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Abstract

We study the deviation probability P{|||X]|| — E|X]|| > ¢} where X is a ¢-subgaussian random element taking values in the
Hilbert space /; and ¢(x) is an N-function. It is shown that the order of this deviation is exp{—¢*(C?)}, where C depends on
the sum of ¢-subgaussian standard of the coordinates of the random element X and ¢*(x) is the Young—Fenchel transform
of @(x). An application to the classically subgaussian random variables (¢(x) = x?/2) is given.
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1. Introduction

The concentration of measure phenomenon roughly describes how a well-behaved function is almost a
constant on almost all the space. We refer to the monographs Ledoux (2001), and Ledoux and Talagrand
(1991, Chapter 1), where this phenomenon is discussed in detail and important examples are provided.

The purpose of this note is to further complete our understanding of the concentration phenomenon by
obtaining the exponential estimate of the behaviour of the deviation probability with respect to the mean
P{|IIX|| — E|IX||| >t} where X is a ¢-subgaussian random element taking values in the Hilbert space /, and
¢@(x) is an N-function. It is shown that the order of this deviation is exp{—¢*(C?)}, where C depends on the ¢-
subgaussian standard of the coordinates of the random element X and ¢*(x) is the Young—Fenchel transform
of @(x). An application to the classically subgaussian random variables (¢(x) = x*/2) is given.
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2. Definitions and a few technical lemmas

In this section we present definitions and a few technical results that we will use in the proof of the main
result of the paper.
A continuous even convex function ¢(x), x € R, is called an N-function, if

(a) ¢(0) = 0 and ¢(x) is monotone increasing for x> 0;
(b) lim—o 22 = 0 and lim,_ o 2 = co.

In the following the notation ¢(x) always stands for an N-function. It is obvious that the function ¢(x) =
|x|”/p, p>1is an example of N-function.

The function ¢*(x), x € R, defined by ¢*(x) = sup,cg (xy — @(»)) is called the Young—Fenchel transform of
@(x). It is well known that ¢*(x) is an N-function, too, and if ¢(x) = |x|’/p, p>1 for all x, then ¢*(x) = |x|?/q
for all x, where 1/p+1/g=1.

A random variable X is said to be @-subgaussian if there exists a constant @ >0 such that, for every ¢ € R, we
have E exp{tX} < exp{p(ar)}. The @-subgaussian standard t,(X) is defined as

7,(X) = inf{a>0: E exp{tX} < exp{op(ar)}, t € R}.

We refer to the monograph Buldygin and Kozachenko (2000) and the paper Giuliano Antonini et al. (2003)
where this notion is discussed in detail and important examples are provided. In the case ¢(x) = x*/2 the
notion of ¢-subgaussian gives us the notion of classical subgaussian random variable, cf. for example in
Hoffmann-Jergensen (1994, Section 4.29).

Let X = (X, X>,...) be an /;-valued random element defined on a probability space (2, #, P), that is, for
almost all w € Q the norm

0o 1/2
X ()] = (Z X,%(w))
k=1

is finite.
A random element X taking values in /, is said to be scalarly @p-subgaussian if each coordinate X, k>1,1is a
¢-subgaussian random variable and

o0

1,(X) = 1,(X))<oo.

k=1

Now we will present a few technical lemmas which are important for the proof of the main result.

Lemma 1. Let X and Y be two independent identically distributed @-subgaussian random variables, and a and b
be constants. If for some p=1 the function ¢(|x|'/?) is convex, then

t,(aX +bY)<(al + 1b")P7,(X).

Proof. According to Buldygin and Kozachenko (2000, Chapter 2, Theorem 5.2), we can give the following
estimate

t(aX +bY)<t (aX)+ 7 (bY) since X and Y are independent
= lal’ el (X) + b7 (Y) = (lal” + |bI") T, (X)
since X and Y are identically distributed. [J
The second lemma is well known. We present its proof for the sake of completeness.

Lemma 2. Let X and Y be two independent identically distributed random variables and y : R — R be a convex
function. Then

EW(X — EX)|<EY(X — Y).
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Proof. Let Fy(x) and Fy(y) be the distribution functions of X and Y, respectively. Then their joint
distribution function is Fy y(x,y) = Fx(x)Fy ().

For each x we have that x — EX = E(x — X), hence by Jensen’s inequality y(x — EX)<Ey(x — X).
Integrating this inequality, using the change of variables formula and the Fubini theorem, we obtain that

EWOC-E0] = [ ptx— BN
<[ [ wx-ndrsmdr = Epx - ). O
Lemma 3. Let X = (X1, X3,...) be an Ly-valued scalarly @-subgaussian random element. Then for all t € R
E exp{t]|IX]|} <2 exp{o(t7,(X))}.

Proof. First of all, note that for any 7 € R and k>1

E exp{t| X[} < E exp{|tX |} = E exp{|t| X I { X =0} + E exp{—|{] X }I{X} <0}
< E exp{|f| Xi} + E exp{—11| X1} <2 exp{o(t1,(X))}. (1)

Next, since

o0 1/2 o0
X = (Z Xi) <> X
k=1

k=1

and from the generalized Holder inequality, for any sequence of positive numbers {p,, k>1} such that
Sreql/pe =1, we get

o0
E explt| X[} < E exp{r > |Xk|}
k=1

< [ tE@xpte Xy = T IE explopi Xal)] 7
k=1 k=1

<[] 12 explopro(X)N'"7 by (1)
k=1

Pk

e {i m(zpkrw(xk))}_
k=1

Taking p, = 02, 14(X1))/1,(X k) we obtain the result. [

The next lemma is only a slight modification of Buldygin and Kozachenko (2000, Chapter 2, Lemma 4.3).
We again give a proof for the sake of completeness.

Lemma 4. Let X be a random variable such that for each t € R we have that E exp{t|X|}< A4 exp{p(tB)}, where
A and B are positive constants. Then for any t

P{X|>1)<24 exp{—(p* (é)}

Proof. By Markov’s inequality, for any A>0 and ¢

P{X >t} < exp{—At}E exp{AX}< A4 exp{p(AB) — it}.
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Next,

inf [@(AB) — At] = — sup [t — @(AB)]

A>0 21>0

t
= —sup {— w— (p(u)} where 4 = AB
n>0 B

- ()

The same argument shows that

P X< —1t}<4 exp{—q)* (1—;)} O

3. The main result

With the preliminaries accounted for, we can now state and prove the main results of the paper.

Theorem 1. Assume that for some p=1 the function o(1x|''?) is convex. Let X = (X1, X2,...) be an L-valued
scalarly @-subgaussian random element. Then for any t

2
P{IIX|| — EIX]| >} <4 exp{-‘f’* (Wt()@) }
pPro

where C, = max(1,2'/7 ~1/2),
Proof. Let Y= (Y}, Y>,...) be an independent copy of X and denote
X(s) = X sin(s) + Y cos(s), 0<s<mn/2.
Then X(0) = Y and X(n/2) = X. Moreover,
X'(s) = X cos(s) — Y sin(s).
Note that by Lemma 1
(X' () < (| cos(s)” + | sin(s)[)! 77, (X) < Cpto(X). 2)

Next, if we denote by (x,y) the inner product of two elements x,y € /5, then

/2 d /2 X(S) )
- ivi= [ f o= [T (R X)) s

/21 ds
< —IX —
|3 o

Fix any ¢ € R and let (1) = exp{zu}. Then y is convex and by Jensen inequality

n/2
waxi=ivi< [ u (5 ixon) 55

-2 /0 "”w(g X)) ds.

According to Lemma 2 we can write

E exp{t(IIX] — EIXID} = E¥(IX]l — EIX])
<EY(IXI = YD

<2 /0 Ry (51X 1) ds.
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Hence by Lemma 3 and (2)
2 (™2 2
S| Een{Gixon) < [
T Jo 2 T Jo

2expor 5 Crp(X¥) }.

The conclusion of the theorem now follows from Lemma 4. O

/2

2 exp{(p (l g va:q,(X)) } ds

Remark 1. Note that in the proof of the theorem we established the following inequality that may be of an
independent interest:
T
E exp{u(IX| = EIXIN <2 exp{o (13 Cy70(%)) }.
As a simple corollary of the theorem we can present the following application to the classically subgaussian
random elements. In the case ¢(x) = x?/2, x € R, we will say that X = (X, X»,...) is an /,-valued scalarly
classically subgaussian random element if

o0
T2n(X) = 12X <oo.
k=1

Corollary 1. Let X = (X1, X2,...) be an [r-valued scalarly classically subgaussian random element. Then

272

P{IX] = EIX[[| >} <4 expy — 55 —<= (-
P nzriz/z(X)

Proof. Note that in this case ¢*(x) = x>/2 and we can apply theorem with p = 2, hence C, = 1. O
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