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There are several approaches to prove the strong law of large numbers.
The first approach is to use the method of subsequences. It is to prove the
strong law of large numbers for a subsequence and then extend it to the
whole sequence. This method is classical and has been used by numerous
authors (see, for example, Stout [8, p. 17]. If there exists a strictly increasing
sequence {m(k), k ≥ 1} of positive integers such that

Sm(k)

bm(k)
→ 0 a.s., max

m(k)≤n<m(k+1)

∣

∣

∣

∣

Sn

bn
−

Sm(k)

bm(k)

∣

∣

∣

∣

→ 0 a.s.,

then Sn/bn → 0 a.s.
The second approach is to use directly a Hájek–Rényi type maximal in-

equality. It is well known in probability theory that

Sn/bn → 0 a.s. ⇔ lim
m→∞

lim
N→∞

P
(

max
m≤n≤N

|Sn|/bn > ε
)

= 0

for all ε > 0. The Hájek–Rényi type inequality is to estimate the probability

P
(

max
m≤n≤N

|Sn|/bn > ε
)

.

Fazekas and Klesov [3] obtained a Hájek–Rényi type inequality for the mo-
ments and proved the strong law of large numbers. Their method has been
improved and generalized by many authors. Hu and Hu [5], Sung et al. [9],
and Tómács [11] have considered the rate of convergence in the strong law
of large numbers. Tómács and Ĺıbor [12] have used a Hájek–Rényi type
inequality for the probabilities instead of the moments.

The third approach is to use a complete convergence result. The concept
of complete convergence of a sequence of random variables was introduced by
Hsu and Robbins [4]. A sequence {Xn, n ≥ 1} of random variables converges
completely to the constant θ if

∞
∑

n=1

P (|Xn − θ| > ε) < ∞ for all ε > 0.

In view of the Borel–Cantelli lemma, this implies that Xn → θ a.s. Klesov
et al. [6] and Yang et al. [13] gave sufficient conditions on the complete con-
vergence to prove the strong law of large numbers.

In this paper, we give equivalent conditions for the strong law of large
numbers by using the method of subsequences. We also give sufficient condi-
tions on the complete convergence to prove the strong law of large numbers.
As corollaries, known results can be obtained.
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Abstract. Let {Xn, n ≥ 1} be a sequence of random variables and {bn,
n ≥ 1} a nondecreasing sequence of positive constants. No assumptions are im-
posed on the joint distributions of the random variables. Some sufficient condi-
tions are given under which limn→∞

∑
n

i=1
Xi/bn = 0 almost surely. Necessary

conditions for the strong law of large numbers are also given.

1. Introduction

Throughout this paper, let {Xn, n ≥ 1} be a sequence of random vari-
ables defined on a probability space (Ω,F , P ) and {bn, n ≥ 1} a nondecreas-
ing sequence of positive constants. Set Sn =

∑n
i=1 Xi, n ≥ 1 and S0 = 0.

The purpose of this paper is to prove the strong law of large numbers

lim
n→∞

Sn

bn
= 0 almost surely (a.s.).
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vergence to prove the strong law of large numbers.
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2. Main results

Throughout this section, let {Xn, n ≥ 1} be a sequence of random
variables, {bn, n ≥ 1} a nondecreasing sequence of positive constants, and
{m(k), k ≥ 1} a nondecreasing unbounded sequence of positive integers. No
assumptions are imposed on the joint distributions of the random variables.

The following theorem gives equivalent conditions for the strong law of
large numbers.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of random variables and

{bn, n ≥ 1} a nondecreasing unbounded sequence of positive constants. Sup-

pose that there exists a nondecreasing unbounded sequence {m(k), k ≥ 1} of

positive integers such that

0 < lim inf
k→∞

bm(k)

bm(k+1)
≤ lim sup

k→∞

bm(k)

bm(k+1)
< 1.

Then the following three statements are equivalent :
(i) Sn/bn → 0 a.s.,
(ii) maxm(k)≤n<m(k+1) |Sn − Sm(k)−1|/bm(k) → 0 a.s.,
(iii) max1≤i<m(k+1) |Si|/bm(k) → 0 a.s.

Proof. We first note that lim infk→∞ bm(k)/bm(k+1) > 0 is equivalent to
bm(k+1)/bm(k) = O(1).

(i) ⇒ (ii). Since 0 < bn ↑ and bm(k+1)/bm(k) = O(1), we have that

1

bm(k)
max

m(k)≤n<m(k+1)
|Sn − Sm(k)−1|(2.1)

≤
|Sm(k)−1|

bm(k)
+

1

bm(k)
max

m(k)≤n<m(k+1)
|Sn|

≤
|Sm(k)−1|

bm(k)−1
+

bm(k+1)

bm(k)
max

m(k)≤n<m(k+1)

|Sn|

bn

≤
|Sm(k)−1|

bm(k)−1
+O(1) max

m(k)≤n<m(k+1)

|Sn|

bn
.

Hence (i) implies that the right-hand side of (2.1) converges to zero a.s. and
so (ii) holds.

(ii) ⇒ (iii). We can assume, without loss of generality, that

sup
k≥1

bm(k)

bm(k+1)
= α < 1.
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Noting that

max
1≤i<m(k+1)

|Si| ≤ max
1≤i<m(1)

|Si|

+ max
m(1)≤i<m(2)

|Si − Sm(1)−1|+ · · ·+ max
m(k)≤i<m(k+1)

|Si − Sm(k)−1|,

we get that

(2.2)
1

bm(k)
max

1≤i<m(k+1)
|Si| ≤

1

bm(k)

k
∑

i=0

bm(i)Ti,

where

Ti = max
m(i)≤j<m(i+1)

|Sj − Sm(i)−1|/bm(i) and m(0) = 1.

For 0 ≤ i ≤ k,

bm(i)

bm(k)
=

bm(i)

bm(i+1)

bm(i+1)

bm(i+2)
· · ·

bm(k−1)

bm(k)
≤ αk−i.

It follows that

1

bm(k)

k
∑

i=0

bm(i) ≤
k

∑

i=0

αk−i ≤
1

1− α
.

Clearly we have that, for each i, bm(i)/bm(k) → 0 as k →∞, since 0 < bn ↑ ∞.
Hence, by the Toeplitz lemma, (ii) implies that the right-hand side of (2.2)
converges to zero a.s. and so (iii) holds.

(iii) ⇒ (i). For m(k) ≤ n < m(k + 1),

|Sn|

bn
≤ max

m(k)≤i<m(k+1)

|Si|

bi
≤

1

bm(k)
max

1≤i<m(k+1)
|Si|.

Hence (iii) implies (i). �

Remark 2.1. Under the additional assumption of independency of the
symmetric random variables, the following equivalence is well known (see,
for example, Loève [7, p. 264]).

Sn

bn
→ 0 a.s. ⇔

Sm(k) − Sm(k−1)

bm(k)
→ 0 a.s.

Chobanyan et al. [2] proved the equivalence of (i) and (ii) when bn = n.
Thanh [10] extended the result of Chobanyan et al. [2] to d-dimensional
array of random variables.
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As special cases of Theorem 2.1, the following corollaries can be obtained.

Corollary 2.1. The following three statements are equivalent :
(i) Sn/n → 0 a.s.,
(ii) max2k≤n<2k+1 |Sn − S2k−1|/2

k → 0 a.s.,

(iii) max1≤i<2k+1 |Si|/2
k → 0 a.s.

Proof. Let bn = n, n ≥ 1 and m(k) = 2k, k ≥ 1. Then the result fol-
lows directly from Theorem 2.1. �

Recall that a positive function l(x), defined on [0,∞), is said to be reg-
ularly varying with exponent δ if for all λ > 0,

lim
x→∞

l(λx)

l(x)
= λδ .

Corollary 2.2. Let l(x) be a positive nondecreasing regularly varying

function with exponent δ > 0. Then the following three statements are equiv-

alent :
(i) Sn/l(n) → 0 a.s.,
(ii) max2k≤n<2k+1 |Sn − S2k−1|/l(2

k) → 0 a.s.,

(iii) max1≤i<2k+1 |Si|/l(2
k) → 0 a.s.

Proof. Let bn = l(n), n ≥ 1 and m(k) = 2k, k ≥ 1. Then

bm(k)

bm(k+1)
=

l(2k)

l(2k+1)
→ 2−δ.

Hence the result follows directly from Theorem 2.1 �

The following lemma will be used in the proofs of Theorems 2.2 and 2.3.

Lemma 2.1. Let {m(k), k ≥ 1} be a nondecreasing unbounded sequence

of positive integers and let S = {k : m(k) < m(k+1)}. Let k1, k2, . . . denote
the elements of S in increasing order. Then the followings hold :

(i) {m(kj), j ≥ 1} is an increasing sequence of positive integers;
(ii) if kj < i ≤ kj+1, then m(i) = m(kj+1), in particular, m(kj + 1) =

m(kj+1).

The proof of Lemma 2.1 is obvious. Instead of giving the proof, we give
an example illustrating 2.1.

Example 2.1. Ifm(1) < m(2) = m(3) < m(4) =m(5) = m(6) < m(7) =
m(8) = m(9) < m(10) < · · · , then k1 = 1, k2 = 3, k3 = 6, k4 = 9, . . . , and
m(k1) < m(k2) < m(k3) < m(k4) < · · · .
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Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of random variables, {bn,
n ≥ 1} a nondecreasing sequence of positive constants, and {an, n ≥ 1} a se-

quence of nonnegative constants. Suppose that there exists a nondecreasing

unbounded sequence {m(k), k ≥ 1} of positive integers such that

bm(k+1)

bm(k)
= O(1) and lim inf

k→∞
m(k)<m(k+1)

m(k+1)−1
∑

i=m(k)

ai > 0.

If

∞
∑

n=1

anP
(

max
1≤i≤n

|Si| > bnε
)

< ∞ for all ε > 0,

then Sn/bn → 0 a.s.

Proof. Let

{k : m(k) < m(k + 1)} = {k1, k2, . . .} and uj =

m(kj+1)−1
∑

i=m(kj)

ai, j ≥ 1.

Then lim infj→∞ uj > 0 and so there exists a positive real number α > 0 and
a positive integer J such that uj ≥ α > 0 if j ≥ J . It follows that

∞ >
∞
∑

k=1,m(k)<m(k+1)

m(k+1)−1
∑

n=m(k)

anP
(

max
1≤i≤n

|Si| > bnε
)

=

∞
∑

j=1

m(kj+1)−1
∑

n=m(kj)

anP
(

max
1≤i≤n

|Si| > bnε
)

≥

∞
∑

j=1

P
(

max
1≤i≤m(kj)

|Si| > bm(kj+1)−1ε
)

uj

≥ α
∞
∑

j=J

P
(

max
1≤i≤m(kj)

|Si| > bm(kj+1)−1ε
)

.

Noting that m(kj + 1) = m(kj+1) (see Lemma 2.1), we have by the Borel–
Cantelli lemma that

(2.3)
1

bm(kj+1)−1
max

1≤i≤m(kj)
|Si| → 0 a.s.
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For m(kj) ≤ n < m(kj+1),

|Sn|

bn
≤

1

bm(kj)
max

m(kj)≤i<m(kj+1)
|Si| ≤

1

bm(kj)
max

1≤i≤m(kj+1)
|Si|(2.4)

≤
bm(kj+2)

bm(kj)

1

bm(kj+2)−1
max

1≤i≤m(kj+1)
|Si| ≤ O(1)

1

bm(kj+2)−1
max

1≤i≤m(kj+1)
|Si|.

The last inequality follows by the fact that

bm(kj+2)

bm(kj)
=

bm(kj+1)

bm(kj)

bm(kj+2)

bm(kj+1)
=

bm(kj+1)

bm(kj)

bm(kj+1+1)

bm(kj+1)
= O(1).

The right-hand side of (2.4) converges to 0 a.s. by (2.3) and so the result is
proved. �

Remark 2.2. As noted in the proof of Theorem 2.1, bm(k+1)/bm(k) =
O(1) is equivalent to lim infk→∞ bm(k)/bm(k+1) > 0.

Corollary 2.3. Let r > 0. If

(2.5)
∞
∑

n=1

1

n
P
(

max
1≤i≤n

|Si| > n1/rε
)

< ∞ for all ε > 0,

then Sn/n
1/r → 0 a.s.

Proof. Let bn = n1/r, an = 1/n, and m(k) = 2k. Then the conditions
of Theorem 2.2 are satisfied. Hence the result follows from Theorem 2.2. �

Remark 2.3. When 1 ≤ r < 2 and {Xn} is a sequence of i.i.d. random
variables with EX1 = 0, Marcinkiewicz and Zygmund proved the strong law
of large numbers

(2.6) E|X1|
r < ∞ ⇔ Sn/n

1/r → 0 a.s.

and Baum and Katz [1] proved the rate of convergence in the strong law of
large numbers

(2.7) E|X1|
r < ∞ ⇔

∞
∑

n=1

1

n
P
(

|Sn| > n1/rε
)

< ∞ for all ε > 0.

In fact, the following equivalence holds.

(2.8) E|X1|
r < ∞ ⇔

∞
∑

n=1

1

n
P
(

max
1≤i≤n

|Si| > n1/rε
)

< ∞ for all ε > 0.

From (2.6) and (2.8), we see that the converse of Corollary 2.3 holds.
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Corollary 2.4. Let r > 0. If

(2.9)
∞
∑

k=1

P
(

max
1≤i≤2k

|Si| > (2k)1/rε
)

< ∞ for all ε > 0,

then Sn/n
1/r → 0 a.s.

Proof. Let bn = n1/r, n ≥ 1 and m(k) = 2k, k ≥ 1. Define an = 1 if
n = m(k) and an = 0 otherwise. Then the conditions of Theorem 2.2 are
satisfied. Hence the result follows from Theorem 2.2. �

Remark 2.4. Condition (2.5) is equivalent to condition (2.9).

Corollary 2.5 (Yang et al. [13]). Let {bn, n ≥ 1} be a nondecreasing

sequence of positive constants satisfying b2n/bn = O(1). If

∞
∑

n=1

1

n
P
(

max
1≤i≤n

|Si| > bnε
)

< ∞ for all ε > 0,

then Sn/bn → 0 a.s.

Proof. Let an = 1/n, n ≥ 1 andm(k) = 2k, k ≥ 1. Then the conditions
of Theorem 2.2 are satisfied. Hence the result follows from Theorem 2.2. �

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of random variables and

{bn, n ≥ 1} a nondecreasing sequence of positive constants. Suppose that there
exists a nondecreasing unbounded sequence {m(k), k ≥ 1} of positive integers

satisfying

bm(k+1)−1

bm(k)
= O(1).

If

(2.10)
∞
∑

k=1
m(k)<m(k+1)

P
(

max
1≤i<m(k)

|Si| > bm(k)−1ε
)

< ∞ for all ε > 0,

then Sn/bn → 0 a.s.

Proof. Let k1, k2, . . . denote the elements of the set

{k : m(k) < m(k + 1)}

Acta Mathematica Hungarica

T.-C. HU, S. H. SUNG and A. VOLODIN418



Acta Mathematica Hungarica 150, 2016

8 T.-C. HU, S. H. SUNG and A. VOLODIN

Corollary 2.4. Let r > 0. If

(2.9)
∞
∑

k=1

P
(

max
1≤i≤2k

|Si| > (2k)1/rε
)

< ∞ for all ε > 0,

then Sn/n
1/r → 0 a.s.

Proof. Let bn = n1/r, n ≥ 1 and m(k) = 2k, k ≥ 1. Define an = 1 if
n = m(k) and an = 0 otherwise. Then the conditions of Theorem 2.2 are
satisfied. Hence the result follows from Theorem 2.2. �

Remark 2.4. Condition (2.5) is equivalent to condition (2.9).

Corollary 2.5 (Yang et al. [13]). Let {bn, n ≥ 1} be a nondecreasing

sequence of positive constants satisfying b2n/bn = O(1). If

∞
∑

n=1

1

n
P
(

max
1≤i≤n

|Si| > bnε
)

< ∞ for all ε > 0,

then Sn/bn → 0 a.s.

Proof. Let an = 1/n, n ≥ 1 andm(k) = 2k, k ≥ 1. Then the conditions
of Theorem 2.2 are satisfied. Hence the result follows from Theorem 2.2. �

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of random variables and

{bn, n ≥ 1} a nondecreasing sequence of positive constants. Suppose that there
exists a nondecreasing unbounded sequence {m(k), k ≥ 1} of positive integers

satisfying

bm(k+1)−1

bm(k)
= O(1).

If

(2.10)
∞
∑

k=1
m(k)<m(k+1)

P
(

max
1≤i<m(k)

|Si| > bm(k)−1ε
)

< ∞ for all ε > 0,

then Sn/bn → 0 a.s.

Proof. Let k1, k2, . . . denote the elements of the set

{k : m(k) < m(k + 1)}
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in increasing order. Observing that

∞
∑

k=1
m(k)<m(k+1)

P
(

max
1≤i<m(k)

|Si| > bm(k)−1ε
)

=
∞
∑

j=1

P
(

max
1≤i<m(kj)

|Si| > bm(kj)−1ε
)

,

(2.10) implies by the Borel–Cantelli lemma that

(2.11)
1

bm(kj)−1
max

1≤i<m(kj)
|Si| → 0 a.s.

For m(kj) ≤ n < m(kj+1),

|Sn|

bn
≤

1

bm(kj)
max

m(kj)≤i<m(kj+1)
|Si| ≤

1

bm(kj)
max

1≤i<m(kj+1)
|Si|(2.12)

=
bm(kj+1)−1

bm(kj)

1

bm(kj+1)−1
max

1≤i<m(kj+1)
|Si| (since m(kj + 1) = m(kj+1))

≤ O(1)
1

bm(kj+1)−1
max

1≤i<m(kj+1)
|Si|.

The right-hand side of (2.12) converges to 0 a.s. by (2.11) and so the result
is proved. �

Remark 2.5. The interested reader may notice that the conditions on
the sequence {bn, n ≥ 1} in Theorems 2.2 and 2.3 look very similar. In fact,
the condition in Theorem 2.2 is stronger than that in Theorem 2.3. In many
cases, the two conditions are equivalent. Generally, it is not easy to check
the condition in Theorem 2.2, while the condition in Theorem 2.3 is easier
to check.

Using Theorem 2.3, we can obtain the following corollary.

Corollary 2.6 (Fazekas and Klesov [3]). Let r > 0. Let {bn, n ≥ 1} be
a nondecreasing unbounded sequence of positive constants and {αn, n ≥ 1} a
sequence of nonnegative constants. Suppose that for all n ≥ 1,

(2.13) E
(

max
1≤i≤n

|Si|
r
)

≤
n
∑

i=1

αi.

If
∑∞

n=1 αn/b
r
n < ∞, then Sn/bn → 0 a.s.

Proof. For k ≥ 1, definem(k) = inf{i : bi ≥ 2k}. Then {m(k), k ≥ 1} is
a nondecreasing unbounded sequence of positive integers. By the definition
of m(k), we get bm(k+1)−1/bm(k) < 2. Let k1, k2, . . . denote the elements of
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the set {k : m(k) < m(k+1)} in increasing order. Then we have by Markov’s
inequality and (2.13) that

∞
∑

k=1
m(k)<m(k+1)

P
(

max
1≤i<m(k)

|Si| > bm(k)−1ε
)

(2.14)

=
∞
∑

j=1

P
(

max
1≤i<m(kj)

|Si| > bm(kj)−1ε
)

≤
1

εr

∞
∑

j=1

1

brm(kj)−1

E
(

max
1≤i<m(kj)

|Si|
r
)

≤
1

εr

∞
∑

j=1

1

brm(kj)−1

m(kj)−1
∑

i=1

αi =
1

εr

∞
∑

i=1

αi

∑

{j:m(kj)−1≥i}

1/brm(kj)−1.

Now we estimate
∑

{j:m(kj)−1≥i} 1/b
r
m(kj)−1. Let j1 = min{j:m(kj)− 1 ≥ i}.

Then i ≤ m(kj1)− 1 < m(kj1) and so bi ≤ bm(kj1)−1 and bi < 2kj1 . It follows
that

∑

{j:m(kj)−1≥i}

1

brm(kj)−1

=
∞
∑

j=j1

1

brm(kj)−1

=
1

brm(kj1)−1

+
∞
∑

j=j1

1

brm(kj+1)−1

(2.15)

≤
1

brm(kj1)−1

+
∞
∑

j=j1

1

brm(kj)

≤
1

brm(kj1)−1

+
∞
∑

j=j1

1

2rkj

=
1

brm(kj1)−1

+
2r

(2r − 1)2rkj1
≤

(

1 +
2r

2r − 1

) 1

bri
.

Substituting (2.15) into (2.14), condition (2.10) of Theorem 2.3 is satisfied.
Hence the result follows from Theorem 2.3. �

Corollary 2.7 (Tómács and Ĺıbor, [12]). Let r > 0. Let {bn, n ≥ 1}
be a nondecreasing unbounded sequence of positive constants and {αn, n ≥ 1}
a sequence of nonnegative constants. Suppose that for any n ≥ 1 and any
ε > 0,

(2.16) P
(

max
1≤i≤n

|Si| > ε
)

≤ ε−r
n
∑

i=1

αi.

If
∑∞

n=1 αn/b
r
n < ∞, then Sn/bn → 0 a.s.

Proof. In this case, equation (2.14) in the proof of Corollary 2.6 holds
without the first inequality concerning the moments. The rest of the proof
is same as that of Corollary 2.6 except using (2.16) instead of (2.13) and is
omitted. �
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the set {k : m(k) < m(k+1)} in increasing order. Then we have by Markov’s
inequality and (2.13) that

∞
∑

k=1
m(k)<m(k+1)

P
(

max
1≤i<m(k)

|Si| > bm(k)−1ε
)

(2.14)

=
∞
∑

j=1

P
(

max
1≤i<m(kj)

|Si| > bm(kj)−1ε
)

≤
1

εr

∞
∑

j=1

1

brm(kj)−1

E
(

max
1≤i<m(kj)

|Si|
r
)

≤
1

εr

∞
∑

j=1

1

brm(kj)−1

m(kj)−1
∑

i=1

αi =
1

εr

∞
∑

i=1

αi

∑

{j:m(kj)−1≥i}

1/brm(kj)−1.

Now we estimate
∑

{j:m(kj)−1≥i} 1/b
r
m(kj)−1. Let j1 = min{j:m(kj)− 1 ≥ i}.

Then i ≤ m(kj1)− 1 < m(kj1) and so bi ≤ bm(kj1)−1 and bi < 2kj1 . It follows
that

∑

{j:m(kj)−1≥i}

1

brm(kj)−1

=
∞
∑

j=j1

1

brm(kj)−1

=
1

brm(kj1)−1

+
∞
∑

j=j1

1

brm(kj+1)−1

(2.15)

≤
1

brm(kj1)−1

+
∞
∑

j=j1

1

brm(kj)

≤
1

brm(kj1)−1

+
∞
∑

j=j1

1

2rkj

=
1

brm(kj1)−1

+
2r

(2r − 1)2rkj1
≤

(

1 +
2r

2r − 1

) 1

bri
.

Substituting (2.15) into (2.14), condition (2.10) of Theorem 2.3 is satisfied.
Hence the result follows from Theorem 2.3. �

Corollary 2.7 (Tómács and Ĺıbor, [12]). Let r > 0. Let {bn, n ≥ 1}
be a nondecreasing unbounded sequence of positive constants and {αn, n ≥ 1}
a sequence of nonnegative constants. Suppose that for any n ≥ 1 and any
ε > 0,

(2.16) P
(

max
1≤i≤n

|Si| > ε
)

≤ ε−r
n
∑

i=1

αi.

If
∑∞

n=1 αn/b
r
n < ∞, then Sn/bn → 0 a.s.

Proof. In this case, equation (2.14) in the proof of Corollary 2.6 holds
without the first inequality concerning the moments. The rest of the proof
is same as that of Corollary 2.6 except using (2.16) instead of (2.13) and is
omitted. �
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