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Robust Weighted Likelihood Estimation of
Exponential Parameters

Ejaz S. Ahmed, Andrei I. Volodin, and Abdulkadir. A. Hussein

Abstract—The problem of estimating the parameter of an ex-
ponential distribution when a proportion of the observations are
outliers is quite important to reliability applications. The method
of weighted likelihood is applied to this problem, and a robust
estimator of the exponential parameter is proposed. Interestingly,
the proposed estimator is an -trimmed mean type estimator.
The large-sample robustness properties of the new estimator are
examined. Further, a Monte Carlo simulation study is conducted
showing that the proposed estimator is, under a wide range of
contaminated exponential models, more efficient than the usual
maximum likelihood estimator in the sense of having a smaller
risk, a measure combining bias & variability. An application of the
method to a data set on the failure times of throttles is presented.

Index Terms—Exponential distribution, maximum likelihood es-
timation, robust estimation, weighted likelihood method.

ACRONYMS1

• a.s. almost surely
• WLE weighted likelihood estimator
• MLE maximum likelihood estimator

NOTATION

• random sample size
• parameter of interest
• parametric space
• a parametric family of cumulative

distribution functions
• a parametric family of probability

density functions
• the usual maximum likelihood estimator

of parameter
• the proposed estimator of the parameter
• the natural logarithm function
• special weights that we use for the esti-

mation method
• an obstructing parameter
•

the set of obstructing distributions where , and

• , , fixed positive constants
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1The singular and plural of an acronym are always spelled the same.

• sample mean
• -trimmed sample mean
• quadratic risk of a statistics
• , Convergence as fast as a, convergence faster

than

I. INTRODUCTION

THE EXPONENTIAL distribution is the most commonly
used model in reliability & life-testing analysis [1], [2].

We propose a method of weighted likelihood for robust estima-
tion of the exponential distribution parameter. We establish that
the suggested weighted likelihood method provides -trimmed
mean type estimators. Further, we investigate the robustness
properties of the weighted likelihood estimator (WLE) in com-
parison with the usual maximum likelihood estimator (MLE).
This can be viewed as an application of the classical likelihood
that was introduced by [3] as the relevance weighted likelihood
to problems of robust estimation of parameters. The weighted
likelihood method was introduced as a generalization of the
local likelihood method. For further discussion of the local like-
lihood method in the context of nonparametric regression, see
[4]–[6]. In contrast to the local likelihood, the weighted likeli-
hood method can be global, as demonstrated by one of the ap-
plications in [7] where the James-Stein estimator is found to
be a maximum weighted likelihood estimator with weights es-
timated from the data.

The theory of weighted likelihood enables a bias-precision
trade of to be made without relying on a Bayesian approach.
The latter permits the bias-variance trade of to be made in a
conceptually straightforward manner. However, the reliance on
empirical Bayes methods softens the demands for realistic prior
modeling in complex problems. The weighted likelihood theory
offers a simple alternative to the empirical Bayesian approach
for many complex problems. At the same time, it links within
a single formal framework a diverse collection of statistical do-
mains, such as weighted least squares, nonparametric regres-
sion, meta-analysis, and shrinkage estimation. The weighted
likelihood principle comes with an underlying general theory
that extends Wald’s theory for maximum likelihood estimators,
as shown in [8].

We propose applying the method of weighted likelihood to
the problem of the robust estimation of the parameter of an
exponential distribution by assigning zero weights to observa-
tions with small likelihood. Interestingly, the weighted likeli-
hood method yields -trimmed mean type estimators of the
parameter of interest. The statistical asymptotic properties of
the WLE is developed, and a simulation study is conducted to
appraise the behavior of the proposed estimators for moderate
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sample sizes in comparison with the usual maximum likelihood
estimator.

An analogous idea appears in [9]. However, these authors
use a different type of likelihood equation in which they do not
weigh the likelihood of each observation, but rather the loga-
rithmic derivatives. Hence, the proposed estimation strategy is
a completely different approach.

II. THE PROPOSED WEIGHTED LIKELIHOOD ESTIMATOR

Let in general be a parametric family of cu-
mulative distribution functions with corresponding probability
density functions .

Estimators of obtained by maximizing the weighted log-
likelihood function

where depends on the sample ; are called
Weighted Likelihood Estimators (WLE) of . If all the weights
are equal to unity, then the resulting estimator is the usual
maximum likelihood estimator.

In this paper, we suggest a special choice of weights ; con-
nected with the theory of robust estimation, and based on the
maximum likelihood method with rejection of spurious obser-
vations. Let be the usual maximum likelihood
estimator of the parameter . The weight that corresponds to
the observation is assumed to be 1, if its estimated likelihood
is suffciently large, and 0 elsewhere; that is

if
elsewhere.

Consequently, we delete all improbable observations from the
sample (the choice of is discussed in the next paragraph). Not
surprisingly, it can be seen that in the case of a uni-modal proba-
bility density function we reject only extreme order statistics.
However, this may not be the case for multi-modal probability
density functions.

The proposed estimator of the parameter is defined as
the solution of the equation

where are the remaining observations in the
sample after the rejection procedure.

In the case of the exponential distribution, these estimators
are obtained by using in the above equations the appropriate
distribution, and density functions given by, respectively

where , .
Regarding the issue of the choice of , we suggest ;

where can be chosen as in the selection of the critical constant
in the criterion of elimination of outliers. Therefore, in the ex-
ponential case, is chosen from the condition of a small proba-
bility of rejection of an observation assuming that the observa-
tion has come from the above exponential cumulative distribu-

tion function . That is, is defined by the given small
probability in the equation

From this equation, we obtain . This
approximation of is reasonable because in our calculations we
will replace by the limit in probability (even almost surely)
of this estimator, i.e., by : So, we choose the value of as

Hence, we reject an observation from the sample if
. The probability is

user-dependent as in [9], and can be considered as a measure
of the level of desired robustness.

Example: Here we consider a data set from [1] (also used
by [10]) on the failure times of throttles. The data reports the
failure times of 25 units where time is measured in Kilome-
ters driven prior to failure. According to exponential model fit,
the estimated rate of failure for this data is . We
added 5% contamination from a different exponential with rate
.000 05. That is equivalent to augmenting the data by one ob-
servation. The estimate of after contamination is .
At level of robustness, the rejection criteria is

. Thus, only the one extra observation will be Re-
moved, and now .

Furthermore, to illustrate that the proposed procedure & the
-trimmed estimators do not necessarily coincide, we notice

that a .01-trimming procedure would not reject the contaminant
observation, whereas our robust procedure with would
reject it.

In the following section, we study the robustness properties of
the & by using contaminated (obstructing) distributions.

III. ROBUSTNESS OF THE PROPOSED ESTIMATOR

In general, define a set of obstructing distributions as

(1)
where denotes the cumulative distribution function with den-
sity function , , and : As it is commonly done
in the classical robustness studies (c.f., [11]), under the assump-
tion that the sample is taken from the distribution with fixed

one would find the limits in probability of the estimates &
for , and compare their biases. The values of for

which is less than , indicate the regions in the
parameter space where the estimate is to be favored over the
estimate . Along the same lines, we shall also compare the
quadratic risks of these estimates. The quadratic risk of an es-
timator is the expected (average) squared distance between the
estimator, and the parameter being estimated. In other words,
the quadratic risk is an omnibus measure of the performance of
an estimator which takes into consideration the bias & the pre-
cision (variance) of the estimator.

Let ; , and be any positive Numbers,
and put . Although in practice depends on the
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sample size, , here for the sake of brevity we assume that it is
a constant.

In the exponential distribution case, and in virtu of (1), we
assume that the sample is taken from the distri-
bution

Under this contaminated model, note that

and by the strong law of large numbers

On the other hand, the estimate converges in proba-
bility (even almost surely) to some value which can be
calculated as the limit of the expected values truncated at the
point of the distribution

, . That is

(2)

Indeed, these integrals can be evaluated in closed form. How-
ever the solution is cumbersome, thus rendering the comparison
of the relative biases & quite dif-
ficult. In fact

and the integral in the numerator of (2) equals

Therefore, an exact calculation of the gain in bias, and reduction
in risk of the proposed estimator as compared to the usual MLE,
may not be possible. Here we shall give only approximate anal-
ysis concerning these quantities under convenient assumptions,
such as

for some , or equivalently, . This requirement
is not restrictive at all, as can be seen from the simulation re-
sults in Section IV. In fact, in practice, is a constant, and is
bounded for all reasonable sample sizes.

Recall that we reject observations satisfying
, and note that

almost surely

The probability of rejecting an observation in the obstructed
model is asymptotically equal to

Hence, the asymptotic distribution of equals the distribution
of the -trimmed sample mean

of a random sample of size from the distribution con-
centrated on the interval (0, ). The probability density of this
distribution is positive only on this interval, and has the form

where .
Denote by , and the mathematical expecta-

tion, and variance, respectively, of a random variable relative
to the distribution with probability density function .
With the preliminaries accounted for, the first result can now be
presented.

Theorem 1: The maximum likelihood estimator under the
obstructing model has the relative bias

and the estimator has the relative bias

The above relation reveals that the relative bias of the pro-
posed estimator in comparison with relative bias of the MLE

decreases in the value by the order . There-
fore, it is apparent that the value of must be chosen as a
quantity of order ; otherwise the values of will be
under-estimated (negative bias). A possibility is to choose
from the relation , if the & can be ap-
propriately guessed. On the other hand, the difference between
the relative bias of , and that of is positive, meaning there
is always some gain in terms of bias reduction, as long as is
not too small compared to .

Next, we provide approximate expressions for the quadratic
risks of the proposed estimator.

Theorem 2: The maximum likelihood estimator has the
quadratic risk

(3)

and the estimator has the asymptotic representation of the
quadratic risk

(4)
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Fig. 1. The approximate relative risk E = R(�̂ )=R(� ) as function of �.
The line through y = 1 is the benchmark.

The relative efficiency of the estimator in comparison with
maximum likelihood estimator has the asymptotic represen-
tation

In passing, we note that more precise results can be obtained
based on the joint distribution of the extreme terms of the
sample, and the sample mean.

By examining the formula for , one notes that most of the
risk reduction will be achieved for small samples, and for small

as compared to the size of the sample. The following Fig. 1
shows such a pathology for , 60, and for small values.
From the graph, apparently, the gain in risk will decrease as in-
creases, or as increases, for fixed . However, the simulations
reported in the next section show a richer set of the parameters

, , over which the proposed estimator has lesser risk than
the MLE.

IV. MONTE-CARLO SIMULATIONS

For the purposes of simulation, we fix , ,
and . Recall that, if a random variable has the uniform
distribution on the interval [0, 1], then will have
the exponential distribution with parameter . We need this re-
sult for generating random numbers from the exponential distri-
bution.

We generate random numbers from the obstructed distribu-
tion

This procedure is organized in the following way. The main idea
is that, with probability , we need to generate a random
number from the exponential distribution with parameter

; and with probability , generate a random number from the
exponential distribution with parameter .

TABLE I
SIMULATED & ASYMPTOTIC BIAS FOR ESTIMATORS �̂ & � , FOR

n = 200 & � = 1:0

TABLE II
SIMULATED & ASYMPTOTIC RISK FOR ESTIMATORS �̂ & � , FOR

n = 200 & � = 1:0

TABLE III
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 30 & � = 1:0

TABLE IV
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 30 & � = 3:0

To achieve this, we generate a random number from the uni-
form distribution on the interval [0, 1], and compare with .
If , then take . Otherwise . Next,
generate a random number from the exponential distribution
with the parameter . The random number has the cumulative
distribution function . All the following simulation results
are based on 5000 replicates.

Tables I and II show for the extent to which the
simulated & the asymptotic biases, and risks of the proposed
estimator & the MLE agree. The asymptotic biases & risks are
calculated using the relations in Theorems 1 & 2. Note that the
risk of the estimator does not depend on . From the tables,
we see that the asymptotic results are accurate to the second
decimal digit except for small & in the case of bias, and for
large & in the case of risk.

To examine the performance of the proposed estimator in
terms of bias & risk, we reported in Tables III–XI the differ-
ences between the biases , and the risks

of the two estimators for different values of , ,



AHMED et al.: ROBUST WEIGHTED LIKELIHOOD ESTIMATION OF EXPONENTIAL PARAMETERS 393

TABLE V
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 30 & � = 5:0

TABLE VI
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 100 & � = 1:0

TABLE VII
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 100 & � = 3:0

TABLE VIII
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 100 & � = 5:0

TABLE IX
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 200 & � = 1:0

, and . These tables show the advantage of the estimator
in the majority of the cases considered. The pathology pointed
out in the previous section is clearly seen in these tables. For
instance, the gain in terms of risk reduction in favor of de-
creases as gets larger while fixing all the remaining param-
eters. Similar behavior can be observed for increasing while
keeping all other parameters fixed. Also, as intuitively expected,
the gain in terms of bias & risk in favor of the proposed esti-
mator increases as the parameter of the contaminating observa-
tions gets farther away from that of the main stream observations
(i.e., as becomes larger).

TABLE X
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 200 & � = 3:0

TABLE XI
DIFFERENCES BETWEEN BIASES Bias(�̂)�Bias(� ) & RISKS R(�̂)�R(� )

FOR n = 200 & � = 5:0

V. CONCLUSION

The estimation of the parameter of an exponential distribution
under contamination (i.e., in the presence of outliers) is quite rel-
evant to reliability, and various robust estimation strategies have
been suggested in the recent past. However, there is no one best
estimation strategy for all situations. In this paper we suggested
a robust weighted likelihood estimator (WLE) for this problem.
We examined the risk (a measure combining bias & variability)
of the estimator as compared to the usual maximum likelihood
estimator (MLE), and illustrated through approximate formulae
& simulations that WLE performs better than the MLE under
various contamination scenario.

The methodology of the paper, and the estimator proposed,
can be extended to the case of censored reliability data. Suppose
that the observed data is subject to independent Type I right-cen-
soring. Therefore the observed data comes in the form of pairs

, where , is the failure time,
is the censoring time, and if or zero other-
wise. Here, the MLE of is , where ,

are, respectively, the number of failed items,
and average of the observed times.

Defining , and following the arguments in Sec-
tion II, the criteria for rejection of extreme observations would
be . Although the proof may be more in-
volving, it is very plausible that the optimality & robustness
properties noticed for the estimator of this paper will also be
true for its counterpart for the censored failure data. Other types
of censoring can be handled in a similar way.

A further interesting generalization of the suggested method-
ology can be made to the case of the two-parameter Weibull
distribution. See [2] for detailed treatment of the Weibull distri-
bution & related issues. The criteria for a Weibull would
be to reject any observation such that

. One may expand this expression, and isolate or
neglect either the term or depending on the
values of , and then proceed as in the paper to obtain
the robustness level, and finally replace & by their MLE.
The robust estimators so obtained should then be compared to
other estimators of the Weibull parameters such as moment,
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least squares, probability weighted moment, and maximum like-
lihood estimators (see for example [12]–[14]. Models that are
modifications of the Weibull distribution, and their censored
versions, are also fertile areas to which the methods of the paper
can be extended [15]–[17].

APPENDIX A
PROOF OF THEOREM 1

For the asymptotic bias of the estimator , we have

with the remainder term
The MLE has mathematical expectation , and the

weighted likelihood estimator has mathematical expectation

Hence, the gain in bias has the order .

APPENDIX B
PROOF OF THEOREM 2

The proof is based on the following two elementary integrals

and

We mainly use the case .
The quadratic risk of is

Direct computations show that the second moment of the nor-
malized random variable with distribution equals

. Hence

Finally,

which proves (3).
We have

where

Further, , so

With some algebra, one can show that

with a remainder term of the order .
Hence we have established that

which completes the proof of (4).
The asymptotic relative efficiency of the estimator to the

estimator is
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