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L1-Convergence of Weighted Sums 929

1. Introduction

Pyke and Root [5] proved the following result: Let �X�Xn� n ≥ 1� be a sequence of
independent identically distributed random variables with E�X� < �, then

lim
n→�E

∣∣∣∣n−1
n∑

i=1

�Xi − EXi�

∣∣∣∣ = 0�

Note that Pyke and Root [5] proved a more general result, that is, Lr-
convergence, but this is irrelevant to the present article since we are mostly
concerned with L1-convergence. The result above has been generalized in different
directions: for example, for martingale differences and nonidentically distributed
random variables. Of course, in the case of nonidentically distributed random
variables, the moment condition E�X� < � is replaced by Cesàro uniform
integrability (see [1, 3]). In the case of independent or martingale difference
sequences of random variables, the proofs are based on the following famous
Marcinkiewicz-Zygmund’s inequality:

E

∣∣∣∣
n∑

i=1

Yi

∣∣∣∣
p

≤ Cp

n∑
i=1

E�Yi�p� for all n ≥ 1�

where �Yn� n ≥ 1� is a sequence of independent random variables or martingale
difference with zero mean, 1 < p ≤ 2, and Cp > 0 depends only on p.

But for some dependent random variables, such as pairwise independent
random variables, pairwise negatively quadrant dependent random variables, �-
mixing sequence, �-mixing sequence, etc., we only know that this inequality
holds for exponent p = 2. According to our knowledge, no one discusses the
Marcinkiewicz–Zygmund inequality for these classes of dependent random variables
for exponents 1 < p < 2. In this article, we find that only exponent 2 for the
Marcinkiewicz–Zygmund inequality is important for the proofs of these results and
provide some laws of large numbers in the L1 sense for the case of dependent
random variables under the assumption of h-integrability.

Now we specify some notation that will be used in this article. In the following,
let �un� n ≥ 1� and �vn� n ≥ 1� be two sequences of integers (not necessary positive
or finite) such that vn > un for all n ≥ 1, vn − un → � as n → �. We note that in
Theorem 2, Corollary 5, and Corollary 6 we require that the sequences �un� n ≥
1� and �vn� n ≥ 1� are finite, that is, +� > vn > un > −�. Let �h�n�� n ≥ 1� be a
sequence of positive constants increasing to infinity and let �ank� un ≤ k ≤ vn� n ≥ 1�
be an array of constants such that

h�n� max
vn≤k≤un

�ank� → 0 as n → �� (1)

For an array of random variables �Xnk� un ≤ k ≤ vn� n ≥ 1�, denote Sn =∑vn
k=un

ank�Xnk − EXnk�, n ≥ 1.
Next, for un ≤ k ≤ vn� n ≥ 1 we denote

Ynk = XnkI	�Xnk� ≤ h�n�
− h�n�I	Xnk < −h�n�
+ h�n�I	Xnk > h�n�
�

the monotone truncation of the array �Xnk� un ≤ k ≤ vn� n ≥ 1�.
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930 Chen et al.

Note that

Y 2
nk = X2

nkI	�Xnk� ≤ h�n�
+ h2�n�I	�Xnk� > h�n�
 ≤ h�n��Xnk�� (2)

The following notion is introduced in [4].

Definition. Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables and let
�ank� un ≤ k ≤ vn� n ≥ 1� be an array of constants with

∑vn
k=un

�ank� ≤ C for all n ≥ 1
and some constant C > 0. Moreover, let �h�n�� n ≥ 1� be an increasing sequence of
positive constants with h�n� ↑ � as n ↑ �. The array �Xnk� is said to be h-integrable
with respect to the array of constants �ank� if the following conditions hold:

a� sup
n≥1

vn∑
k=un

�ank�E�Xnk� < �

b� lim
n→�

vn∑
k=un

�ank�E�Xnk�I	�Xnk� > h�n�
 = 0� (3)

We refer the reader to [4] and [8] for properties of the notion of h-integrability,
as well as for the relationship between this concept and some previous ones.

Remark. The condition
∑vn

k=un
�ank� ≤ C was imposed in [4] in order to prove that

the property of h-integrability with respect to �ank� is weaker than the property of
�ank�-uniform integrability, and this one, for its part, is weaker than the property of
uniform integrability.

When h-integrability of �Xnk� with respect to �ank� is required in the hypothesis
of theorems and corollaries below, the condition

∑vn
k=un

�ank� ≤ C on the array of
weights can be suppressed.

Let �Xi�−� < i < �� be a sequence of random variables defined on a
probability space ���� � P� and denote �-algebras

�m
n = ��Xi� n ≤ i ≤ m�� n ≤ m ≤ +��

As usual, for a �-algebra � we denote by �2�� � the class of all � -measurable
random variables with the finite second moment.

Now we will provide a series of definitions of dependence structures that we
explore in the article.

Definition. Random variables X and Y are said to be lower case negatively
dependent, if

P	X ≤ x� Y ≤ y
 ≤ P	X ≤ x
P	Y ≤ y


for all real x and y.

A sequence of random variables �Xn� n ≥ 1� is said to be pairwise lower case
negatively dependent if every pair of random variables in the sequence are lower case
negatively dependent.
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L1-Convergence of Weighted Sums 931

Definition. A sequence of random variables �Xn� n ≥ 1� is called �-mixing if the
mixing coefficient

��m� = sup
k≥1

sup��P�B�A�− P�B��� A ∈ � k
1 � P�A� 	= 0� B ∈ ��

k+m� → 0

as m → �.

Definition. A sequence of random variables �Xn� n ≥ 1� is called �-mixing if the
maximal correlation coefficient

��m� = sup
k≥1

sup
{

cov�X� Y�√
Var�X�Var�Y�

� X ∈ �2�� k
1 �� Y ∈ �2���

m+k�

}
→ 0

as m → �.

Definition. A sequence of random variables �Xn� n ≥ 1� is called �∗-mixing if for
some integer s ≥ 1 the mixing coefficient

��s�∗ = sup sup�Corr�X� Y�  X ∈ �2��S�� Y ∈ �2��T �� < 1�

where the outside sup is taken over all pairs of nonempty finite sets S� T of integers,
such that min��s − t�� s ∈ S� t ∈ T� ≥ s and �S = ��Xi� i ∈ S�.

Definition. We say that a sequence �Yn� n ≥ 1� of random variables satisfies the
Marcinkiewicz–Zygmund inequality with exponent 2, if for all n ≥ 1

E

∣∣∣∣
n∑

i=1

Yi

∣∣∣∣
2

≤ C
n∑

i=1

E�Yi�2�

We say that an array �Xnk� un ≤ k ≤ vn� n ≥ 1� of random variables satisfies the
Marcinkiewicz–Zygmund inequality with exponent 2, if for all n ≥ 1

E

∣∣∣∣
vn∑

k=un

Xnk

∣∣∣∣
2

≤ C
vn∑

k=un

E�Xnk�2�

where C is a positive constant independent of n.
Note that the following sequences of mean zero random variables satisfy the

Marcinkiewicz–Zygmund inequality with exponent 2, and with the indicated value
of C:

1. Independent identically distributed �C = 1�: Pyke and Root [5].
2. Martingale difference �C = 1�: Adler, Rosalsky, and Volodin [1] and Chen, Liu,

and Gan [3].
3. Pairwise lower case negatively dependent �C = 1�: Ordóñez Cabrera and

Volodin [4].
4. �-mixing random variables with

∑�
n=1 �

1/2�n� < � �C = 1+ 4
∑�

n=1 �
1/2�n��:

Yang [9].
5. �-mixing random variables with

∑�
n=1 ��n� < � �C = 1+ 4

∑�
n=1 ��n��: Yang [9].

6. �∗-mixing random variables with �∗�s� < 1 for some integer s ≥ 1 �C = 64s�1−
�∗�s��−2�: Bryc and Smolénski [2] (Lemma 1 and Lemma 2).
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932 Chen et al.

Definition. We say that a sequence �Yn� n ≥ 1� of random variables satisfies the
maximal inequality with exponent 2, if for all n ≥ 1

E

∣∣∣∣
n∑

k=1

Yk

∣∣∣∣
2

≤ Cnmax
1≤k≤n

E�Yk�2�

Let the sequences �un� n ≥ 1� and �vn� n ≥ 1� be finite, that is, +� > vn >
un > −�. We say that an array �Xnk� un ≤ k ≤ vn� n ≥ 1� of random variables
satisfies the maximal inequality with exponent 2, if for all n ≥ 1

E

∣∣∣∣
vn∑

k=un

Xnk

∣∣∣∣
2

≤ C�vn − un� max
un≤k≤vn

E�Xnk�2�

where C is a positive constant independent of n.
Note that the following sequences of mean zero random variables satisfy the

maximal inequality with exponent 2, and with the indicated value of C:

1. �-mixing random variables with
∑�

n=1 �
1/2�2n� < � �C = 8000 exp�6

∑�
n=0

�1/2�2n���: Shao [6] (Lemma 3.1).
2. �-mixing random variables with

∑�
n=1 ��2

n� < � �C = K exp�2
∑�

n=0 ��2
n�� where

K > 0 is a absolute constant): Shao [7] (Lemma 2).

2. Main Results, Corollaries, and Their Proofs

Theorem 1. Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that is h-
integrable with respect to the array of constants �ank� un ≤ k ≤ vn� n ≥ 1� satisfying
assumption (1). Suppose that the array �ank�Ynk − EYnk�� un ≤ k ≤ vn� n ≥ 1� satisfies
the Marcinkiewicz-Zygmund inequality with exponent 2. Then Sn → 0 as n → �, in L1

and hence in probability.

Proof. For each n ≥ 1� un ≤ k ≤ vn , let

A1n =
vn∑

k=un

ank�Xnk − Ynk��

A2n =
vn∑

k=un

ank�Ynk − EYnk�� and

A3n =
vn∑

k=un

ankE�Ynk − Xnk��

It follows from the following that in the case of infinite un and/or vn, the series A1n,
and A2n converge absolutely almost surely and A3n converges absolutely. Hence, we
can write that

Sn = A1n + A2n + A3n

and we will estimate each of these terms separately.
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L1-Convergence of Weighted Sums 933

The series A1n and A3n can be estimated as follows:

�EA1n� = �A3n� ≤
vn∑

k=un

�ank�E�Xnk − Ynk� ≤ 2
vn∑

k=un

�ank�E�Xnk�I	�Xnk� > h�n�
 → 0

as n → � by (3) and

�Xnk − Ynk� =



0 if �Xnk� ≤ h�n�

�Xnk + h�n�� if Xnk < −h�n�

�Xnk − h�n�� if Xnk > h�n��

≤ 2�Xnk�I	�Xnk� > h�n�


Hence, A1n → 0 in L1, and A3n → 0.
For A2n, we actually prove that A2n → 0 in L2 and hence in L1. Since

the array �ank�Ynk − EYnk�� un ≤ k ≤ vn� n ≥ 1� satisfies the Marcinkiewicz-Zygmund
inequality with exponent 2,

0 ≤ E	
vn∑

k=un

ank�Ynk − EYnk�

2

≤ C
vn∑

k=un

a2
nkE�Ynk − EYnk�

2

≤ C
vn∑

k=un

a2
nkEY

2
nk

≤ C
vn∑

k=un

a2
nkh�n�E�Xnk� (by (2))

≤ Ch�n� max
un≤k≤vn

�ank�
vn∑

k=un

�ank�E�Xnk� → 0 as n → �

by the assumptions of the theorem. �

Corollary 1 ([4]). Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of rowwise lower case
negatively dependent random variables that is h-integrable with respect to the array of
nonnegative constants �ank� un ≤ k ≤ vn� n ≥ 1� satisfying assumption (1). Then Sn →
0 as n → �, in L1 and hence in probability.

Proof. Note that the only statement we need to prove is that the array �ank�Ynk −
EYnk�� un ≤ k ≤ vn� n ≥ 1� satisfies the Marcinkiewicz-Zygmund inequality with
exponent 2 and with C = 1.

The following two facts are well known (cf., e.g., Lemmas 2 and 3 [4]). Fact 1
states that pairwise lower case negatively dependent random variables are non-
positively correlated, while Fact 2 can be applied to the technique of truncation used
in this article (so-called monotone truncation) to preserve the negative dependence
property.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
0
2
:
4
7
 
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0



934 Chen et al.

Fact 1. If �Xn� n ≥ 1� is a sequence of mean zero pairwise lower case negatively
dependent random variables, then

E�XiXj� ≤ 0� i 	= j�

Fact 2. Let �Xn� n ≥ 1� be a sequence of pairwise lower case negatively
dependent random variables and �fn� n ≥ 1� be a sequence of nondecreasing
functions. Then the sequence �fn�Xn�� n ≥ 1� is a sequence of pairwise lower case
negatively dependent random variables.

Since �Xnk� un ≤ k ≤ vn� n ≥ 1� is an array of rowwise lower case negatively
dependent random variables, by Fact 2, �ank�Ynk − EYnk�� un ≤ k ≤ vn� n ≥ 1� is also
an array of rowwise lower case negatively dependent random variables, by the
assumption ank ≥ 0 for all n ≥ 1� un ≤ k ≤ vn.

Hence, it suffices to show that if �Zn� n ≥ 1� is a sequence of mean zero pairwise
lower case negatively dependent random variables, then for all n ≥ 1

E

∣∣∣∣
n∑

i=1

Zi

∣∣∣∣
2

≤
n∑

i=1

E�Zi�2�

This follows from

E

[ n∑
k=1

Zk

]2

= ∑
k

E�Zk�
2 +∑

j 	=k

	E�ZjZk�


≤ ∑
k

EZ2
k by Fact 1.

�

Corollary 2. Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that is
h-integrable with respect to the array of constants �ank� un ≤ k ≤ vn� n ≥ 1� satisfying
assumption (1). For each fixed n ≥ 1 denote by �n the mixing coefficient for the row
�Xnk� un ≤ k ≤ vn�. If supn≥1

∑vn−un
k=1 �1/2

n �k� < �, then Sn → 0 as n → �, in L1 and
hence in probability.

Proof. Denote by �̃n the �-mixing coefficient for the row �ank�Ynk − EYnk�� un ≤
k ≤ vn�. Then �̃n ≤ �n, and, hence, supn≥1

∑vn−un
k=1 �̃1/2

n �k� < �. This follows from
the definition of the mixing coefficient which is only based on the generated �-
algebras. The fact that the array of random variables with supn≥1

∑vn−un
k=1 �1/2

n �k� <
� satisfies the Marcinkiewicz-Zygmund inequality with exponent 2 and with C =
1+ 4 supn≥1

∑vn−un
k=1 �1/2

n �k� is proved in [9]. �

Corollary 3. Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that is h-
integrable with respect to the array of nonnegative constants �ank� un ≤ k ≤ vn� n ≥ 1�
satisfying assumption (1). For each fixed n ≥ 1 denote by �n the mixing coefficient for
the row �Xnk� un ≤ k ≤ vn�. If supn≥1

∑vn−un
k=1 �n�k� < �, then Sn → 0 as n → �, in L1

and, hence, in probability.

Proof. The proof follows along the same lines as that of Corollary 2. �

Corollary 4. Let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that is h-
integrable with respect to the array of nonnegative constants �ank� un ≤ k ≤ vn� n ≥ 1�
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L1-Convergence of Weighted Sums 935

satisfying assumption (1). For each fixed n ≥ 1 denote by �∗
n the mixing coefficient for

the row �Xnk� un ≤ k ≤ vn�. If supn≥1 �
∗
n�s� < 1 for some integer s ≥ 1, then Sn → 0 as

n → �, in L1 and hence in probability.

Proof. Denote by �̃∗
n the mixing coefficient for the row �ank�Ynk − EYnk�� un ≤ k ≤

vn�. Then �̃∗
n ≤ �∗

n, and hence supn≥1 �̃
∗
n�s� < 1. Hence, for all n ≥ 1, �ank�Ynk −

EYnk�� 1 ≤ k ≤ n� is the array of �∗-mixing random variables, which satisfies
the Marcinkiewicz-Zygmund inequality with exponent 2 and with C = 64s�1−
supn≥1 �

∗
n�s��

−2 ([2]). �

Theorem 2. Let the sequences �un� n ≥ 1� and �vn� n ≥ 1� be finite, that is, +� >
vn > un > −� and let �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that
is h-integrable with respect to the array of nonnegative constants �ank� un ≤ k ≤ vn� n ≥
1� satisfying

�vn − un�h�n� max
vn≤k≤un

ank → 0 as n → �� (4)

Suppose that the array �ank�Ynk − EYnk�� un ≤ k ≤ vn� n ≥ 1� satisfies the maximal
inequality with exponent 2. Then Sn → 0 as n → �, in L1 and hence in probability.

Proof. We proceed in the same way as in the proof of Theorem 1. For each n ≥
1� un ≤ k ≤ vn , let

A1n =
vn∑

k=un

ank�Xnk − Ynk��

A2n =
vn∑

k=un

ank�Ynk − EYnk�� and

A3n =
vn∑

k=un

ankE�Ynk − Xnk��

Since we assume that un and vn are finite, we can write that

Sn = A1n + A2n + A3n

and estimate each of these terms separately.
Arguing as in the proof of Theorem 1, we obtain

A1n → 0 in L1� and A3n → 0�

For A2n, we actually prove that A2n → 0 in L2 and hence in L1. Since the array
�ank�Ynk − EYnk�� un ≤ k ≤ vn� n ≥ 1� satisfies maximal inequality with exponent 2,

0 ≤ E	
vn∑

k=un

ank�Ynk − EYnk�

2

≤ C�vn − un� max
un≤k≤vn

a2
nkEY

2
nk
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936 Chen et al.

≤ C�vn − un�h�n�

(
max

un≤k≤vn
�ank�

)(
max

un≤k≤vn
�ank�E�Xnk�

)

≤ C�vn − un�h�n�

(
max

un≤k≤vn
�ank�

) vn∑
k=un

�ank�E�Xnk�

≤ C�vn − un�h�n� max
un≤k≤vn

�ank� → 0 as n → �

by the assumptions of the theorem. �

Corollary 5. Let the sequences �un� n ≥ 1� and �vn� n ≥ 1� be finite, that is, +� >
vn > un > −� and �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that are
h-integrable with respect to the array of constants �ank� 1 ≤ k ≤ n� n ≥ 1� satisfying
assumption (4). For each fixed n ≥ 1 denote by �n the mixing coefficient for the row
�Xnk� un ≤ k ≤ vn�. If supn≥1

∑vn−un
k=1 �1/2

n �2k� < �, then Sn → 0 as n → �, in L1 and
hence in probability.

Proof. Similar to Corollary 2, except we use [6]. �

Corollary 6. Let the sequences �un� n ≥ 1� and �vn� n ≥ 1� be finite, that is, +� >
vn > un > −� and �Xnk� un ≤ k ≤ vn� n ≥ 1� be an array of random variables that are
h-integrable with respect to the array of constants �ank� 1 ≤ k ≤ n� n ≥ 1� satisfying
assumption (4). For each fixed n ≥ 1 denote by �n the mixing coefficient for the row
�Xnk� un ≤ k ≤ vn�. If supn≥1

∑vn−un
k=1 �n�2

k� < �, then Sn → 0 as n → �, in L1 and
hence in probability.

Proof. Similar to Corollary 3, except we use [7]. �
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