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ON THE WEAK LAWS WITH RANDOM
INDICES FOR PARTIAL SUMS FOR

ARRAYS OF RANDOM ELEMENTS IN
MARTINGALE TYPE p BANACH SPACES

Soo Hak Sung, Tien-Chung Hu, and Andrei I. Volodin

Abstract. Sung et al. [13] obtained a WLLN (weak law of large
numbers) for the array {Xni, un ≤ i ≤ vn, n ≥ 1} of random vari-
ables under a Cesàro type condition, where {un ≥ −∞, n ≥ 1} and
{vn ≤ +∞, n ≥ 1} are two sequences of integers. In this paper, we
extend the result of Sung et al. [13] to a martingale type p Banach
space.

1. Introduction

The classical weak law of large numbers (WLLN) says that if {Xn, n ≥
1} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables satisfying nP (|X1| > n) = o(1), then

∑n
i=1(Xi − EX1I

(|X1| ≤ n))/n → 0 in probability as n → ∞. The WLLN has been
extended to the arrays of random variables or random elements (for
random variables, see Hong and Lee [5], Hong and Oh [6], and Sung
[12], and for random elements, see Adler et al. [1], Ahmed et al. [2],
and Hong et al. [7]).

Recently, Sung et al. [13] obtained a WLLN for the array {Xni, un ≤
i ≤ vn, n ≥ 1} of a random variables under a Cesàro type condition,
where {un ≥ −∞, n ≥ 1} and {vn ≤ +∞, n ≥ 1} are two sequences of
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integers. In this paper, we extend the result of Sung et al. [13] to a
martingale type p Banach space.

2. Preliminary definitions

Technical definitions relevant to the current work will be discussed in
this section. Scalora [11] introduced the idea of the conditional expec-
tation of a random element in a Banach space. For a random element
V and sub σ-algebra G of F , the conditional expectation E(V |G) is de-
fined analogously to that in the random variable case and enjoys similar
properties. See Scalora [11] for a complete development, as well as for a
development of Banach space valued martingales including martingale
convergence theorems.

A real separable Banach space X is said to be of martingale type p
(1 ≤ p ≤ 2) if there exists a finite constant C such that for all martingales
{Sn, n ≥ 1} with values in X ,

sup
n≥1

E||Sn||p ≤ C
∞∑

n=1

E||Sn − Sn−1||p,

where S0 ≡ 0. It can be shown using classical methods from martingale
theory that if X is of martingale type p, then for all 1 ≤ r < ∞ there
exists a finite constant C ′ such that for all X -valued martingales {Sn, n ≥
1}

E sup
n≥1

||Sn||r ≤ C ′E(
∞∑

n=1

||Sn − Sn−1||p)r/p.

Clearly every real separable Banach space is of martingale type 1 and
the real line (the same as any Hilbert space) is of martingale type 2. It
follows from the Hoffmann-Jφrgensen and Pisier [4] characterization of
Rademacher type p Banach spaces that if a Banach space is of martingale
type p, then it is of Rademacher type p. But the notion of martingale
type p is only superficially similar to that of Rademacher type p and has
a geometric characterization in terms of smoothness. For proofs and
more details, the reader may refer to Pisier [9, 10].

We say that a sequence {Xn, n ≥ 1} of random elements is uniformly
bounded by a random variable X if there exists a constant C > 0 such
that for all n ≥ 1 and all t > 0:

P (||Xn|| > t) ≤ CP (|X| > Ct).

Without loss of generality we assume that C = 1.
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3. Main results

Throughout this section, let {Xni,−∞ < i < ∞, n ≥ 1} be an array
of random elements defined on a probability space (Ω,F , P ) and taking
values in a real separable Banach space. Let {Un, n ≥ 1} and {Vn, n ≥
1}, where Un ≤ Vn almost surely for all n ≥ 1, be sequences of integer
valued random variables.

Let {kn, n ≥ 1} and {bn, n ≥ 1} be sequences of positive constants
such that kn →∞, bn →∞. Next, assume that {un, n ≥ 1} and {vn, n ≥
1} are two sequences of integers, un ≥ −∞, vn ≤ ∞ such that un ≤ vn

for all n ≥ 1. Set Fnj = σ{Xni, un ≤ i ≤ j} if j ≥ un, and Fnj = {∅, Ω}
if j < un, n ≥ 1.

To prove our main results, we will need the following lemma.

Lemma 1. Assume that
kn

bp
n
→ 0 for some p > 0.

Suppose that there exists a positive nondecreasing function g on [0,∞)
satisfying

lim
a→0

g(a) = 0,

∞∑

j=1

gp(1/j) < ∞,

and

kn

bp
n

kn−1∑

j=1

gp(j + 1)− gp(j)
j

= O(1).

Moreover, let

sup
a>0

sup
n≥1

1
kn

vn∑

i=un

aP (||Xni|| > g(a)) < ∞

and

lim
a→∞ sup

n≥1

1
kn

vn∑

i=un

aP (||Xni|| > g(a)) = 0.

Then
vn∑

i=un

E||Xni||pI(||Xni|| ≤ g(kn)) = o(bp
n).

Proof. The proof is same as that of Sung et al. [13] except that p
and ||Xni|| are used instead of β and |Xni|, respectively.

Now we state and prove one of our main results.



546 Soo Hak Sung, Tien-Chung Hu, and Andrei I. Volodin

Theorem 1. Let 0 < p ≤ 2. Assume that

P (Un < un) = o(1) and P (Vn > vn) = o(1) as n →∞.

When 1 ≤ p ≤ 2, we assume further that the underlying Banach space
is of martingale type p. Under the same conditions of Lemma 1,

Vn∑

i=Un

(Xni − cni)/bn → 0 in probability,

where cni = 0 if 0 < p ≤ 1 and cni = E(XniI(||Xni|| ≤ g(kn))|Fn,i−1) if
1 < p ≤ 2.

Proof. Let X ′
ni = XniI(||Xni|| ≤ g(kn)) for −∞ < i < ∞, n ≥ 1.

Then

P (||
Vn∑

i=Un

Xni/bn −
Vn∑

i=Un

X ′
ni/bn|| > ε)

≤ P (Un < un) + P (Vn > vn) + P (∪vn
i=un

(Xni 6= X ′
ni))

= o(1) + P (∪vn
i=un

||Xni|| > g(kn))

≤ o(1) +
vn∑

i=un

P (||Xni|| > g(kn))

= o(1) + k−1
n

vn∑

i=un

knP (||Xni|| > g(kn)),

so that
∑Vn

i=Un
Xni/bn −

∑Vn
i=Un

X ′
ni/bn → 0 in probability. Thus, to

prove the theorem it is enough to show that
Vn∑

i=Un

(X ′
ni − cni)/bn → 0 in probability.

For n ≥ 1 and any integers j < m denote

Bn
j,m = {||

m∑

i=j

(X ′
ni − cni)|| > bnε}

and Dn = ∪un≤j<m≤vnBn
j,m. Then

P (Bn
Un,Vn

) ≤ P (Bn
Un,Vn

, Un ≥ un, Vn ≤ vn) + P (Un < un) + P (Vn > vn)

≤ P (Dn) + o(1),

and hence it is sufficient to show that P (Dn) = o(1).
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First, we consider the case of 0 < p ≤ 1. Since cni = 0, it follows by
the Markov’s inequality and Lemma 1 that

P (Dn) = P ( max
un≤j<m≤vn

||
m∑

i=j

(X ′
ni − cni)|| > bnε)

≤ 1
εpbp

n
E max

un≤j<m≤vn

||
m∑

i=j

(X ′
ni − cni)||p

≤
vn∑

i=un

E||X ′
ni||p/(εpbp

n) → 0.

Now we consider the case of 1 < p ≤ 2. In this case, X ′
ni − cni, un ≤

i ≤ vn, form a martingale difference sequence. Since the underlying
Banach space is of martingale type p,

P (Dn) = P ( max
un≤j<m≤vn

||
m∑

i=j

(X ′
ni − cni)|| > bnε)

≤ 1
εpbp

n
E max

un≤j<m≤vn

||
m∑

i=j

(X ′
ni − cni)||p (by Markov’s inequality)

=
1

εpbp
n
E max

un≤j<m≤vn

||
m∑

i=un

(X ′
ni − cni)−

j−1∑

i=un

(X ′
ni − cni)||p

≤ 2p−1

εpbp
n

E max
un≤j<m≤vn

||
m∑

i=un

(X ′
ni − cni)||p + ||

j−1∑

i=un

(X ′
ni − cni)||p

(by cr-inequality)

≤ 2p

εpbp
n
E max

un≤m≤vn

||
m∑

i=un

(X ′
ni − cni)||p

≤ Cp2p

εpbp
n

vn∑

i=un

E||X ′
ni − cni||p

≤ Cp22p−1

εpbp
n

vn∑

i=un

E||X ′
ni||p + E||cni||p (by cr-inequality)

≤ Cp22p

εpbp
n

vn∑

i=un

E||X ′
ni||p → 0 (by Jensen’s inequality and Lemma 1),

where Cp is a constant depending only on p.
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Corollary 1. Assume that the underlying Banach space is of mar-
tingale type p, 1 ≤ p ≤ 2 and 0 < r < p. Suppose that

sup
a>0

sup
n≥1

1
kn

vn∑

i=un

aP (||Xni||r > a) < ∞

and

lim
a→∞ sup

n≥1

1
kn

un∑

i=un

aP (||Xni||r > a) = 0.

Moreover, assume that

P (Un < un) = o(1) and P (Vn > vn) = o(1) as n →∞.

Then
Vn∑

i=Un

(Xni − cni)/k1/r
n → 0 in probability,

where cni = 0 if 0 < r < 1 and cni = E(XniI(||Xni||r ≤ kn)|Fn,i−1) if
1 ≤ r < 2.

Proof. The proof is similar to that of Corollary 1 of Sung et al. [13]
and is omitted.

Theorem 2. Let {Xn, n ≥ 1} be a sequence of random elements
taking values in a real separable Banach space of martingale type p (1 ≤
p ≤ 2), which is uniformly bounded by a random variable X such that
aP (|X|r > a) → 0 as a → ∞ for some 0 < r < p. Let {|ani|r, 1 ≤ i <
∞, n ≥ 1} be a Toeplitz array of constants, i.e.,

lim
n→∞ ani = 0 for every i

and

sup
n≥1

∞∑

i=1

|ani|r < C for some constant C > 0.

If supi≥1 |ani| → 0 as n →∞, then

∞∑

i=1

ani(Xi − cni) → 0 in probability,

where cni = 0 if 0 < r < 1 and cni = E(XiI(||aniXi||r ≤ 1)|Fi−1) if
1 ≤ r < 2 (Fn = σ{Xi, 1 ≤ i ≤ n} and F0 = {∅,Ω}).

Proof. The proof is similar to that of Theorem 3 of Sung et al. [13]
and is omitted.
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[7] D. H. Hong, M. Ordóñez Cabrera, S. H. Sung, and A. Volodin, On the weak law
for randomly indexed partial sums for arrays of random elements in martingale
type p Banach spaces, Statist. Probab. Lett. 46 (2000), no. 2, 177–185.

[8] P. Kowalski and Z. Rychlik, On the weak law of large numbers for randomly
indexed partial sums for arrays, Ann. Univ. Mariae Curie-SkÃlodowska Sect. A
51 (1997), no. 1, 109–119.

[9] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20
(1975), no. 3-4, 326–350.

[10] , Probabilistic methods in the geometry of Banach spaces, in: G. Lette and
M. Pratelli, Eds., Probability and Analysis, Lectures given at the 1st 1985 Ses-
sion of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Varenna
(Como), Italy, May 31-June 8, 1985, Lecture Notes in Mathematics (Springer-
Verlag, Berlin), Vol. 1206 (1986), 167–241.

[11] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11
(1961), 347–374.

[12] S. H. Sung, Weak law of large numbers for arrays, Statist. Probab. Lett. 38
(1998), no. 2, 101–105.

[13] S. H. Sung, T.-C. Hu, and A. Volodin, On the weak laws for arrays of random
variables, Statist. Probab. Lett. 72 (2005), no. 4, 291–298.

Soo Hak Sung, Department of Applied Mathematics, Pai Chai University,
Taejon 302-735, Korea
E-mail : sungsh@pcu.ac.kr

Tien-Chung Hu, Department of Mathematics, National Tsing Hua Univer-
sity, Hsinchu 300, Taiwan
E-mail : tchu@math.nthu.edu.tw

Andrei I. Volodin, Department of Mathematics and Statistics, University
of Regina, Regina, Saskatchewan, S4S 0A2, Canada
E-mail : andrei@math.uregina.ca


