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ABSTRACT

For a sequence of correlated square integrable random variables {Xn, n ≥ 1}, conditions
are provided for the strong law of large numbers limn→∞

Sn−ESn

n
= 0 almost surely to hold

where Sn =
∑n

i=1 Xi, n ≥ 1. The hypotheses stipulate that two series converge, the terms

of which involve, respectively, both the Golden Ratio ϕ = 1+
√

5
2

and bounds on Var Xn

(respectively, bounds on Cov (Xn, Xn+m)). An application to first passage times is provided.
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1. INTRODUCTION

The purpose of the current investigation is to establish a link between the Golden Ratio
ϕ and a limit theorem in probability theory. More specifically, we establish a strong law
of large numbers (SLLN) for a sequence of correlated random variables {Xn, n ≥ 1}. The
hypotheses stipulate that two series converge, the terms of which involve, respectively, both
ϕ and bounds on Var Xn (respectively, bounds on Cov (Xn, Xn+m)).

We begin with a brief discussion concerning the Golden Ratio. The Golden Ratio ϕ =
1+
√

5
2

(=1.61803398875...) can be derived in a variety of ways but is perhaps most simply
defined as the positive solution of the equation ϕ = 1/ϕ + 1. This equation arises from a
simple problem in geometry, namely: If we split a line segment into two smaller line segments
in such a way that the ratio of the length of the original line segment to that of the larger
of the two resulting line segments is equal to the ratio of the length of the larger of the
two resulting line segments to the length of the smaller of the two resulting line segments,
then what is this common ratio? The answer is of course the positive solution of the above
equation, namely the Golden Ratio.

The Golden Ratio enjoys many remarkable properties. For example, letting Fn denote
the nth Fibonacci number, n ≥ 0, then it is well known that

ϕn = Fnϕ + Fn−1, n ≥ 1 and lim
n→∞

Fn

Fn−1

= ϕ.

Consequently,

lim
n→∞

ϕn

Fn

= 2ϕ− 1.

The Golden Ratio has found numerous applications in many diverse fields including
biology, astronomy, physics, architecture, fractal geometry, psychology, and financial math-
ematics, among others. The reader may refer to the interesting books by Dunlap [4], Koshy
[7], and Livio [8] for further information on the Golden Ratio and its relation to the Fibonacci
numbers, for a discussion of the numerous and diverse applications of the Golden Ratio, and
for an exposé of its rich and facinating history.

The setting of the current paper is as follows. Let {Xn, n ≥ 1} be a sequence of square
integrable random variables defined on a probability space (Ω,F , P ). As usual, the partial
sums will be denoted by Sn =

∑n
i=1 Xi, n ≥ 1. We assume throughout this paper the

following:
(i) There exists a function H(x) on (0,∞) such that

0 < H(x) ↑, (1.1)

Var Xn ≤ H(n), n ≥ 1, (1.2)
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and
∞∑

n=1

H(nϕ+1)

n2
< ∞. (1.3)

(ii) There exists a sequence of constants {ρm, m ≥ 1} such that

sup
n≥1

|Cov(Xn, Xn+m)| ≤ ρm, m ≥ 1 (1.4)

and
∞∑

m=1

ρm

mϕ−1
< ∞. (1.5)

The main result of this paper is Theorem 3.1 which asserts that under (i) and (ii), the
SLLN

lim
n→∞

Sn − ESn

n
= 0 almost surely (1.6)

holds. (Almost sure convergence is probabilistic jargon for saying in the language of general
measure theory that the convergence takes place almost everywhere with respect to the
probability measure P ; “almost surely” will be abbreviated by “a.s.”) We emphasize that
we are not assuming that {Xn, n ≥ 1} is a weakly stationary sequence. However, under
this stronger assumption, (i) is automatic and Gapos̆kin [5] proved the SLLN (1.6) under a
condition weaker than (1.5) but with the same spirit.

The only results in the literature that we are aware of providing a SLLN for a sequence of
correlated random variables satisfying (1.4) have the assumption that Var Xn = O(1), and
the best of these results is that of Lyons [9]. While Lyons’ [9] result has a condition which
is indeed weaker than (1.5) (namely, mϕ−1 is replaced by m in the denominator), we allow
in the current work for Var Xn →∞ (provided (1.3) holds). Other results on the SLLN for
a sequence of correlated random variables have been obtained by Serfling [14], Móricz [10],
Serfling [15], Móricz[11], and Chandra [1].

Our proof of Theorem 3.1 is more elementary than those of Gapos̆kin [5] and Lyons
[9] discussed above. The proof of Theorem 3.1 is classical in nature in that it is based on
the general “method of subsequences”. This method was apparently developed initially by
Rajchman [12] (see Chung [2], p. 103) and has since been used by numerous other authors.
There does not seem to be any SLLNs for dependent random variables presented in the
standard middle level probability textbooks and we believe that our result can find a place
in such a course.

The laws of large numbers lie at the very foundation of statistical science and have a
history going back almost three hundred years. In 1713, Jacob Bernoulli proved the first
weak law of large numbers (WLLN) wherein the mode of convergence is “convergence in
probability”; that is, “convergence in P -measure”. Almost two hundred years later, the
first SLLN was proved by Emile Borel in 1909. The WLLN and SLLN have been studied
extensively in the case of independent summands.

The plan of the paper is as follows. In Section 2, some notation is indicated and two
lemmas used in the proof of Theorem 3.1 are presented. Theorem 3.1 is proved in Section
3. Section 4 contains a discussion regarding the mysterious role that the Golden Ratio ϕ
plays in Theorem 3.1. Finally, in Section 5, we present an application of Theorem 3.1 to
first passage times.
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2. PRELIMINARIES

Corresponding to the sequence {ρm, m ≥ 1}, we consider the sequence of Cesàro means
denoted by

cn =

∑n
m=1 ρm

n
, n ≥ 1.

For 0 < x < ∞, let bxc denote the greatest integer less than or equal to x and let dxe denote
the smallest integer greater than or equal to x. Throughout, the symbol C will denote a
generic constant (0 < C < ∞) which is not necessarily the same one in each appearance.

The ensuing two lemmas play a key role in the proof of Theorem 3.1.
Lemma 2.1: For n2 ≥ n1 ≥ 1,

Var(

n2∑
i=n1

Xi) ≤ (n2 − n1 + 1)H(n2) + 2(n2 − n1 + 1)2cn2−n1+1.

Proof: The lemma is obvious if n2=n1 ≥ 1. When n2 > n1 ≥ 1,

Var(

n2∑
i=n1

Xi) =

n2∑
i=n1

Var Xi + 2

n2−1∑
i=n1

n2∑
j=i+1

Cov(Xi, Xj)

≤ (n2 − n1 + 1)H(n2) + 2

n2−1∑
i=n1

n2∑
j=i+1

ρj−i (by (1.1), (1.2), and (1.4))

= (n2 − n1 + 1)H(n2) + 2

n2−n1∑
m=1

(n2 − n1 −m + 1)ρm

≤ (n2 − n1 + 1)H(n2) + 2(n2 − n1 + 1)

n2−n1+1∑
m=1

ρm

= (n2 − n1 + 1)H(n2) + 2(n2 − n1 + 1)2cn2−n1+1. �

Lemma 2.2: Let α = ϕ + 1 and β = ϕ− 1. Then the three series

∞∑
n=1

cbnαc,
∞∑

n=1

cn

n1/(α−1)
, and

∞∑
n=1

ρn

nβ
(2.1)

either all converge or else all diverge.
Proof: Note at the outset that 1

α−1
= α−1

α
= β. Now for some sequence εm = o(1),
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∞∑
n=1

cn

n1/(α−1)
=

∞∑
n=1

cn

nβ

=
∞∑

n=1

1

nβ+1

n∑
m=1

ρm

=
∞∑

m=1

ρm

∞∑
n=m

1

nβ+1

=
∞∑

m=1

ρm

mβ
C(1 + εm)

and hence the second and third series of (2.1) converge or diverge together.
Next, let n(m) = dm1/αe, m ≥ 1. Then n(m) ≥ m1/α > n(m)− 1, m ≥ 1 whence

n(m) ∼ m1/α (2.2)

Now for some sequence δm = o(1)

∞∑
n=1

cbnαc =
∞∑

n=1

1

bnαc

bnαc∑
m=1

ρm

=
∞∑

m=1

ρm

∞∑
n=n(m)

1

bnαc

≥
∞∑

m=1

ρm

∞∑
n=n(m)

1

nα

=
∞∑

m=1

ρm
C(1 + δm)

(n(m))α−1

≥
∞∑

m=1

ρm
C(1 + δm)

mβ
(by (2.2))

and, similarly,
∞∑

n=1

cbnαc ≤
∞∑

m=1

ρm
C(1 + δm)

mβ
.

It follows that the first and third series of (2.1) converge or diverge together. �
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3. THE MAIN RESULT

With the preliminaries accounted for, the main result may be established.
Theorem 3.1: For a sequence of random variables {Xn, n ≥ 1} satisfying the hypotheses
(i) and (ii) indicated in Section 1, the SLLN

lim
n→∞

Sn − ESn

n
= 0 a.s.

obtains.
Proof: Without loss of generality, we may and will assume that EXn = 0, n ≥ 1. Let
α = ϕ + 1 and β = ϕ− 1. Set

Dk = max
bkαc≤j<b(k+1)αc

|Sj − Sbkαc|, k ≥ 1.

For n ≥ 1, let kn be such that bkα
nc ≤ n < b(kn + 1)αc and note that

|Sn|
n

≤
|Sbkα

nc|+ |Sn − Sbkα
nc|

bkα
nc

≤
Sbkα

nc

bkα
nc

+
Dkn

bkα
nc

.

Hence it suffices to show that

lim
k→∞

Sbkαc

kα
= 0 a.s. (3.1)

and

lim
k→∞

Dk

kα
= 0 a.s. (3.2)

To prove (3.1), let ε > 0 be arbitrary. Then

∞∑
k=1

P

{
|Sbkαc|

kα
> ε

}
≤

∞∑
k=1

Var Sbkαc

k2αε2
(by Chebyshev’s inequality)

≤ C
∞∑

k=1

bkαcH(bkαc) + 2(bkαc)2cbkαc

k2α
(by Lemma 2.1)

≤ C
∞∑

k=1

H(kα)

kα
+ C

∞∑
k=1

cbkαc (by (1.1))

< ∞

by (1.3), α > 2, (1.5), and Lemma 2.2. It then follows from the Borel-Cantelli lemma and
the arbitrariness of ε > 0 that (3.1) holds.

Next, to prove (3.2), again let ε > 0 be arbitrary. It is easy to verify that

b(k + 1)αc − bkαc − 1 ≤ bα(2k)α−1c, k ≥ 1. (3.3)
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Then

∞∑
k=1

P

{
Dk

kα
> ε

}
≤

∞∑
k=1

(kαε)−2E

(
max

bkαc<n<b(k+1)cα

(
n∑

i=bkαc+1

Xi

)2)
(by the Markov inequality)

≤ C
∞∑

k=1

k−2α

b(k+1)αc−1∑
n=bkαc+1

(
(n− bkαc)H((k + 1)α) + 2(n− bkαc)2cn−bkαc

)
(by Lemma 2.1 and (1.1))

≤ C

∞∑
k=1

H((k + 1)α)

k2α

bα(2k)α−1c∑
n=1

n + C

∞∑
k=1

k−2α

bα(2k)α−1c∑
n=1

n2cn

(by (3.3))

≤ C
∞∑

k=1

H((k + 1)α)

(k + 1)2
+ C

∞∑
n=1

n2cn

∞∑
k=d 1

2
( n

α
)

1
α−1 e

k−2α

≤ C + C
∞∑

n=1

cn

n1/(α−1)
(by (1.3))

< ∞ (by (1.5) and Lemma 2.2).

Again using the Borel-Cantelli lemma, (3.2) follows since ε > 0 is arbitrary. �

4. WHY THE GOLDEN RATIO ϕ?

A discussion is in order as to why the Golden Ratio ϕ plays such a mysterious and prominent
role in Theorem 3.1. The answer rests with Lemma 2.2. Let ϕ1 > 0 and set α1 = ϕ1 +1 and
β1 = ϕ1 − 1. As in Lemma 2.1, set α = ϕ + 1 and β = ϕ− 1. Consider the three series

∞∑
n=1

cbnα1c,
∞∑

n=1

cn

n1/(α1−1)
, and

∞∑
n=1

ρn

nβ1
. (4.1)

A perusal of the argument in Lemma 2.2 reveals that the only value of ϕ1 for which the three
series in (4.1) will always converge or diverge together satisfies the equation ϕ1 = ϕ2

1 − 1
whose only positive solution is ϕ1 = ϕ. Thus, we formulated Theorem 3.1 using the Golden
Ratio ϕ.

Now as far as Lemma 2.2 pertains to the proof of Theorem 3.1, we of course only care
about the two implications

∞∑
n=1

ρn

nβ
< ∞⇒

∞∑
n=1

cbnαc < ∞

and
∞∑

n=1

ρn

nβ
< ∞⇒

∞∑
n=1

cn

n1/(α−1)
< ∞.
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Furthermore, a perusal of the argument in Lemma 2.2 reveals that the two implications

∞∑
n=1

ρn

nβ1
< ∞⇒

∞∑
n=1

cbnα1c < ∞ (4.2)

and
∞∑

n=1

ρn

nβ1
< ∞⇒

∞∑
n=1

cn

n1/(α1−1)
< ∞ (4.3)

both hold for ϕ2
1−ϕ1− 1 ≤ 0 (that is, for 0 < ϕ1 ≤ ϕ) and both fail for ϕ1 > ϕ. Thus we see

that the Golden Ratio ϕ, which was involved as a parameter in our conditions (i) and (ii) of
Section 1, is in fact on the boundary between the validity and failure of both implications
(4.2) and (4.3). Let 0 < ϕ1 ≤ ϕ and consider the conditions (ia) and (iia) where (ia) and
(iia) are as in (i) and (ii), respectively, except that the condition

∞∑
n=1

H(nϕ1+1)

n2
< ∞ (4.4)

replaces (1.3) in (i) and the condition

∞∑
m=1

ρm

mϕ1−1
< ∞ (4.5)

replaces (1.5) in (ii). Now a perusal of the argument in Theorem 3.1 reveals that the theorem
indeed holds with (i) and (ii) replaced, respectively, by (ia) and (iia). It is clear that when
0 < ϕ1 < ϕ, (4.4) is weaker than (1.3) whereas (4.5) is stronger than (1.5) and, moreover,
there is a trade-off involving ϕ1 in the conditions (4.4) and (4.5); the smaller ϕ1 is taken,
the condition (4.4) becomes weaker and the condition (4.5) becomes stronger.

Finally, we note that there does not always exist a function H(x) and a sequence {ρm, m ≥
1} satisfying (i) and (ii), and if they do exist they are not unique. For example, if Var Xn =
nγ, n ≥ 1 where γ ≥ (ϕ + 1)−1, then for any positive nondecreasing function H (x ) on (0,∞)
with Var Xn ≤ H(n), n ≥ 1 we have

∞∑
n=1

H(nϕ+1)

n2
≥

∞∑
n=1

H(n1/γ)

n2

≥
∞∑

n=1

H(bn1/γc)
n2

≥
∞∑

n=1

Var Xbn1/γc

n2

=
∞∑

n=1

bn1/γcγ

n2

= ∞.
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Thus (1.3) cannot be satisfied. On the other hand, if Var Xn = nγ, n ≥ 1 where 0 < γ <
(ϕ + 1)−1, then taking H(x) = Cxγ1 , x > 0 where C ≥ 1 and γ ≤ γ1 < (ϕ + 1)−1, we have
that (1.2) holds and, moreover,

∞∑
n=1

H(nϕ+1)

n2
=

∞∑
n=1

Cnγ1(ϕ+1)

n2
< ∞

since γ1(ϕ+1) < 1 thereby verifying (1.3). In a similar manner, examples can be constructed
apropos of (ii).

5. THE FIRST PASSAGE PROBLEM

In this section, {Xn, n ≥ 1} is a sequence of random variables again satisfying the assump-
tions (i) and (ii) spelled out in Section 1 plus the additional condition that the {Xn, n ≥ 1}
all have the same mean µ > 0. Let us emphasize that the random variables {Xn, n ≥ 1}
can be independent, uncorrelated, or correlated. By Theorem 3.1, Sn/n → µ a.s. and so
Sn →∞ a.s. Consequently, for all c > 0,

N(c) ≡ min{n ≥ 1 : Sn ≥ c}

is a well-defined random variable. The function R(c) = EN(c), c > 0 is called the renewal
function and is important in renewal theory. Much research work has been done on the
asymptotic behavior of R(c) as c → ∞ particularly when the {Xn, n ≥ 1} are independent
and identically distributed (i.i.d.).

Note that whenever c2 > c1 > 0 we have

{n ≥ 1 : Sn ≥ c2} ⊆ {n ≥ 1 : Sn ≥ c1}

and hence N(c2) ≥ N(c1) a.s. Since SN(c) ≥ c,

SN(c) →∞ a.s. as c →∞

and therefore N(c) →∞ a.s. Thus N(c) ↑ ∞ a.s.
In Theorem 5.1 below, we prove that

lim
c→∞

N(c)

c
=

1

µ
a.s. (5.1)

For a sequence of i.i.d. nonnegative random variables, (5.1) is a classical result due to Doob
[3] and it was also obtained by Heyde [6] in the i.i.d. case without the nonnegativity proviso.
Our proof of Theorem 5.1 follows along the same lines of those of Doob [3] and Heyde [6]; we
apply our Theorem 3.1 whereas Doob [3] and Heyde [6] applied the Kolmogorov SLLN. A
valiant attempt to obtain a version of (5.1) for a sequence of correlated random variables was
made by Srinivasan, Nillaswamy, and Sridharan [16]. However, unfortunately their proof is
not valid as was pointed out by Rosalsky [13] in his review of their article.
Theorem 5.1: For a sequence of random variables {Xn, n ≥ 1} all having the same mean
µ > 0 and satisfying the hypotheses (i) and (ii) indicated in Section 1, the relation (5.1)
holds.
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Proof: Set S0 = 0. Let ε be an arbitrary number in (0, µ). By Theorem 3.1, with probability
1, for all large n

−ε ≤ Sn

n
− µ ≤ ε

and hence
(µ− ε)n ≤ Sn ≤ (µ + ε)n. (5.2)

It follows from the first inequality of (5.2) and the definition of N(c) that with probability
1, for all large c

(µ− ε)(N(c)− 1) ≤ SN(c)−1 < c. (5.3)

Similarly, the second inequality of (5.2) and the definition of N(c) ensure that with proba-
bility 1, for all large c

c ≤ SN(c) ≤ (µ + ε)N(c). (5.4)

It thus follows from (5.3) and (5.4) that with probability 1, for all large c

1

µ + ε
≤ N(c)

c
=

N(c)− 1

c
+

1

c
<

1

µ− ε
+

1

c

whence
1

µ + ε
≤ lim inf

c→∞

N(c)

c
≤ lim sup

c→∞

N(c)

c
≤ 1

µ− ε
a.s.

The conclusion (5.1) follows since ε is an arbitrary number in (0, µ). �
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