ON THE WEAK LAW FOR RANDOMLY INDEXED PARTIAL SUMS FOR ARRAYS

Dug Hun Hong, Soo Hak Sung, and Andrei I. Volodin

Abstract. For randomly indexed sums of the form $\sum_{i=1}^{N_{n}}\left(X_{n i}-\right.$ $\left.c_{n i}\right) / b_{n}$, where $\left\{X_{n i}, i \geq 1, n \geq 1\right\}$ are random variables, $\left\{N_{n}, n \geq\right.$ $1\}$ are positive integer-valued random variables, $\left\{c_{n i}, i \geq 1, n \geq 1\right\}$ are suitable conditional expectations and $\left\{b_{n}, n \geq 1\right\}$ are positive constants, we establish a general weak law of large numbers. Our result improves that of Hong [3].

Introduction

Let $\left\{X_{n i}, i \geq 1, n \geq 1\right\}$ be an array of random variables on the probability space (Ω, \mathcal{F}, P) and set $\mathcal{F}_{n, j}=\sigma\left\{X_{n i}, 1 \leq i \leq j\right\}, j \geq 1, n \geq$ 1 , and $\mathcal{F}_{n, 0}=\{\emptyset, \Omega\}, n \geq 1$. Let $\left\{N_{n}, n \geq 1\right\}$ be a sequence of positive integer-valued random variables. In this paper, we establish a general weak law of large numbers(WLLN) of the form

$$
\begin{equation*}
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-c_{n i}\right)}{b_{n}} \rightarrow 0 \quad \text { in probability } \tag{1}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\left\{c_{n i}, i \geq 1, n \geq 1\right\}$ is an array of random variables and $\left\{b_{n}, n \geq 1\right\}$ is a sequence of positive constants. Hong [3] obtained a WLLN of the following form under the assumption that $N_{n} / b_{n} \rightarrow c$ in probability as $n \rightarrow \infty$, where $c(c>0)$ is constant and

$$
\begin{equation*}
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-c_{n i}\right)}{N_{n}} \rightarrow 0 \quad \text { in probability } \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$. Note that (1) not only implies (2) under the condition that $N_{n} / b_{n} \rightarrow c(c \neq 0)$ in probability as $n \rightarrow \infty$ but also gives the following

[^0]generalization
$$
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-c_{n i}\right)}{\phi\left(N_{n}\right)} \rightarrow 0 \quad \text { in probability }
$$
as $n \rightarrow \infty$ under the condition $\phi\left(N_{n}\right) / b_{n} \rightarrow c(c \neq 0)$ in probability as $n \rightarrow \infty$, where $\phi: N \rightarrow R$ is a real function. When $\left\{N_{n}, n \geq 1\right\}$ is a sequence of positive integers, the WLLNs of the form (1) have been established by Gut [2], Hong and Oh [4], Kowalski and Rychlik [5], and Sung [6]. Our result is a generalization and improvement of Hong's result [3]. The proof owes much to those of earlier articles.

Main results

To prove the main results, we need the following lemma.
Lemma 1. Let $\left\{X_{n i}, i \geq 1, n \geq 1\right\}$ be an array of random variables, and $\left\{b_{n}, n \geq 1\right\}$ be a sequence of constants satisfying

$$
\begin{equation*}
b_{n} / n=O(1) . \tag{3}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>b_{j}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

as $j \rightarrow \infty$ uniformly in n and m. Then

$$
\frac{1}{m} \sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>j\right) \rightarrow 0
$$

as $j \rightarrow \infty$ uniformly in n and m.
Proof. By (3), there exists a constant C such that $b_{n} \leq C n$ for n sufficiently large. It follows that

$$
\begin{aligned}
\sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>j\right) & =\sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>C \frac{j}{C}\right) \\
& \leq \sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>C\left[\frac{j}{C}\right]\right) \leq \sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>b_{[j / C]}\right) \\
& =\sum_{i=1}^{m} \frac{j}{[j / C]}\left[\frac{j}{C}\right] P\left(\left|X_{n i}\right|>b_{[j / C]}\right),
\end{aligned}
$$

where $[a]$ denotes the integer part of a. If $j \geq 2 C$, then

$$
\frac{j}{[j / C]} \leq \frac{j}{j / C-1}=\frac{j C}{j-C} \leq \frac{j C}{j / 2}=2 C
$$

Thus we have for $j \geq 2 C$

$$
\frac{1}{m} \sum_{i=1}^{m} j P\left(\left|X_{n i}\right|>j\right) \leq \frac{2 C}{m} \sum_{i=1}^{m}\left[\frac{j}{C}\right] P\left(\left|X_{n i}\right|>b_{[j / C]}\right)
$$

and so the result is proved by (4).
Now, we state and prove our main results.

THEOREM 2. Let $\left\{X_{n i}, i \geq 1, n \geq 1\right\}$ be an array of random variables, and $\left\{b_{n}, n \geq 1\right\}$ be a sequence of constants satisfying (3) and $0<b_{n} \rightarrow$ ∞. Let $\left\{N_{n}, n \geq 1\right\}$ be a sequence of positive integer-valued random variables such that

$$
\begin{equation*}
P\left(N_{n}>k b_{n}\right)=o(1) \tag{5}
\end{equation*}
$$

for some positive integer k. Suppose that (4) holds. Then

$$
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-E\left(X_{n i} I\left(\left|X_{n i}\right| \leq b_{n}\right) \mid \mathcal{F}_{n, i-1}\right)\right)}{b_{n}} \rightarrow 0 \quad \text { in probability }
$$

as $n \rightarrow \infty$.
Proof. Let $X_{n i}^{\prime}=X_{n i} I\left(\left|X_{n i}\right| \leq b_{n}\right)$ for $i \geq 1, n \geq 1$. Then we have by (3), (4), and (5) that

$$
\begin{aligned}
P\left(\left|\sum_{i=1}^{N_{n}} X_{n i}-\sum_{i=1}^{N_{n}} X_{n i}^{\prime}\right|\right. & \left.>b_{n} \epsilon\right) \\
& \leq P\left(N_{n}>k b_{n}\right)+P\left(\cup_{i=1}^{k b_{n}}\left(X_{n i} \neq X_{n i}^{\prime}\right)\right) \\
& \leq o(1)+\frac{k b_{n}}{n} \frac{1}{k b_{n}} \sum_{i=1}^{k b_{n}} n P\left(\left|X_{n i}\right|>b_{n}\right)=o(1)
\end{aligned}
$$

Thus

$$
\frac{\sum_{i=1}^{N_{n}} X_{n i}-\sum_{i=1}^{N_{n}} X_{n i}^{\prime}}{b_{n}} \rightarrow 0 \quad \text { in probability }
$$

as $n \rightarrow \infty$, and so it suffices to show that

$$
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}^{\prime}-E\left(X_{n i}^{\prime} \mid \mathcal{F}_{n, i-1}\right)\right)}{b_{n}} \rightarrow 0 \quad \text { in probability }
$$

as $n \rightarrow \infty$. For $n \geq 1$ and $m \geq 1$, denote:

$$
B_{m}^{n}=\left\{\left|\sum_{i=1}^{m}\left(X_{n i}^{\prime}-E\left(X_{n i}^{\prime} \mid \mathcal{F}_{n, i-1}\right)\right)\right|>b_{n} \epsilon\right), D_{n}=\cup_{m=1}^{k b_{n}} B_{m}^{n}
$$

Then by (5)

$$
P\left(B_{N_{n}}^{n}\right) \leq P\left(B_{N_{n}}^{n}, N_{n} \leq k b_{n}\right)+P\left(N_{n}>k b_{n}\right) \leq P\left(D_{n}\right)+o(1)
$$

and hence it is sufficient to show that $P\left(D_{n}\right)=o(1)$. Since $\left\{X_{n i}^{\prime}-\right.$ $\left.E\left(X_{n i}^{\prime} \mid \mathcal{F}_{n, i-1}\right), 1 \leq i \leq k b_{n}\right\}$ is a martingale difference sequence, the Hájek-Rényi inequality(see Theorem 7.4.8 in [1]) implies

$$
\begin{aligned}
P\left(D_{n}\right) & =P\left(\max _{1 \leq m \leq k b_{n}}\left|\sum_{i=1}^{m}\left(X_{n i}^{\prime}-E\left(X_{n i}^{\prime} \mid \mathcal{F}_{n, i-1}\right)\right)\right|>b_{n} \epsilon\right) \\
& \leq \frac{1}{b_{n}^{2} \epsilon^{2}} \sum_{i=1}^{k b_{n}} E\left(X_{n i}^{\prime}-E\left(X_{n i}^{\prime} \mid \mathcal{F}_{n, i-1}\right)\right)^{2} \leq \frac{1}{b_{n}^{2} \epsilon^{2}} \sum_{i=1}^{k b_{n}} E\left|X_{n i}^{\prime}\right|^{2}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\sum_{i=1}^{k b_{n}} E\left|X_{n i}^{\prime}\right|^{2}= & \sum_{i=1}^{k b_{n}} \sum_{j=1}^{b_{n}} E\left|X_{n i}\right|^{2} I\left(j-1<\left|X_{n i}\right| \leq j\right) \\
\leq & \sum_{i=1}^{k b_{n}} \sum_{j=1}^{b_{n}} j^{2} P\left(j-1<\left|X_{n i}\right| \leq j\right) \\
= & \sum_{i=1}^{k b_{n}} \sum_{j=1}^{b_{n}} j^{2}\left[P\left(\left|X_{n i}\right|>j-1\right)-P\left(\left|X_{n i}\right|>j\right)\right] \\
= & \sum_{i=1}^{k b_{n}}\left[P\left(\left|X_{n i}\right|>0\right)-b_{n}^{2} P\left(\left|X_{n i}\right|>b_{n}\right)\right. \\
& \left.+\sum_{j=1}^{b_{n}-1}\left((j+1)^{2}-j^{2}\right) P\left(\left|X_{n i}\right|>j\right)\right] \\
\leq & k b_{n}+\sum_{i=1}^{k b_{n}} \sum_{j=1}^{b_{n}-1}(2 j+1) P\left(\left|X_{n i}\right|>j\right)
\end{aligned}
$$

By Lemma 1, we have

$$
\lim _{j \rightarrow \infty} \sup _{n \geq 1} \frac{1}{k b_{n}} \sum_{i=1}^{k b_{n}} j P\left(\left|X_{n i}\right|>j\right)=0
$$

Thus by the Toeplitz lemma we have

$$
\begin{aligned}
& \frac{1}{b_{n}^{2}} \sum_{i=1}^{k b_{n}} \sum_{j=1}^{b_{n}-1}(2 j+1) P\left(\left|X_{n i}\right|>j\right) \\
= & \frac{k}{b_{n}} \sum_{j=1}^{b_{n}-1} \frac{2 j+1}{j} \frac{1}{k b_{n}} \sum_{i=1}^{k b_{n}} j P\left(\left|X_{n i}\right|>j\right) \\
= & o(1),
\end{aligned}
$$

which implies $P\left(D_{n}\right)=o(1)$, since $b_{n} \rightarrow \infty$.
Corollary 3. Let $\left\{X_{n i}\right\}$, $\left\{b_{n}\right\}$, and $\left\{N_{n}\right\}$ be as in Theorem 2 except that condition (5) in Theorem 2 is replaced by

$$
\begin{equation*}
N_{n} / b_{n} \rightarrow c \quad \text { in probability } \tag{6}
\end{equation*}
$$

as $n \rightarrow \infty$, where $c \neq 0$. Then

$$
\frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-E\left(X_{n i} I\left(\left|X_{n i}\right| \leq b_{n}\right) \mid \mathcal{F}_{n, i-1}\right)\right)}{N_{n}} \rightarrow 0 \quad \text { in probability }
$$

as $n \rightarrow \infty$.
Proof. Take a positive integer k such that $c+\epsilon \leq k$. It follows from (6) that

$$
P\left(N_{n}>k b_{n}\right) \leq P\left(\left|\frac{N_{n}}{b_{n}}-c\right|>\epsilon\right)=o(1) .
$$

Thus by Theorem 2 we have

$$
\begin{aligned}
& \frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-E\left(X_{n i} I\left(\left|X_{n i}\right| \leq b_{n}\right) \mid \mathcal{F}_{n, i-1}\right)\right)}{N_{n}} \\
& =\frac{b_{n}}{N_{n}} \frac{\sum_{i=1}^{N_{n}}\left(X_{n i}-E\left(X_{n i} I\left(\left|X_{n i}\right| \leq b_{n}\right) \mid \mathcal{F}_{n, i-1}\right)\right)}{b_{n}} \rightarrow 0 \quad \text { in probability }
\end{aligned}
$$

as $n \rightarrow \infty$.
Remark. Hong [3] proved Corollary 3 under the stronger conditions that

$$
\begin{equation*}
\frac{b_{n}}{n} \downarrow, \quad \frac{b_{n}^{2}}{n} \uparrow \infty, \quad \text { and } \quad \sum_{i=1}^{n} \frac{b_{i}^{2}}{i^{2}}=O\left(\frac{b_{n}^{2}}{n}\right) . \tag{7}
\end{equation*}
$$

Note that the first condition of (7) implies (3) and the second condition implies $b_{n} \rightarrow \infty$.

References

[1] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 3rd ed., 1997.
[2] A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), 49-52.
[3] D. H. Hong, On the weak law of large numbers for randomly indexed partial sums for arrays, Statist. Probab. Lett. 28 (1996), 127-130.
[4] D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), 55-57.
[5] P. Kowalski and Z. Rychlik, On the weak law of large numbers for randomly indexed partial sums for arrays, Ann. Univ. Mariae Curie-Sklodovska Sect. A LI. 1 (1997), 109-119.
[6] S. H. Sung, Weak law of large numbers for arrays, Statist. Probab. Lett. 38 (1998), 101-105.

Dug Hun Hong
School of Mech. and Autom. Engin.
Catholic University of Taegu
Kyunbuk 713-702, South Korea
E-mail: dhhong@cuth.cataegu.ac.kr
Soo Hak Sung
Department of Applied Mathematics
Pai Chai University
Taejon 302-735, South Korea
E-mail: sungsh@www.paichai.ac.kr
Andrei I. Volodin
Department of Mathematics and Stat.
Regina University
Regina, Saskatchewan S4S 0A2, Canada
E-mail: volodin@math.uregina.ca

[^0]: Received December 20, 2000.
 2000 Mathematics Subject Classification: 60F05, 60G42.
 Key words and phrases: weak law of large numbers, convergence in probability, arrays, randomly indexed sums, martingale difference sequences.

