.

Theorem 5. Let {Vnk, k ≥ 1, n ≥ 1} be an array of rowwise indepen-
dent random elements which are stochastically dominated by a random
variable X. Let {ank, k ≥ 1, n ≥ 1} be an array of constants such that

sup
k≥1

|ank| = O(n−γ) for some γ > 0

and
∞∑

k=1

|ank|θ = O(nα) for some α > 0 and θ > 0 such that θ +
α

γ
< 2.
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Assume that

Sn ≡
∞∑

k=1

ankVnk
P→ 0.

If E|X|αγ +θ logρ(|X|) < ∞ for some ρ > 0, then

∞∑

n=1

1
n

P (‖Sn‖ > ε) < ∞ for all ε > 0.

Proof. Without loss of generality, we may assume that sup
k≥1

|ank| ≤

n−γ and
∞∑

k=1

|ank|θ ≤ nα. For any n ≥ 1 let

V
(1)
nk = VnkI(‖ankVnk‖ ≤ 1) and

V
(2)
nk = VnkI(‖ankVnk‖ > 1), 1 ≤ k < ∞.

Then

Sn =
∞∑

k=1

ankVnk =
2∑

p=1

∞∑

k=1

ankV
(p)
nk =

2∑

p=1

S(p)
n , say.

To prove the theorem, it suffices to show that for p = 1 and 2:

∞∑

n=1

1
n

P (‖S(p)
n ‖ > ε) < ∞ for all ε > 0.

To do this, we apply Theorem 1 with cn = 1/n to the random ele-
ments ankV

(p)
nk , p = 1, 2.

Then

max
p=1,2

∞∑

n=1

1
n

∞∑

k=1

P (‖ankV
(p)
nk ‖ > ε)

≤
∞∑

n=1

1
n

∞∑

k=1

P (‖ankVnk‖ > ε)
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≤ C

∞∑

n=1

nα−1
∞∑

k=n

kγθP (k < |X
ε
|1/γ ≤ k + 1) (by Lemma 2)

= C

∞∑

k=1

kγθP (k < |X
ε
|1/γ ≤ k + 1)

k∑

n=1

nα−1

≤ C
∞∑

k=1

kα+γθP (k < |X
ε
|1/γ ≤ k + 1) (since α > 0)

≤ CE|X
ε
|αγ +θ

< ∞.

Hence (1) is satisfied for both series.
By Lemma 3, we have for any ε > 0

P (‖
∞∑

k=1

ankVnkI(‖ankVnk‖ > 1)‖ > ε) ≤ P (∪∞k=1‖ankVnk‖ > 1)

≤
∞∑

k=1

P (‖ankVnk‖ > 1)

≤ CE|X|αγ +θ
I(|X| > nγ) = o(1),

since E|X|αγ +θ
< ∞. Hence S

(2)
n

P→ 0. By the hypothesis Sn
P→ 0 and

S
(1)
n = Sn−S

(2)
n , we have S

(1)
n

P→ 0. We conclude that condition (3) from
Theorem 1 is satisfied for both series.

The condition (4) from Theorem 1 with δ = 1 is obviously satisfied
for the first series, since

∞∑

k=1

P (‖ankV
(1)
nk ‖ > 1) = 0.

For the second series we have by Lemma 3 that

∞∑

k=1

P (‖ankV
(2)
nk ‖ > 1) =

∞∑

k=1

P (‖ankVnk‖ > 1)

≤ CE|X|αγ +θ
I(|X| > nγ) = o(1).

Hence, condition (4) is satisfied for both series.
Finally, we check condition (2) from Theorem 1 for both series. To

do this, we introduce the following notations. For t > 0 such that
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0 < tθ < ρ and any n ≥ 1, let

An =
{

k| |ank| ≤ 1
nγ logt(n)

}
, Bn =

{
k| 1

nγ logt(n)
< |ank| ≤ 1

nγ

}
.

Next, for any n ≥ 1 let

a
(1)
nk =

{
ank if k ∈ An

0 otherwise ,
a

(2)
nk =

{
ank if k ∈ Bn

0 otherwise.

Let r = α
γ + θ < 2. First we mention that

max
p=1,2

∞∑

k=1

E‖a(1)
nk V

(p)
nk ‖r ≤

∑

k∈An

E‖ankVnk‖r

≤ C

(
1

nγ logt(n)

)α/γ

E|X|α/γ+θ
∞∑

k=1

|ank|θ

≤ C log−tα/γ(n)E|X|α/γ+θ.

Hence we have that

(5)
∞∑

k=1

E‖a(1)
nk V

(1)
nk ‖2 ≤

∞∑

k=1

E‖a(1)
nk V

(1)
nk ‖r ≤ C log−tα/γ(n)E|X|α/γ+θ

and

(6)
∞∑

k=1

E‖a(1)
nk V

(2)
nk ‖r ≤ C log−tα/γ(n)E|X|α/γ+θ.

In order to verify condition (2) for other cases, put

Bnj =
{

k| 1
nγ logt(j + 1)

< |ank| ≤ 1
nγ logt(j)

}
.

Then {Bnj , 1 ≤ j ≤ n− 1} are disjoint, ∪n−1
j=1 Bnj = Bn, and by Lemma

1 with φ(j) = logt(j), ]Bn ≤ nα+γθ logtθ(n). We can estimate

∞∑

k=1

E‖a(2)
nk V

(2)
nk ‖r =

∑

k∈Bn

|ank|rE‖Vnk‖rI

(
‖Vnk‖ >

1
|ank|

)

≤ C
∑

k∈Bn

|ank|rE|X|rI(|X| > nγ)



On the rate of complete convergence 825

≤ CE|X|rI(|X| > nγ)(n−γ)r]Bn

≤ CE|X|rI(|X| > nγ) logtθ(n)(7)

≤ CE|X|r logρ(|X|)I(|X| > nγ) logtθ−ρ(n)

≤ CE|X|r logρ(|X|) logtθ−ρ(n).

Next, we estimate the remaining part in the following way
∞∑

k=1

E‖a(2)
nk V

(1)
nk ‖2

=
n−1∑

j=1

∑

k∈Bnj

E‖ankVnk‖2I(‖ankVnk‖ ≤ 1)

≤
n−1∑

j=1

∑

k∈Bnj

1
(nγ logt(j))2

E‖Vnk‖2I(‖Vnk‖ ≤ nγ logt(j + 1))

≤ C

n−1∑

j=1

]Bnjn
−2γ log−2t(j)EX2I(|X| ≤ nγ logt(j + 1))

+ C
n−1∑

j=1

]BnjP (|X| > nγ logt(j + 1))

= I1 + I2, say.

Here we used the fact that if a random variable Y is stochastically dom-
inated by a random variable X, then for all s > 0 and b > 0

E|Y |sI(|Y | ≤ b) ≤ CE|X|sI(|X| ≤ b) + CbsP (|X| > b).

Let µ = 2− α
γ − θ > 0. Since xµ

logρ(x) ↑ as x →∞,

xµ

logρ(x)
≤ (nγ logt(j + 1))µ

logρ(nγ logt(j + 1))
≤ C

nγµ logtµ(j)
logρ(n)

,

if x ≤ nγ logt(j + 1). Then

I1 ≤ C
n−1∑

j=1

]Bnjn
−2γ log−2t(j)E|X|r logρ(|X|)n

γµ logtµ(j)
logρ(n)

= C
nγµ−2γ

logρ(n)
E|X|r logρ(|X|)

n−1∑

j=1

logtµ−2t(j)]Bnj
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≤ C
nγµ−2γ

logρ(n)
E|X|r logρ(|X|)

n−1∑

j=1

]Bnj (since tµ− 2t < 0)

≤ CE|X|r logρ(|X|) logtθ−ρ(n).

Clearly, I2 is dominated by

CP (|X| > nγ)
n−1∑

j=1

]Bnj ≤ CP (|X| > nγ)nα+γθ logtθ(n)

≤ CE|X|r logρ(|X|) logtθ−ρ(n).

Hence

(8)
∞∑

k=1

E‖a(2)
nk V

(1)
nk ‖2 ≤ CE|X|α/γ+θ logρ(|X|) logtθ−ρ(n).

Take J such that J(ρ− tθ) ≥ 2 and Jtα/γ ≥ 2. We have by (5) and
(8) that

∞∑
n=1

1
n

( ∞∑

k=1

E‖ankV
(1)
nk ‖2

)J

=
∞∑

n=1

1
n

( ∞∑

k=1

E‖a(1)
nk V

(1)
nk ‖2 +

∞∑

k=1

E‖a(2)
nk V

(1)
nk ‖2

)J

≤
∞∑

n=1

1
n

(
CE|X|α/γ+θ log−tα/γ(n) + CE|X|α/γ+θ logρ(|X|) logtθ−ρ(n)

)J

≤ C

∞∑
n=1

1
n log2(n)

,

since E|X|α/γ+θ logρ(|X|) < ∞. Hence for the first series condition (2)
from Theorem 1 is satisfied with q = 2.

Next, by (6) and (7) we have that

∞∑

n=1

1
n

( ∞∑

k=1

E‖ankV
(2)
nk ‖r

)J

=
∞∑

n=1

1
n

( ∞∑

k=1

E‖a(1)
nk V

(2)
nk ‖r +

∞∑

k=1

E‖a(2)
nk V

(2)
nk ‖r

)J
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≤
∞∑

n=1

1
n

(
CE|X|α/γ+θ log−tα/γ(n)+CE|X|α/γ+θ logρ(|X|) logtθ−ρ(n)

)J

≤ C

∞∑

n=1

1
n log2(n)

.

Hence for the second series condition (2) from Theorem 1 is satisfied
with q = r.

Therefore all conditions from Theorem 1 are satisfied for both series,
and so the proof is complete.
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