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Aim: Many economic evaluations used linear or log-transformed additive methods to estimate the disutil-
ity of hypoglycemic events in diabetes, both nonsevere (NSHEs) and severe (SHEs). Methods: We conducted
a literature search for studies of disutility for hypoglycemia. We used additive, minimum and multiplica-
tive methods, and the adjusted decrement estimator to estimate the disutilities of joint health states with
both NSHEs and SHEs in six scenarios. Results: Twenty-four studies reported disutilities for hypoglycemia in
diabetes. Based on construct validity, the adjusted decrement estimator method likely provides less biased
estimates, predicting that when SHEs occur, the additional impact from NSHEs is marginal. Conclusion: Our
proposed new method provides a different perspective on the estimation of quality-adjusted life-years in
economic evaluations of hypoglycemic treatments.
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Hypoglycemia is a common side effect that people with Type 1 or Type 2 diabetes may experience when taking
blood sugar-lowering medications [1]. It is characterized by low blood glucose levels and can be asymptomatic
(biochemical) or symptomatic (mild, moderate or severe) [2,3]. By clinical definition, nonsevere hypoglycemic
events (NSHEs) can be self-treated (by eating or drinking food items containing carbohydrates), while severe
hypoglycemic events (SHEs) require assistance from another person [1,3,4]. Both types of events can occur in the
daytime (normal waking hours) or nocturnally (usually defined as while sleeping or attempting to sleep) [5].

Many of the classic long-term diabetes economic models (e.g., United Kingdom Prospective Diabetes Study
[UKPDS] Outcomes Model, CORE [Switzerland’s Center for Outcomes Research] Diabetes Model) only accounted
for SHEs [6,7]. However, NSHEs may have health and economic impacts for people with diabetes [8]. Recent
economic evaluations incorporated the benefits of reduced NSHEs on health-related quality of life (HRQoL) [9–20],
most using disutilities derived from a study by Evans et al. [4]. This study defined 13 health states to describe
different types and frequencies of hypoglycemic events and elicited time trade-off (TTO) utilities from 8286 adults
from the general population (including 551 people with Type 1 diabetes and 1603 with Type 2 diabetes) in
five countries (Canada, Germany, Sweden, United Kingdom and USA). The authors estimated that the average
disutility per single hypoglycemic event was 0.004 for a daytime NSHE, 0.007 for a nocturnal NSHE, 0.057 for
a daytime SHE and 0.062 for a nocturnal SHE [4]. However, this study did not estimate disutility (or utility) for
joint health states with different types of hypoglycemic events. Based on the country-specific results or the average
results across the five countries from Evans et al. [4], later economic evaluations used either a linear additive or log
additive method [21] to estimate the overall health impacts of different types of hypoglycemic events.
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In the linear additive method, the disutility per event for each type of event is multiplied by the corresponding
frequency of events per year and added together [10,11,17,20], This method can be expressed using the following
formula:

DSN = β1 × NdNSHE + β2 × NnNSHE + β3 × NdSHE + β4 × NnSHE

where DSN is the total reduction in health utilities from hypoglycemia; NdNSHE, NnNSHE, NdSHE and NnSHE are
the yearly frequencies of daytime NSHE, nocturnal NSHE, daytime SHE and nocturnal SHE, respectively; and
β1, β2, β3 and β4 are the disutility values per event (i.e., coefficient) associated with daytime NSHE, nocturnal
NSHE, daytime SHE and nocturnal SHE, respectively.

This linear additive method has two possible concerns:

• The relationship between the frequency of hypoglycemic events per year and the overall effect of hypoglycemia
on utility is not linear. As the frequency of hypoglycemic events increases, utility per event decreases at a variable
rate. For example, in the study by Evans et al., the average impact on utility for a nocturnal NSHE decreases
from 0.0033 for 12 events a year (0.040 for one event per month) to 0.00074 for 156 events a year (0.115 for
three events per week) [4].

• The additive approach may be not appropriate for estimating overall impact on utility for different types of
hypoglycemic events because the types of events are highly correlated and each event impacts HRQoL. Patients are
likely to experience both daytime and nocturnal SHEs and NSHEs [5,22]. We can demonstrate this phenomenon
using multiple linear regression models, where multicollinearity may impact the effect of predictor variables on
the response variable.

The log additive method is also often used in economic evaluations [14,15,18,19]. Lauridsen et al. applied log-
transformed estimates of disutility values associated with daytime and nocturnal NSHEs and added them together
for the overall impact of NSHEs [21]. This method overcomes our first concern regarding the nonlinear association
between disutility and the number of NSHEs, but it does not directly address how to account for the correlation
between SHEs and NSHEs. Therefore, a new method to estimate the disutility of joint NSHEs and SHEs is
needed.

The objectives of the present study were to review the published literature on disutility due to hypoglycemia, and
suggest new approaches to estimate the disutility for the joint health states of SHEs and NSHEs with appropriate
consideration of the cumulative impact of NSHEs and SHEs, for application in cost-utility analyses.

Methods
Literature review
We performed a literature search in June 2021 using the Ovid interface in the Medline and Embase databases
to identify studies published from 1 January 2000–11 June 2021 that reported utility and/or disutility due to
hypoglycemia for Type 1 or Type 2 diabetes. We used controlled vocabulary (e.g., Medical Subject Headings)
and relevant keywords, such as ‘hypoglycemia’ and ‘diabetes’ and ‘utility’ and ‘health related quality of life.’ See
Supplementary Material 1 for the details of our literature search strategies. We excluded abstracts, conference
proceedings and articles published in languages other than English. We also excluded studies if the disutility value
due to hypoglycemia could not be estimated (e.g., no information on baseline utility). We included studies in
which diabetic patients provided utilities or disutilities for their own experiences with hypoglycemia, as well as
those in which respondents from the general public provided direct utilities (e.g., TTO) for hypothetical health
states of hypoglycemia. Eliciting health state utilities from the general population is the standard method for utility
studies. Furthermore, we examined the reference lists in published reviews of HRQoL and health utility studies for
additional relevant studies [23–26]. When a study reported results of several analyses (e.g., using different statistical
models), we summarized the utility and disutility results from the main analyses. Due to heterogeneity amongst
studies, we did not conduct a meta-analysis.

A single author (XX) conducted an initial screening of titles and abstracts and retrieved the full text articles of
studies that were potentially eligible for review. Two authors (XX and KEB) independently reviewed the full-text
articles to select studies for inclusion. Data from selected studies were extracted by XX and verified by JG.
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Overview of methods to estimate disutility of the joint health states: the basics
Nonparametric methods that are commonly used to estimate joint health state utilities include the additive, mini-
mum and multiplicative methods, and adjusted decrement estimator (ADE) [27,28]. We provide a brief introduction
to these methods below. For simplicity, we begin with a perfect baseline health state (baseline utility = 1). UA and
UB denote the mean utilities for individuals with single condition A or B, respectively. Also, the utility decrements
for conditions A and B are denoted as 1 – UA and 1 – UB, respectively. UJ denotes the mean joint health utility for
individuals who have both conditions A and B, and the utility decrement of the joint health state is denoted by 1
– UJ.

Additive method

The additive method assumes that the conditions affect the utility function independently with no overlap.
Therefore, the absolute utility decrement of the joint health state is equal to the sum of the absolute utility
decrements in conditions A and B [27,28]:

UJ = 1 − ([1 − UA] + [1 − UB])

Minimum method

The minimum utility method uses the minimum utility of two conditions, and assumes there is no cumulative
burden from the other condition [27,28]:

UJ = min (UA, UB)

Multiplicative method

The multiplicative method assumes that for each additional condition, the disutility impact is proportional to the
disutility already experienced [27]:

UJ = UA × UB

ADE method

This method incorporates all three of the above. It calculates the joint utility as the minimum utility minus the
minimum utility multiplied by the two disutilities [28,29]:

UJ = min (UA, UB) − min (UA, UB) × (1 − UA) × (1 − UB)

We extended the above methods to estimate the utilities for the joint health states for NSHEs and SHEs. We
defined the utility from diabetes without any hypoglycemic events as the baseline utility, and considered up to four
health conditions for daytime and nocturnal NSHEs and SHEs. Finally, we estimated the disutility of a joint health
state (DJ) which is the difference between the utility of the joint health state and baseline utility (U0):

DJ = UJ − U0

In the Supplementary Materials 2 & 3, we provide the details of the process of estimating disutility of the joint
health states of hypoglycemic events. We used SAS 9.4 (SAS Institute, NC, USA) to perform the analyses. The
SAS code is available on request from the corresponding author.

Methods of estimating disutility of the joint four health states: daytime NSHE, nocturnal NSHE,
daytime SHE and nocturnal SHE
The disutility of a joint health state is the difference between the utility of the joint health state and baseline utility.
We chose a study that derived utilities for hypoglycemia using TTO in the general population (Evans et al.) [4] to
estimate the disutility for joint SHEs and NSHEs due to the following considerations:
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Table 1. Estimating disutility of each type of hypoglycemic events for six hypothetical hypoglycemia scenarios.
Hypothetical
hypoglycemia scenario

Scenario description and frequency (per patient-year [n]) of
hypoglycemic events†

Disutility of each type of hypoglycemic event
(Linear)‡

Disutility of daytime and
nocturnal NSHE (Log)§

Diabetes dNSHE
(n)

nNSHE
(n)

dSHE (n) nSHE (n) DdNSHE DnNSHE DdSHE DnSHE DdNSHE DnNSHE

Scenario 1 Type 1-M 42 14 1 1 -0.168 -0.098 -0.057 -0.062 -0.050 -0.052

Scenario 2 Type 1-L 34 9 0 0 -0.136 -0.063 0 0 -0.047 -0.045

Scenario 3 Type 1-H 50 19 3 2 -0.2 -0.133 -0.171 -0.124 -0.053 -0.058

Scenario 4 Type 2-M 17 11 1 1 -0.068 -0.077 -0.057 -0.062 -0.037 -0.048

Scenario 5 Type 2-L 12 7 0 0 -0.048 -0.049 0 0 -0.033 -0.042

Scenario 6 Type 2-H 22 16 3 2 -0.088 -0.112 -0.171 -0.124 -0.040 -0.055

The baseline utility for diabetes with no hypoglycemic events is 0.844 [4].
†dNSHE, nNSHE, dSHE and nSHE are the yearly frequencies of daytime NSHE, nocturnal NSHE, daytime SHE and nocturnal SHE, respectively. Type 1-M, Type 1-L are Type 1-H represent the
Type 1 diabetes with medium, low and high frequencies of hypoglycemic events. Type 2-M, Type 2-L are Type 2-H represent the Type 2 diabetes with medium, low and high frequencies of
hypoglycemic events.
‡DdNSHE, DnNSHE, DdSHE and DnSHE are the disutilities due to daytime NSHE, nocturnal NSHE, daytime SHE and nocturnal SHE, respectively. The average disutility per single hypoglycemic event
was 0.004 for a daytime NSHE, 0.007 for a nocturnal NSHE, 0.057 for a daytime SHE and 0.062 for a nocturnal SHE [4]. The disutility for each type of hypoglycemic events is equal to the
disutility per event for each type of event multiplied by the corresponding frequency of events per year (i.e., the linear method).
§We used the log-transformed estimates of disutility values associated with daytime and nocturnal NSHEs by the formula from Lauridsen et al. (note: authors did not introduce the log-
transformed estimates of disutility for SHEs) [21].
D: Disutility; n: Number; NSHE: Nonsevere hypoglycemic event; SHE: Severe hypoglycemic event.

• We expected that the severity and frequency of hypoglycemic events should impact utility. This study provided
the disutilities for daytime and nocturnal SHEs and NSHEs separately, which can be used for estimating the
disutility for joint health states at the given frequencies of SHEs and NSHEs.

• The health states included events which have short-term impact and long-term impact.
• Many published economic evaluations used this study to estimate disutility for hypoglycemic events.

To illustrate the estimation of disutility in joint health states, we used the results of a recent survey study in 552
individuals with Type 1 (n = 94) and Type 2 (n = 456) diabetes in Canada [5]. We assumed that the number of
each type of hypoglycemic event follows a Poisson distribution. Based on the median, 10th percentile and 90th
percentile of simulated data of hypoglycemic events for Type 1 and Type 2 diabetes, we created six hypothetical
scenarios (Table 1), with low, medium and high frequencies of NSHEs and SHEs. We first estimated the disutility
for each type of event (the disutility values per event [4] multiplied by the corresponding frequency of events per
year, or log-transformed estimates of disutility values associated with daytime and nocturnal NSHEs by Lauridsen
et al. [21]), and then estimated the disutility of joint health states with four types of events (daytime NSHE, nocturnal
NSHE, daytime SHE and nocturnal SHE) using four commonly used nonparametric methods discussed above.
See Supplementary Material 2.

Methods of estimating the disutility for joint two health states: NSHE and SHE
Other than their time of occurrence, daytime and nocturnal hypoglycemic events are similarly defined [4]. We
therefore combined daytime NSHEs and nocturnal NSHEs to estimate the total number of NSHEs, and combined
daytime and nocturnal SHEs to estimate the number of SHEs. We assumed the total number of NSHEs and SHEs
would jointly predict the disutility. We first estimated the disutility values associated with the total number of
NSHEs and SHEs separately [4]. A recent Canadian study showed that 25 and 40% of hypoglycemic events were
nocturnal for Type 1 and Type 2 diabetes, respectively [5]. We assumed that NSHEs occur randomly throughout
the 24 hour day, so the disutility of any NSHEs at a given frequency would be approximately equal to the weighted
disutility of daytime NSHEs (75% weight) and nocturnal NSHEs (25% weight).

We used the linear regression model to predict the disutility from the transformed number of events. Transfor-
mations on a dependent variable change the distribution of error terms while transformations on the independent
variable often have less impact on the distribution of error terms [30]. Thus, we used six different methods to
transform the total number of NSHEs per year (i.e., the independent variable), but not disutility (the dependent
variable). We used R2, the sum of squares due to error and mean absolute error to evaluate the prediction models.
The same approach was used to estimate the disutility due to SHEs. Since the best prediction models fitted the
observed data well (e.g., R2 = 0.98 for NSHEs and R2 = 1.00 for SHEs), we considered that the prediction model
met our requirement and did not try other models.
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We used the ADE [29] and multiplicative method [28] to estimate the joint utility of diabetes-specific health
states with both NSHEs and SHEs. We did not use the additive method because it assumes that each condition
independently affects the distutility [27], or the minimum utility method because it does not account for the
additional impact from other conditions. Supplementary Material 3 & Supplementary Tables 1 & 2 provide the
details of estimating the disutility for joint health states of SHEs and NSHEs.

Construct validation of the estimation of joint disutility due to hypoglycemic events
We used two approaches to validate the findings. Firstly, we compared the estimated disutility of the ‘average’ Type
1 diabetes (scenario 1) and Type 2 diabetes (scenario 4) by different methods with the adjusted disutilities in our
review. The adjusted disutility (i.e., the coefficients from the regression model) reflects the mean change of utility
value between diabetes with hypoglycemia versus diabetes without hypoglycemia, after controlling various factors.
Because diabetic patients with SHEs generally experience NSHEs, the coefficients of SHEs versus no hypoglycemia
can be considered as the mean joint disutility due to SHEs and NSHEs for these patients.

Secondly, we compared the disutility estimates from the joint four and two health states by different methods
to the disutilities of various diabetes complications from the CORE diabetes model and the UKPDS cost-utility
analysis model (Supplementary Table 3) [6,31]. Both of these models have been widely used worldwide. Although
they have been updated, their utilities have not been changed [7]. We also included a recent study which derived
EQ-5D-5L utilities for diabetic complications from 4963 diabetic patients [32].

Results
Literature review
We identified 24 studies that met our inclusion criteria [4,32–45]. Detailed results of the literature search, selection and
exclusion are summarized in a Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow
diagram (Figure 1) [46]. Nineteen studies elicited disutility of hypoglycemia from patients with diabetes (Table 2 &
Supplementary Table 4) [32–43,47–53] and five obtained utilities for scenarios from the general public (Supplementary
Tables 5 & 6) [4,44,45,54,55].

The 19 studies in patients used different definitions for the severity of hypoglycemic events, which occurred
between 4 weeks [33,42] and 1 year [37] before the date of the survey or interview. Sixteen studies used multiple linear or
mixed linear models to evaluate disutility due to hypoglycemia (yes or no, or by severity), with adjustments for other
common diabetic complications and patients’ characteristics. All studies showed that hypoglycemic events were
associated with reduced health utility, however, the magnitude of disutility varied greatly. Four studies in patients
with Type 2 diabetes showed large absolute disutilities for severe hypoglycemia, 0.15 [49], 0.16 [39], 0.20 [48] and
0.27 [40]. Interestingly, the patients in all of these studies were Type 2 diabetics treated with oral antihyperglycaemic
agents (e.g., sulphonylurea) [39,40,48,49]. In the other studies, the disutility of severe hypoglycemia ranged from
-0.05 [34] to -0.002 [37] . Compared with studies which primarily evaluated the impact of hypoglycemia on HRQoL
for diabetes, the studies which investigated the impact of several diabetic complications (including hypoglycemia)
on HRQoL seemed to find a smaller magnitude of utility decrement for hypoglycemia. We also observed the
following trends:

• The absolute crude disutilities were generally greater than the adjusted disutilities, and the differences could be
large [32,34,36].

• Using the same data, different models can produce different disutilities [32,39,40,47].
• The model fits (R2) were relatively poor, ranging from 0.063 [42] to 0.40 [32].

Only two studies [33,41] included the frequency of hypoglycemic events (using a log transformed total number
of symptomatic hypoglycemic events in the past 4 weeks [33] or 3 months [41]) in a two-stage model, while authors
suggested that the model had ‘lack of fit’ [41]. Supplementary Table 4 provides details of the included studies.

Five studies elicited TTO utilities for hypothetical health states from the general public [4,44,45,54,55]. A study
from Malaysia showed that the disutility per daytime NSHE was -0.0354, and the disutility per daytime SHE
was -0.3619 [54]. But, the absolute values of disutility for hypoglycemia were much smaller in the other four
studies conducted in developed countries [4,44,45,55]. The disutility per SHE was approximately -0.06 [4,44]; and
the disutility per NSHE ranged from -0.0032 to -0.0076. Supplementary Table 5 provides details of these studies,
including the statistical methods to estimate disutility per hypoglycemic event.
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Table 2. Unadjusted utility and adjusted disutility due to hypoglycemia in Type 1 and Type 2 diabetes.
Author (year) Diabetes type

(n)
Type of hypoglycemia, n (%) Utility measure Unadjusted utility,

mean ± SD
Adjusted disutility†,
mean (SE) or mean (CI:
95%)

Ref.

Neuwahl et al.,
(2021)

Type 2 (15252) No hypo: NR
With hypo: NR; number of hypo events
requiring any assistance = 1247

HUI-3 NR
NR

–
-0.001 (0.006), NS

[47]

Gordon
et al., (2020)

Type 1 (648) Severe hypo (yes vs no): 6 (0.9%)
Log transformed number of symptomatic
hypo

EQ-5D-3L –
–

Calculated: -0.035††

Calculated: -0.0032††
[33]

Yfantopoulos et al.,
(2020)

Type 2 (938) No severe hypo: 798 (84.9%)
Severe hypoglycemia: 140 (15.1%)

EQ-5D-5L 0.728 ± 0.234
0.634 ± 0.238

–
-0.050 (-0.091 to -0.009)

[34]

Zhang et al., (2020) Type 2 (7081) Symptomatic hypoglycemia: 711 (10.4%)
Severe hypoglycemia: 344 (4.9%)

EQ-5D-3L NR
NR

-0.007 (0.002) for an
additional event
-0.008 (0.004) for an
additional event

[35]

Shao et al., (2019) Type 2 (8713) No Hypo: NA
Symptomatic hypo (event year): NA
Symptomatic hypo (successive years): NA
Severe (event year): NA
Severe (successive years): NA

HUI-3 0.71 ± 0.26
0.64 ± 0.30
0.62 ± 0.29
0.66 ± 0.28
0.66 ± 0.28

Both severe and
symptomatic:
-0.036 (0.010) for event
year
-0.033 (0.011) for
successive years

[36]

Takahara
et al., (2019)

Type 1 and
Type 2 (4963)

No severe or nocturnal hypo: 4784 (96.1%)
Severe or nocturnal hypo: 179 (3.6%)

EQ-5D-5L 0.905 ± 0.135
0.831 ± 0.155

–
-0.025 (0.012)

[32]

Pratipanawatr
et al., (2019)

Type 2 (659) No hypo: 457 (69.3%)
With hypo: 202 (30.7%)

– Mild: 119 (59.4%)
– Moderate: 67 (33.2%)
– Severe/very severe: 15 (7.4%)

EQ-5D-3L 0.79 ± 0.31
NR
0.62 ± 0.47
0.68 ± 0.38
0.58 ± 0.51

–
–
-0.156 (-0.225, -0.087)
-0.096 (-0.183, -0.008)
-0.198 (-0.373, -0.023)

[48]

Pagkalos
et al., (2018)

Type 2 (383) No hypo: 218 (56.9%)
With hypo: 165 (43.1%)

– Mild: 82 (49.7%)
– Moderate: 68 (41.2%)
– Severe/very severe: 15 (9.1%)

EQ-5D-3L 0.8 ± 0.2
0.7 ± 0.2
NR
NR
NR

–
Model A§: -0.040 (NR),
NS
Model B§: -0.018 (NR),
NS
Model B§: -0.043 (NR),
NS
Model B§: -0.151 (NR)

[49]

Pawaskar
et al., (2018a)

Type 2 (3630) No hypo: 1729 (47.6%)
With hypo: 1901 (52.4%)

– Nonsevere hypo: 1729 (91.0%)
– Severe hypo: 172 (9.0%)

SF-6D 0.68
NR
0.66
0.60

–
–
–
–

[50]

Pawaskar et al.,
(2018b)

Type 2 (1269) No hypo: 652 (51.4%)
With hypo: 617 (48.6%)

– Nonsevere hypo: 533 (86.3%)
– Severe hypo: 84 (13.6%)

SF-6D 0.64
NR
0.62
0.58

–
–
–
–

[51]

Cvetanović
et al., (2017)

Type 2 (269) No hypo: 78 (29.0%)
With Hypo: 191 (71.0%)

EQ-5D-3L 0.87
0.85

–
NS

[52]

Peasgood et al.,
(2016)

Type 1 (2453) No severe hypo: 1923 (78%)
Severe hypo: 530 (22%)

EQ-5D-3L and
SF-6D

NR
NR

–
EQ-5D-3L: -0.002
(0.002), NS SF-6D:
-0.003 (0.002), NS

[37]

†Except these with note of ‘not significant,’ the adjusted disutility was statistically significant at a significance level of 0.05.
‡There were 1183 out of 1248 Type 2 diabetes patients who reported the severity level of hypoglycemia [39].
§ In Model A, the symptoms of hypoglycemia were treated as a dichotomous variable (i.e., yes vs no). In model B, the variable hypoglycemia was stratified by severity level, including
none, mild, moderate and severe/very severe [39,40,49].
¶For Type 2 diabetes, authors reported results by insulin users (n = 168) and patients using only oral agents (n = 600) separately in Table 3 [41]. We combined the data of these
two categories.
#A small number of patients did not report the severity level. Also, there was some overlap between the categories of ‘nocturnal only’ and ‘mild, moderate or severe’ hypoglycemia.
†† It was calculated from the two-stage model. We provided the details of calculation process using Currie et al. [41]. In the first stage model to predict hypoglycemia fear survey (HFS)
score, the coefficients of severe hypoglycemia and Log transformed number of symptomatic hypoglycemias were 5.881 and 1.773, respectively. In the second stage model to predict
utility, the coefficient of HFS score was -0.008. Then, it was calculated that the coefficient for severe hypoglycemia and Log transformed number of symptomatic hypoglycemias
were -0.047 (5.881× [-0.008]) and -0.0142 (1.773× [-0.008]), respectively. However, both first stage and second stage models were relatively poor predictive model with low R2.
See Supplementary Table 1 for more details.
EQ-5D-3L: EuroQol–5 dimension–3 level; EQ-5D-5L: EuroQol–5 dimension–5 level; hypo: Hypoglycemia; HUI-3: Health Utilities Index Mark 3; n: number; NA: Not applicable; NR:
Not reported; NS: Not statistically significant at a significance level of 0.05; SE: Standard error; SF-6D: Short form–6 dimension.
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Table 2. Unadjusted utility and adjusted disutility due to hypoglycemia in Type 1 and Type 2 diabetes (cont.).
Author (year) Diabetes type

(n)
Type of hypoglycemia, n (%) Utility measure Unadjusted utility,

mean ± SD
Adjusted disutility†,
mean (SE) or mean (CI:
95%)

Ref.

Sheu et al., (2012) Type 2 (2257) No hypo: 1388 (61.5%)
With hypo: 869 (38.5%)

– Mild: 508 (58.5%)
– Moderate: 189 (21.7%)
– Severe: 101 (11.6%)
– Very severe: 71 (8.2%)

EQ-5D-3L 0.90 ± 0.15
0.88 ± 0.15
0.89 ± 0.14
0.85 ± 0.15
0.87 ± 0.17
0.87 ± 0.13

–
Any hypo: -0.019 (NR)
–
–
–
–

[53]

Solli et al., (2010) Type 1 (165)
Type 2 (356)

Hypo index (3 levels): NR
Hypo index (3 levels): NR

EQ-5D-3L
EQ-5D-3L

NR
NR

-0.023 (-0.071 to 0.025),
NS
-0.004 (-0.039 to 0.032),
NS

[38]

Marrett
et al., (2009)

Type 2 (1984) No hypo: 736 (37%)
With hypo: 1248 (63%)

– Mild: 540 (45.6%)‡

– Moderate: 442 (37.4%)‡

– Severe or very severe: 201 (17.0%)‡

EQ-5D-3L 0.86 ± 0.16
0.78 ± 0.19
0.83 ± 0.16
0.77 ± 0.17
0.67 ± 0.24

–
Model A§: -0.05 (NR)
Model B§: NR and NS
Model B§: -0.05 (NR)
Model B§: -0.16 (NR)

[39]

Vexiau et al., (2008) Type 2 (400) No hypo: 264 (66%)
With hypo: 136 (34%)

– Mild: 78 (58.2%)
– Moderate: 40 (29.9%)
– Severe or very severe: 16 (11.9%)

EQ-5D-3L 0.80 ± 0.23
0.70 ± 0.26
0.73 ± NR
0.70 ± NR
0.54 ± NR

–
Model A§: -0.09 (NR)
Model B§: -0.07 (NR)
Model B§: -0.08 (NR)
Model B§: -0.27 (NR)

[40]

Currie et al., (2006) Type 1 (419) No hypo: 64 (15%)
With hypo: 355 (85%)

– Mild: NR
– Moderate: NR
– Severe: 43 (12%)

EQ-5D-3L 0.644 ± 0.34
NR
0.758 ± 0.261
0.68 ± 0.341
0.522 ± 0.422

–
–
–
–
–

[41]

Type 2 (768) No hypo: 340 (44%)¶

With hypo: 428 (56%)¶

– Mild: NR
– Moderate: NR
– Severe: 25 (6%)¶

EQ-5D-3L 0.711 ± 0.281
NR
0.656 ± 0.309
0.49 ± 0.353
0.467 ± 0.326

–
–
–
–
–

All Type 1 and
Type 2 (1187)

Severe hypo (yes vs no): NR
Log transformed number of symptomatic
hypo

EQ-5D-3L –
–

Calculated: -0.047††

Calculated: -0.0142††

Lundkvist
et al., (2005)

Type 2 (307) No hypo: 193 (63%)
With hypo: 114 (37)

EQ-5D-3L 0.77 ± 0.24
0.70 ± 0.27

–
-0.047 (0.0302), NS

[42]

Davis et al., (2005) Type 1 and Type
2 (861)

No hypo: 232 (27%)
With hypo: 629 (73%)

– Mild or moderate: 516 (60%)#

– Severe: 57 (7%)#

– Nocturnal only: 191 (22%)#

EQ-5D-3L NR
NR
0.65 ± 0.33
0.53 ± 0.38
0.77 ± 0.17

–
–
–
–
–

[43]

†Except these with note of ‘not significant,’ the adjusted disutility was statistically significant at a significance level of 0.05.
‡There were 1183 out of 1248 Type 2 diabetes patients who reported the severity level of hypoglycemia [39].
§ In Model A, the symptoms of hypoglycemia were treated as a dichotomous variable (i.e., yes vs no). In model B, the variable hypoglycemia was stratified by severity level, including
none, mild, moderate and severe/very severe [39,40,49].
¶For Type 2 diabetes, authors reported results by insulin users (n = 168) and patients using only oral agents (n = 600) separately in Table 3 [41]. We combined the data of these
two categories.
#A small number of patients did not report the severity level. Also, there was some overlap between the categories of ‘nocturnal only’ and ‘mild, moderate or severe’ hypoglycemia.
†† It was calculated from the two-stage model. We provided the details of calculation process using Currie et al. [41]. In the first stage model to predict hypoglycemia fear survey (HFS)
score, the coefficients of severe hypoglycemia and Log transformed number of symptomatic hypoglycemias were 5.881 and 1.773, respectively. In the second stage model to predict
utility, the coefficient of HFS score was -0.008. Then, it was calculated that the coefficient for severe hypoglycemia and Log transformed number of symptomatic hypoglycemias
were -0.047 (5.881× [-0.008]) and -0.0142 (1.773× [-0.008]), respectively. However, both first stage and second stage models were relatively poor predictive model with low R2.
See Supplementary Table 1 for more details.
EQ-5D-3L: EuroQol–5 dimension–3 level; EQ-5D-5L: EuroQol–5 dimension–5 level; hypo: Hypoglycemia; HUI-3: Health Utilities Index Mark 3; n: number; NA: Not applicable; NR:
Not reported; NS: Not statistically significant at a significance level of 0.05; SE: Standard error; SF-6D: Short form–6 dimension.

Disutility of the joint four health states: daytime NSHE, nocturnal NSHE, daytime SHE & nocturnal
SHE
As described previously, we created six hypothetical diabetes scenarios with different frequencies of SHEs and
NSHEs. The disutility of each type of hypoglycemic event estimated using the linear approach was larger than that
using the log-transformed method, and the differences between the two approaches were larger when the rates of
NSHE were high, such as scenarios 3 and 6 (Table 1).
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses flow diagram – literature search
strategy.

Table 3. Estimating disutility for six hypothetical hypoglycemia scenarios with joint four health states: daytime
nonsevere hypoglycemic events, nocturnal nonsevere hypoglycemic events, daytime severe hypoglycemic events and
nocturnal severe hypoglycemic events.
Hypothetical
hypoglycemia scenario†

Disutility of joint health states by different methods (Linear)‡ Disutility in joint health states by different methods (Log)§

Additive Minimum Multiplicative ADE Additive Minimum Multiplicative ADE

Scenario 1 -0.385 -0.168 -0.328 -0.194 -0.222 -0.062 -0.201 -0.070

Scenario 2 -0.199 -0.136 -0.189 -0.142 -0.092 -0.047 -0.090 -0.048

Scenario 3 -0.628 -0.200 -0.475 -0.258 -0.406 -0.171 -0.343 -0.199

Scenario 4 -0.264 -0.077 -0.235 -0.089 -0.204 -0.062 -0.187 -0.069

Scenario 5 -0.097 -0.049 -0.094 -0.051 -0.075 -0.042 -0.073 -0.043

Scenario 6 -0.495 -0.171 -0.398 -0.210 -0.390 -0.171 -0.333 -0.197

The baseline utility for diabetes with no hypoglycemic events is 0.844 [4].
†See Table 1 for descriptions of the scenarios.
‡The disutility for each type of hypoglycemic event is equal to the disutility per event for each type of event multiplied by the corresponding frequency of events per year (i.e., the linear
method). Then, we used the additive, minimum, multiplicative and ADE methods to estimate the disutility for the joint health states.
§We used the log-transformed estimates of disutility values associated with daytime and nocturnal nonsevere hypoglycemic events by Lauridsen et al. (authors did not introduce the
log-transformed estimates of disutility for severe hypoglycemic events) [21]. Then, we used the additive, minimum, multiplicative and ADE methods to estimate the disutility for the joint
health states.
ADE: Adjusted decrement estimator.
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Table 4. Estimating disutility for six hypothetical hypoglycemia scenarios with joint two health states: nonsevere
hypoglycemic events and severe hypoglycemic events.
Hypothetical hypoglycemia
scenario

Frequency (n per patient-year) Disutility of each type of hypoglycemic
events, mean (SE)

Disutility of joint health states by method,
mean (SE)

NSHE (n) SHE (n) DNSHE
† DSHE

‡ ADE§ Multiplicative¶

Scenario 1 56 2 -0.056 (0.004) -0.092 (0.001) -0.096 (0.001) -0.142 (0.004)

Scenario 2 43 0 -0.051 (0.004) NA -0.051 (0.004) -0.051 (0.004)

Scenario 3 69 5 -0.060 (0.004) -0.111 (0.001) -0.116 (0.001) -0.163 (0.004)

Scenario 4 28 2 -0.044 (0.003) -0.092 (0.001) -0.095 (0.001) -0.132 (0.003)

Scenario 5 19 0 -0.039 (0.003) NA -0.039 (0.003) -0.039 (0.003)

Scenario 6 38 5 -0.049 (0.003) -0.111 (0.001) -0.115 (0.001) -0.153 (0.003)

The baseline utility for diabetes with no hypoglycemic events is 0.844 [4].
†The disutility estimates for NSHEs were based the best-fitting model, Formula S3.6 in Supplementary Material 3.
‡The disutility estimates for SHEs were based the best-fitting model, Formula S3.7 in Supplementary Material 3.
§The disutility estimates for joint health states were based on the ADE, Formulas S3.3 and S3.4 in Supplementary Material 3.
¶The disutility estimates for joint health states were based on the multiplicative method, Formulas S3.4 and S3.5 in Supplementary Material 3.
ADE: Adjusted decrement estimator; NA: Not applicable; n: Number; NSHE: Nonsevere hypoglycemic event; SE: Standard error; SHE: Severe hypoglycemic event.

We also used four methods to estimate the disutility for joint states of different types of hypoglycemic events
(Table 3). Not surprisingly, the minimum utility method resulted in the smallest absolute value of disutility, and the
additive method was associated with the largest absolute value of disutility. The absolute value of disutility using
the multiplicative method was greater than using the ADE.

Disutility of the joint two health states: NSHE & SHE
We identified the best fitting models (Supplementary Table 2) for NSHEs (formula S3.6) and SHEs (formula
S3.7) in Supplementary Material 3, and used these models to predict the disutilities for NSHEs and SHEs in six
hypothetical diabetes scenarios (Table 4). We then estimated the disutilities for joint NSHEs and SHEs using the
ADE and multiplicative method.

Assessment of the construct validity for disutility of joint health states
Tables 3 & 4 show that both the ADE and multiplicative methods estimated higher utilities (or smaller absolute
values of disutility) than the linear additive and log additive methods. The best method is likely to depend on the
dataset used for validation. Our literature review showed a large variation in estimated disutility values (Table 2).
If using the validation datasets from studies with very large absolute disutilities for severe hypoglycemia [39,40,48,49],
(adjusted disutility ranging from -0.27 to -0.15), the multiplicative method is likely to be less biased, as its estimated
joint disutilities of ‘average’ Type 1 (Scenario 1) and Type 2 (Scenario 4) diabetes were closer to the mean disutility
in these studies, compared with the additive and ADE methods. However, if using other studies as the validation
datasets [34,38,41], we may find that the ADE method resulted in smaller utility decrements, which are closer to
the disutility reported than multiplicative method. Furthermore, when frequencies of NSHEs and SHEs are high
(Scenarios 3 and 6), the absolute values of disutility are very large using the additive and multiplicative methods.

We compared the joint health state of SHE and NSHE with utilities for other diabetic complications. The
impact of SHE on HRQoL, while considerable, is on average likely smaller than that of complications such as
myocardial infarction, stroke, congestive heart failure, or amputation. Based on our clinical judgement, some
studies [39,40,48,49] may overestimate the health impact of SHE, and the ADE method is likely to provide more
conservative and less-biased estimates. We can interpret this model to mean that when a person with diabetes has
SHEs, the additional health impact from NSHEs is marginal.

For the remaining two hypothetical scenarios with 19 (scenario 5) and 43 (scenario 2) NSHEs per year with
no SHEs, the absolute values of disutilities were 0.039 and 0.051, respectively, using the best-fitting NSHE model
(Table 4), while the linear additive and log additive methods resulted in absolute disutility values ranging from
0.097 to 0.199, and from 0.075 to 0.092, respectively (Table 3). Evans et al. [4] reported that the disutilities of
12 (1 event per month) and 52 (1 event per week) daytime NSHEs were -0.032 and -0.036, respectively; and the
disutilities of 12 and 52 nocturnal NSHEs were -0.040 and -0.069, respectively. Thus, the predicted disutilities
from our model fit the observed data well, while the disutility estimates from the linear additive and log additive
methods were significantly higher than observed (Supplementary Table 3).
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Discussion
Based on a literature review and an analysis of several methods to estimate the disutilities of joint hypoglycemic
events in diabetes, considering both their type and frequency, we recommend estimating the disutility due to
NSHEs (Formula S3.6) and SHEs (Formula S3.7) (i.e., two health states approach), and then using the ADE
method to estimate the disutility of joint NSHEs and SHEs (Formulas S3.3 and S3.4) for the following reasons:

• The underlying assumptions for the additive and minimum utility methods are not suitable for hypoglycemic
events.

• The definitions of daytime and nocturnal hypoglycemic events are generally the same [4], and we do not need
to distinguish between them in estimating disutility. Previous studies showed that nonparametric approaches for
three or four conditions produced results with large bias [27].

• There is a phenomenon of ‘first being worst’ for hypoglycemic events, such that with increased frequency of
events, the marginal disutility per additional NSHE and SHE is reduced [21]. Compared with the approach using
four health states, the joint disutilities estimated by our approach considering two health states are less sensitive
to the increased frequency of events (i.e., the difference in disutility between the high and low frequencies of
events using ADE is smaller than using the multiplicative method). This approach may better reflect the true
impact of hypoglycemic events.

• ADE better captures the strong correlation between different types of hypoglycemic events (e.g., stronger than
the correlation between asthma and angina).

Because the true disutilities of the hypothetical scenarios are unknown, we cannot definitely determine which
estimate had the least bias. It was not methodologically appropriate to compare the ranges of published utility
or disutility values because the measures (e.g., TTO and EQ-5D), statistical models for estimating disutility and
baseline utilities were not uniform across studies. However, in practice, most economic evaluations use utility data
from multiple sources. As such, it may be reasonable to evaluate the logical consistency of disutility estimates using
different methods, if the disutility of a given diabetes complication is reflective of its severity.

Our suggested methods provide conservative estimates of absolute disutilities which were less sensitive to the
frequencies of SHEs and NSHEs than the linear additive and log additive methods. Therefore, economic evaluations
of interventions to reduce hypoglycemic events that use our methods for estimating hypoglycemia disutilities
instead of those methods may result in fewer quality-adjusted life-years (QALYs) gained and very different cost–
effectiveness results. For instance, according to the ADE method, if the intervention reduces the frequency of
NSHEs (but not SHEs), the impact on hypoglycemia-associated disutility is likely to be marginal. Decision-makers
need to understand how methods of estimating disutility are strongly associated with the QALYs gained and judge
the credibility of cost–effectiveness results. At least, researchers may examine how cost–effectiveness results change
when they use different methods to calculate the disutility of joint SHEs and NSHEs. Also, the best approach for
joint SHEs and NSHEs in diabetes may not be the best in other conditions.

Future research in health utility of patients with diabetes should include health states with common diabetic
complications, and different severities and frequencies of hypoglycemic events. These studies could help us better
understand the impact of joint health states of SHEs and NSHEs, or SHEs or NSHEs alone on baseline utilities,
relative to the disutility values for other diabetic complications. Then, we can make more accurate estimates of
disutility for diabetes, and provide more reliable cost–effectiveness estimates.

Conclusion
Our literature review showed that the magnitude of disutility for joint hypoglycemic events was highly variable.
Our proposed methods for estimating the disutilities for joint health states of SHEs and NSHEs overcome the
limitations of the previously used linear additive and log additive methods. It provides a different perspective on
the estimation of QALYs for hypoglycemic events and is recommended for economic evaluations of interventions
for the treatment of hypoglycemia.
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Summary points

• Many of the classic long-term diabetes economic models only accounted for severe hypoglycemic events (SHEs).
However, nonsevere hypoglycemic events (NSHEs) may have health and economic impacts for people with
diabetes.

• Recent economic evaluations used linear or log-transformed additive methods to estimate the disutility of
daytime and nocturnal hypoglycemic events in diabetes, both NSHEs and SHEs, without accounting for the
correlation between them.

• The underlying assumptions for the additive and minimum utility methods are not suitable for hypoglycemic
events. The additive method assumes that the conditions that affect the utility function independently with no
overlap. The minimum utility method assumes there is no cumulative burden from the other events.

• We identified 24 studies which reported disutilities for hypoglycemia in diabetes. All studies showed that
hypoglycemic events were associated with reduced health utility, however, the magnitude of disutility varied
greatly (e.g., from -0.27 to -0.002 for severe hypoglycemia).

• We chose a study that derived utilities for hypoglycemia using time trade-off in the general population (Evans et
al., 2013) to estimate the disutility for joint SHEs and NSHEs. This study provided the disutilities for daytime and
nocturnal SHEs and NSHEs separately, which can be used for estimating the disutility for joint health states at the
given frequencies of SHEs and NSHEs.

• We calculated the disutility of daytime and nocturnal NSHEs and SHEs at different frequencies in six scenarios.
The disutility estimates for the joint health states of NSHEs and SHEs were smaller using the adjusted decrement
estimator (ADE) and multiplicative methods than the linear or log-transformed additive methods. Based on
construct validity, the ADE method is likely to provide a less biased estimate. It predicted that when SHEs occur,
the additional health impact from NSHEs is marginal.

• Our suggested methods provide conservative estimates of absolute disutilities which were less sensitive to the
frequencies of SHEs and NSHEs than the linear additive and log additive methods. Therefore, economic
evaluations of interventions to reduce hypoglycemic events that use our methods for estimating hypoglycemia
disutilities instead of additive methods may result in fewer quality-adjusted life-years gained and very different
cost–effectiveness results.

• Future research in health utility of patients with diabetes should include health states with common diabetic
complications, and different severities and frequencies of hypoglycemic events. These studies could help us better
understand the impact of joint health states of SHEs and NSHEs, or SHEs or NSHEs alone on baseline utilities,
relative to the disutility values for other diabetic complications.
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