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ON THE WEAK LAW FOR RANDOMLY
INDEXED PARTIAL SUMS FOR ARRAYS

Dug Hun Hong, Soo Hak Sung, and Andrei I. Volodin

Abstract. For randomly indexed sums of the form
PNn

i=1(Xni −
cni)/bn, where {Xni, i ≥ 1, n ≥ 1} are random variables, {Nn, n ≥
1} are positive integer-valued random variables, {cni, i ≥ 1, n ≥ 1}
are suitable conditional expectations and {bn, n ≥ 1} are positive
constants, we establish a general weak law of large numbers. Our
result improves that of Hong [3].

Introduction

Let {Xni, i ≥ 1, n ≥ 1} be an array of random variables on the
probability space (Ω,F , P ) and set Fn,j = σ{Xni, 1 ≤ i ≤ j}, j ≥ 1, n ≥
1, and Fn,0 = {∅,Ω}, n ≥ 1. Let {Nn, n ≥ 1} be a sequence of positive
integer-valued random variables. In this paper, we establish a general
weak law of large numbers(WLLN) of the form∑Nn

i=1(Xni − cni)
bn

→ 0 in probability(1)

as n → ∞, where {cni, i ≥ 1, n ≥ 1} is an array of random variables
and {bn, n ≥ 1} is a sequence of positive constants. Hong [3] obtained a
WLLN of the following form under the assumption that Nn/bn → c in
probability as n→∞, where c (c > 0) is constant and∑Nn

i=1(Xni − cni)
Nn

→ 0 in probability(2)

as n → ∞. Note that (1) not only implies (2) under the condition that
Nn/bn → c (c 6= 0) in probability as n→∞ but also gives the following
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generalization ∑Nn
i=1(Xni − cni)
φ(Nn)

→ 0 in probability

as n → ∞ under the condition φ(Nn)/bn → c (c 6= 0) in probability as
n → ∞, where φ : N → R is a real function. When {Nn, n ≥ 1} is
a sequence of positive integers, the WLLNs of the form (1) have been
established by Gut [2], Hong and Oh [4], Kowalski and Rychlik [5], and
Sung [6]. Our result is a generalization and improvement of Hong’s
result [3]. The proof owes much to those of earlier articles.

Main results

To prove the main results, we need the following lemma.

Lemma 1. Let {Xni, i ≥ 1, n ≥ 1} be an array of random variables,
and {bn, n ≥ 1} be a sequence of constants satisfying

bn/n = O(1).(3)

Suppose that

1
m

m∑
i=1

jP (|Xni| > bj)→ 0(4)

as j →∞ uniformly in n and m. Then

1
m

m∑
i=1

jP (|Xni| > j)→ 0

as j →∞ uniformly in n and m.

Proof. By (3), there exists a constant C such that bn ≤ Cn for n
sufficiently large. It follows that

m∑
i=1

jP (|Xni| > j) =
m∑

i=1

jP (|Xni| > C
j

C
)

≤
m∑

i=1

jP (|Xni| > C[
j

C
]) ≤

m∑
i=1

jP (|Xni| > b[j/C])

=
m∑

i=1

j

[j/C]
[
j

C
]P (|Xni| > b[j/C]),
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where [a] denotes the integer part of a. If j ≥ 2C, then

j

[j/C]
≤ j

j/C − 1
=

jC

j − C
≤ jC

j/2
= 2C.

Thus we have for j ≥ 2C

1
m

m∑
i=1

jP (|Xni| > j) ≤ 2C
m

m∑
i=1

[
j

C
]P (|Xni| > b[j/C]),

and so the result is proved by (4).

Now, we state and prove our main results.

Theorem 2. Let {Xni, i ≥ 1, n ≥ 1} be an array of random variables,
and {bn, n ≥ 1} be a sequence of constants satisfying (3) and 0 < bn →
∞. Let {Nn, n ≥ 1} be a sequence of positive integer-valued random
variables such that

P (Nn > kbn) = o(1)(5)

for some positive integer k. Suppose that (4) holds. Then∑Nn
i=1(Xni − E(XniI(|Xni| ≤ bn)|Fn,i−1))

bn
→ 0 in probability

as n→∞.

Proof. Let X ′ni = XniI(|Xni| ≤ bn) for i ≥ 1, n ≥ 1. Then we have
by (3), (4), and (5) that

P (|
Nn∑
i=1

Xni −
Nn∑
i=1

X ′ni| > bnε)

≤ P (Nn > kbn) + P (∪kbn
i=1(Xni 6= X ′ni))

≤ o(1) +
kbn
n

1
kbn

kbn∑
i=1

nP (|Xni| > bn) = o(1).

Thus ∑Nn
i=1Xni −

∑Nn
i=1X

′
ni

bn
→ 0 in probability

as n→∞, and so it suffices to show that∑Nn
i=1(X ′ni − E(X ′ni|Fn,i−1))

bn
→ 0 in probability
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as n→∞. For n ≥ 1 and m ≥ 1, denote:

Bn
m = {|

m∑
i=1

(X ′ni − E(X ′ni|Fn,i−1))| > bnε), Dn = ∪kbn
m=1B

n
m.

Then by (5)

P (Bn
Nn

) ≤ P (Bn
Nn
, Nn ≤ kbn) + P (Nn > kbn) ≤ P (Dn) + o(1),

and hence it is sufficient to show that P (Dn) = o(1). Since {X ′ni −
E(X ′ni|Fn,i−1), 1 ≤ i ≤ kbn} is a martingale difference sequence, the
Hájek-Rényi inequality(see Theorem 7.4.8 in [1]) implies

P (Dn) = P ( max
1≤m≤kbn

|
m∑

i=1

(X ′ni −E(X ′ni|Fn,i−1))| > bnε)

≤ 1
b2nε

2

kbn∑
i=1

E(X ′ni − E(X ′ni|Fn,i−1))2 ≤ 1
b2nε

2

kbn∑
i=1

E|X ′ni|2.

Moreover,
kbn∑
i=1

E|X ′ni|2 =
kbn∑
i=1

bn∑
j=1

E|Xni|2I(j − 1 < |Xni| ≤ j)

≤
kbn∑
i=1

bn∑
j=1

j2P (j − 1 < |Xni| ≤ j)

=
kbn∑
i=1

bn∑
j=1

j2[P (|Xni| > j − 1)− P (|Xni| > j)]

=
kbn∑
i=1

[P (|Xni| > 0)− b2nP (|Xni| > bn)

+
bn−1∑
j=1

((j + 1)2 − j2)P (|Xni| > j)]

≤ kbn +
kbn∑
i=1

bn−1∑
j=1

(2j + 1)P (|Xni| > j).

By Lemma 1, we have

lim
j→∞

sup
n≥1

1
kbn

kbn∑
i=1

jP (|Xni| > j) = 0.
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Thus by the Toeplitz lemma we have

1
b2n

kbn∑
i=1

bn−1∑
j=1

(2j + 1)P (|Xni| > j)

=
k

bn

bn−1∑
j=1

2j + 1
j

1
kbn

kbn∑
i=1

jP (|Xni| > j)

= o(1),

which implies P (Dn) = o(1), since bn →∞.

Corollary 3. Let {Xni}, {bn}, and {Nn} be as in Theorem 2 except
that condition (5) in Theorem 2 is replaced by

Nn/bn → c in probability(6)

as n→∞, where c 6= 0. Then∑Nn
i=1(Xni −E(XniI(|Xni| ≤ bn)|Fn,i−1))

Nn
→ 0 in probability

as n→∞.

Proof. Take a positive integer k such that c+ ε ≤ k. It follows from
(6) that

P (Nn > kbn) ≤ P (|Nn

bn
− c| > ε) = o(1).

Thus by Theorem 2 we have∑Nn
i=1(Xni − E(XniI(|Xni| ≤ bn)|Fn,i−1))

Nn

=
bn
Nn

∑Nn
i=1(Xni − E(XniI(|Xni| ≤ bn)|Fn,i−1))

bn
→ 0 in probability

as n→∞.

Remark. Hong [3] proved Corollary 3 under the stronger conditions
that

bn
n
↓, b2n

n
↑ ∞, and

n∑
i=1

b2i
i2

= O(
b2n
n

).(7)

Note that the first condition of (7) implies (3) and the second condition
implies bn →∞.
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