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Abstract

We study the deviation probability PfjkXk � EkXkj4tg where X is a j-subgaussian random element taking values in the

Hilbert space l2 and jðxÞ is an N-function. It is shown that the order of this deviation is expf�j�ðCtÞg, where C depends on

the sum of j-subgaussian standard of the coordinates of the random element X and j�ðxÞ is the Young–Fenchel transform

of jðxÞ. An application to the classically subgaussian random variables (jðxÞ ¼ x2=2) is given.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The concentration of measure phenomenon roughly describes how a well-behaved function is almost a
constant on almost all the space. We refer to the monographs Ledoux (2001), and Ledoux and Talagrand
(1991, Chapter 1), where this phenomenon is discussed in detail and important examples are provided.

The purpose of this note is to further complete our understanding of the concentration phenomenon by
obtaining the exponential estimate of the behaviour of the deviation probability with respect to the mean
PfjkXk � EkXkj4tg where X is a j-subgaussian random element taking values in the Hilbert space l2 and
jðxÞ is an N-function. It is shown that the order of this deviation is expf�j�ðCtÞg, where C depends on the j-
subgaussian standard of the coordinates of the random element X and j�ðxÞ is the Young–Fenchel transform
of jðxÞ. An application to the classically subgaussian random variables (jðxÞ ¼ x2=2) is given.
e front matter r 2005 Elsevier B.V. All rights reserved.
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2. Definitions and a few technical lemmas

In this section we present definitions and a few technical results that we will use in the proof of the main
result of the paper.

A continuous even convex function jðxÞ; x 2 R, is called an N-function, if
(a)
 jð0Þ ¼ 0 and jðxÞ is monotone increasing for x40;

(b)
 limx!0

jðxÞ
x
¼ 0 and limx!1

jðxÞ
x
¼ 1.
In the following the notation jðxÞ always stands for an N-function. It is obvious that the function jðxÞ ¼
jxjp=p; p41 is an example of N-function.

The function j�ðxÞ; x 2 R, defined by j�ðxÞ ¼ supy2R ðxy� jðyÞÞ is called the Young– Fenchel transform of
jðxÞ. It is well known that j�ðxÞ is an N-function, too, and if jðxÞ ¼ jxjp=p; p41 for all x, then j�ðxÞ ¼ jxjq=q

for all x, where 1=pþ 1=q ¼ 1.
A random variable X is said to be j-subgaussian if there exists a constant a40 such that, for every t 2 R, we

have E expftX gp expfjðatÞg. The j-subgaussian standard tjðX Þ is defined as

tjðX Þ ¼ inffa40 : E expftX gp expfjðatÞg; t 2 Rg.

We refer to the monograph Buldygin and Kozachenko (2000) and the paper Giuliano Antonini et al. (2003)
where this notion is discussed in detail and important examples are provided. In the case jðxÞ ¼ x2=2 the
notion of j-subgaussian gives us the notion of classical subgaussian random variable, cf. for example in
Hoffmann-Jørgensen (1994, Section 4.29).

Let X ¼ ðX 1;X 2; . . .Þ be an l2-valued random element defined on a probability space ðO;F;PÞ, that is, for
almost all o 2 O the norm

kXðoÞk ¼
X1
k¼1

X 2
kðoÞ

 !1=2

is finite.
A random element X taking values in l2 is said to be scalarly j-subgaussian if each coordinate X k; kX1; is a

j-subgaussian random variable and

tjðXÞ ¼
X1
k¼1

tjðX kÞo1.

Now we will present a few technical lemmas which are important for the proof of the main result.

Lemma 1. Let X and Y be two independent identically distributed j-subgaussian random variables, and a and b

be constants. If for some pX1 the function jðjxj1=pÞ is convex, then

tjðaX þ bY Þpðjajp þ jbjpÞ1=ptjðX Þ.

Proof. According to Buldygin and Kozachenko (2000, Chapter 2, Theorem 5.2), we can give the following
estimate

tp
jðaX þ bY Þptp

jðaX Þ þ tp
jðbY Þ since X and Y are independent

¼ jajptp
jðX Þ þ jbj

ptp
jðY Þ ¼ ðjaj

p þ jbjpÞtp
jðX Þ

since X and Y are identically distributed. &

The second lemma is well known. We present its proof for the sake of completeness.

Lemma 2. Let X and Y be two independent identically distributed random variables and c : R! R be a convex

function. Then

E½cðX � EX Þ�pEcðX � Y Þ.
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Proof. Let F X ðxÞ and F Y ðyÞ be the distribution functions of X and Y, respectively. Then their joint
distribution function is F X ;Y ðx; yÞ ¼ F X ðxÞFY ðyÞ.

For each x we have that x� EX ¼ Eðx� X Þ, hence by Jensen’s inequality cðx� EX ÞpEcðx� X Þ.
Integrating this inequality, using the change of variables formula and the Fubini theorem, we obtain that

E½cðX � EX Þ� ¼

Z 1
�1

cðx� EX ÞdFX ðxÞ

p
Z 1
�1

Z 1
�1

cðx� yÞdF Y ðyÞdFX ðxÞ ¼ EcðX � Y Þ: &

Lemma 3. Let X ¼ ðX 1;X 2; . . .Þ be an l2-valued scalarly j-subgaussian random element. Then for all t 2 R

E expftkXkgp2 expfjðttjðXÞÞg.

Proof. First of all, note that for any t 2 R and kX1

E expftjX kjgpE expfjtX kjg ¼ E expfjtjX kgIfX kX0g þ E expf�jtjX kgIfX ko0g

pE expfjtjX kg þ E expf�jtjX kgp2 expfjðttjðX kÞÞg. ð1Þ

Next, since

kXk ¼
X1
k¼1

X 2
k

 !1=2

p
X1
k¼1

jX kj

and from the generalized Holder inequality, for any sequence of positive numbers fpk; kX1g such thatP1
k¼11=pk ¼ 1, we get

E expftkXkgpE exp t
X1
k¼1

jX kj

( )

p
Y1
k¼1

½EðexpftjX kjgÞ
pk �1=pk ¼

Y1
k¼1

½E expftpkjX kjg�
1=pk

p
Y1
k¼1

½2 expfjðtpktjðX kÞÞg�
1=pk by ð1Þ

¼ 2 exp
X1
k¼1

jðtpktjðX kÞÞ

pk

( )
.

Taking pk ¼ ð
P1

i¼1 tjðX iÞÞ=tjðX kÞ we obtain the result. &

The next lemma is only a slight modification of Buldygin and Kozachenko (2000, Chapter 2, Lemma 4.3).
We again give a proof for the sake of completeness.

Lemma 4. Let X be a random variable such that for each t 2 R we have that E expftjX jgpA expfjðtBÞg, where

A and B are positive constants. Then for any t

PfjX j4tgp2A exp �j�
t

B

� �n o
.

Proof. By Markov’s inequality, for any l40 and t

PfX4tgp expf�ltgE expflX gpA expfjðlBÞ � ltg.
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Next,

inf
l40
½jðlBÞ � lt� ¼ � sup

l40

½lt� jðlBÞ�

¼ � sup
m40

t

B
m� jðmÞ

h i
where m ¼ lB

¼ � j�
t

B

� �
.

The same argument shows that

PfXo� tgpA exp �j�
t

B

� �n o
: &

3. The main result

With the preliminaries accounted for, we can now state and prove the main results of the paper.

Theorem 1. Assume that for some pX1 the function jðjxj1=pÞ is convex. Let X ¼ ðX 1;X 2; . . .Þ be an l2-valued

scalarly j-subgaussian random element. Then for any t

PfjkXk � EkXkj4tgp4 exp �j�
2t

pCptjðXÞ

� �� �
,

where Cp ¼ maxð1; 21=p �1=2Þ.

Proof. Let Y ¼ ðY 1;Y 2; . . .Þ be an independent copy of X and denote

XðsÞ ¼ X sinðsÞ þ Y cosðsÞ; 0pspp=2.

Then Xð0Þ ¼ Y and Xðp=2Þ ¼ X. Moreover,

X0ðsÞ ¼ X cosðsÞ � Y sinðsÞ.

Note that by Lemma 1

tjðX0ðsÞÞpðj cosðsÞjp þ j sinðsÞjpÞ1=ptjðXÞpCptjðXÞ. (2)

Next, if we denote by hx; yi the inner product of two elements x; y 2 l2, then

kXk � kYk ¼

Z p=2

0

d

ds
kXðsÞkds ¼

Z p=2

0

XðsÞ

kXðsÞk
;X0ðsÞ

� �
ds

p
Z p=2

0

p
2
kX0ðsÞk

ds

p=2
.

Fix any t 2 R and let cðuÞ ¼ expftug. Then c is convex and by Jensen inequality

cðkXk � kYkÞp
Z p=2

0

c
p
2
kX0ðsÞk

� � ds

p=2

¼
2

p

Z p=2

0

c
p
2
kX0ðsÞk

� �
ds.

According to Lemma 2 we can write

E expftðkXk � EkXkÞg ¼ EcðkXk � EkXkÞ

pEcðkXk � kYkÞ

p
2

p

Z p=2

0

Ec
p
2
kX0ðsÞk

� �
ds.
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Hence by Lemma 3 and (2)

¼
2

p

Z p=2

0

E exp t
p
2
kX0ðsÞk

� �n o
dsp

2

p

Z p=2

0

2 exp j t
p
2

CptjðXÞ
� �n o

ds

¼ 2 exp j t
p
2

CptjðXÞ
� �n o

.

The conclusion of the theorem now follows from Lemma 4. &

Remark 1. Note that in the proof of the theorem we established the following inequality that may be of an
independent interest:

E expftðkXk � EkXkÞgp2 exp j t
p
2

CptjðXÞ
� �n o

.

As a simple corollary of the theorem we can present the following application to the classically subgaussian
random elements. In the case jðxÞ ¼ x2=2, x 2 R, we will say that X ¼ ðX 1;X 2; . . .Þ is an l2-valued scalarly
classically subgaussian random element if

tx2=2ðXÞ ¼
X1
k¼1

tx2=2ðX kÞo1.

Corollary 1. Let X ¼ ðX 1;X 2; . . .Þ be an l2-valued scalarly classically subgaussian random element. Then

PfjkXk � EkXkj4tgp4 exp �
2t2

p2t2
x2=2ðXÞ

( )
.

Proof. Note that in this case j�ðxÞ ¼ x2=2 and we can apply theorem with p ¼ 2, hence Cp ¼ 1. &
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