ON THE WEAK LAWS WITH RANDOM
 INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES

Soo Hak Sung, Tien-Chung Hu, and Andrei I. Volodin

Abstract

Sung et al. [13] obtained a WLLN (weak law of large numbers) for the array $\left\{X_{n i}, u_{n} \leq i \leq v_{n}, n \geq 1\right\}$ of random variables under a Cesàro type condition, where $\left\{u_{n} \geq-\infty, n \geq 1\right\}$ and $\left\{v_{n} \leq+\infty, n \geq 1\right\}$ are two sequences of integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space.

1. Introduction

The classical weak law of large numbers (WLLN) says that if $\left\{X_{n}, n \geq\right.$ $1\}$ is a sequence of independent and identically distributed (i.i.d.) random variables satisfying $n P\left(\left|X_{1}\right|>n\right)=o(1)$, then $\sum_{i=1}^{n}\left(X_{i}-E X_{1} I\right.$ $\left.\left(\left|X_{1}\right| \leq n\right)\right) / n \rightarrow 0$ in probability as $n \rightarrow \infty$. The WLLN has been extended to the arrays of random variables or random elements (for random variables, see Hong and Lee [5], Hong and Oh [6], and Sung [12], and for random elements, see Adler et al. [1], Ahmed et al. [2], and Hong et al. [7]).

Recently, Sung et al. [13] obtained a WLLN for the array $\left\{X_{n i}, u_{n} \leq\right.$ $\left.i \leq v_{n}, n \geq 1\right\}$ of a random variables under a Cesàro type condition, where $\left\{u_{n} \geq-\infty, n \geq 1\right\}$ and $\left\{v_{n} \leq+\infty, n \geq 1\right\}$ are two sequences of

[^0]integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space.

2. Preliminary definitions

Technical definitions relevant to the current work will be discussed in this section. Scalora [11] introduced the idea of the conditional expectation of a random element in a Banach space. For a random element V and sub σ-algebra \mathcal{G} of \mathcal{F}, the conditional expectation $E(V \mid \mathcal{G})$ is defined analogously to that in the random variable case and enjoys similar properties. See Scalora [11] for a complete development, as well as for a development of Banach space valued martingales including martingale convergence theorems.

A real separable Banach space \mathcal{X} is said to be of martingale type p $(1 \leq p \leq 2)$ if there exists a finite constant C such that for all martingales $\left\{S_{n}, n \geq 1\right\}$ with values in \mathcal{X},

$$
\sup _{n \geq 1} E\left\|S_{n}\right\|^{p} \leq C \sum_{n=1}^{\infty} E\left\|S_{n}-S_{n-1}\right\|^{p},
$$

where $S_{0} \equiv 0$. It can be shown using classical methods from martingale theory that if \mathcal{X} is of martingale type p, then for all $1 \leq r<\infty$ there exists a finite constant C^{\prime} such that for all \mathcal{X}-valued martingales $\left\{S_{n}, n \geq\right.$ 1\}

$$
E \sup _{n \geq 1}\left\|S_{n}\right\|^{r} \leq C^{\prime} E\left(\sum_{n=1}^{\infty}\left\|S_{n}-S_{n-1}\right\|^{p}\right)^{r / p}
$$

Clearly every real separable Banach space is of martingale type 1 and the real line (the same as any Hilbert space) is of martingale type 2. It follows from the Hoffmann-J ϕ rgensen and Pisier [4] characterization of Rademacher type p Banach spaces that if a Banach space is of martingale type p, then it is of Rademacher type p. But the notion of martingale type p is only superficially similar to that of Rademacher type p and has a geometric characterization in terms of smoothness. For proofs and more details, the reader may refer to Pisier $[9,10]$.

We say that a sequence $\left\{X_{n}, n \geq 1\right\}$ of random elements is uniformly bounded by a random variable X if there exists a constant $C>0$ such that for all $n \geq 1$ and all $t>0$:

$$
P\left(\left\|X_{n}\right\|>t\right) \leq C P(|X|>C t) .
$$

Without loss of generality we assume that $C=1$.

3. Main results

Throughout this section, let $\left\{X_{n i},-\infty<i<\infty, n \geq 1\right\}$ be an array of random elements defined on a probability space (Ω, \mathcal{F}, P) and taking values in a real separable Banach space. Let $\left\{U_{n}, n \geq 1\right\}$ and $\left\{V_{n}, n \geq\right.$ $1\}$, where $U_{n} \leq V_{n}$ almost surely for all $n \geq 1$, be sequences of integer valued random variables.

Let $\left\{k_{n}, n \geq 1\right\}$ and $\left\{b_{n}, n \geq 1\right\}$ be sequences of positive constants such that $k_{n} \rightarrow \infty, b_{n} \rightarrow \infty$. Next, assume that $\left\{u_{n}, n \geq 1\right\}$ and $\left\{v_{n}, n \geq\right.$ $1\}$ are two sequences of integers, $u_{n} \geq-\infty, v_{n} \leq \infty$ such that $u_{n} \leq v_{n}$ for all $n \geq 1$. Set $\mathcal{F}_{n j}=\sigma\left\{X_{n i}, u_{n} \leq i \leq j\right\}$ if $j \geq u_{n}$, and $\mathcal{F}_{n j}=\{\emptyset, \Omega\}$ if $j<u_{n}, n \geq 1$.

To prove our main results, we will need the following lemma.
Lemma 1. Assume that

$$
\frac{k_{n}}{b_{n}^{p}} \rightarrow 0 \text { for some } p>0
$$

Suppose that there exists a positive nondecreasing function g on $[0, \infty)$ satisfying

$$
\lim _{a \rightarrow 0} g(a)=0, \quad \sum_{j=1}^{\infty} g^{p}(1 / j)<\infty
$$

and

$$
\frac{k_{n}}{b_{n}^{p}} \sum_{j=1}^{k_{n}-1} \frac{g^{p}(j+1)-g^{p}(j)}{j}=O(1) .
$$

Moreover, let

$$
\sup _{a>0} \sup _{n \geq 1} \frac{1}{k_{n}} \sum_{i=u_{n}}^{v_{n}} a P\left(\left\|X_{n i}\right\|>g(a)\right)<\infty
$$

and

$$
\lim _{a \rightarrow \infty} \sup _{n \geq 1} \frac{1}{k_{n}} \sum_{i=u_{n}}^{v_{n}} a P\left(\left\|X_{n i}\right\|>g(a)\right)=0 .
$$

Then

$$
\sum_{i=u_{n}}^{v_{n}} E\left\|X_{n i}\right\|^{p} I\left(\left\|X_{n i}\right\| \leq g\left(k_{n}\right)\right)=o\left(b_{n}^{p}\right) .
$$

Proof. The proof is same as that of Sung et al. [13] except that p and $\left\|X_{n i}\right\|$ are used instead of β and $\left|X_{n i}\right|$, respectively.

Now we state and prove one of our main results.

Theorem 1. Let $0<p \leq 2$. Assume that

$$
P\left(U_{n}<u_{n}\right)=o(1) \text { and } P\left(V_{n}>v_{n}\right)=o(1) \text { as } n \rightarrow \infty .
$$

When $1 \leq p \leq 2$, we assume further that the underlying Banach space is of martingale type p. Under the same conditions of Lemma 1,

$$
\sum_{i=U_{n}}^{V_{n}}\left(X_{n i}-c_{n i}\right) / b_{n} \rightarrow 0 \text { in probability }
$$

where $c_{n i}=0$ if $0<p \leq 1$ and $c_{n i}=E\left(X_{n i} I\left(\left\|X_{n i}\right\| \leq g\left(k_{n}\right)\right) \mid \mathcal{F}_{n, i-1}\right)$ if $1<p \leq 2$.

Proof. Let $X_{n i}^{\prime}=X_{n i} I\left(\left\|X_{n i}\right\| \leq g\left(k_{n}\right)\right)$ for $-\infty<i<\infty, n \geq 1$. Then

$$
\begin{aligned}
& P\left(\left\|\sum_{i=U_{n}}^{V_{n}} X_{n i} / b_{n}-\sum_{i=U_{n}}^{V_{n}} X_{n i}^{\prime} / b_{n}\right\|>\epsilon\right) \\
\leq & P\left(U_{n}<u_{n}\right)+P\left(V_{n}>v_{n}\right)+P\left(\cup_{i=u_{n}}^{v_{n}}\left(X_{n i} \neq X_{n i}^{\prime}\right)\right) \\
= & o(1)+P\left(\cup_{i=u_{n}}^{v_{n}}\left\|X_{n i}\right\|>g\left(k_{n}\right)\right) \\
\leq & o(1)+\sum_{i=u_{n}}^{v_{n}} P\left(\left\|X_{n i}\right\|>g\left(k_{n}\right)\right) \\
= & o(1)+k_{n}^{-1} \sum_{i=u_{n}}^{v_{n}} k_{n} P\left(\left\|X_{n i}\right\|>g\left(k_{n}\right)\right),
\end{aligned}
$$

so that $\sum_{i=U_{n}}^{V_{n}} X_{n i} / b_{n}-\sum_{i=U_{n}}^{V_{n}} X_{n i}^{\prime} / b_{n} \rightarrow 0$ in probability. Thus, to prove the theorem it is enough to show that

$$
\sum_{i=U_{n}}^{V_{n}}\left(X_{n i}^{\prime}-c_{n i}\right) / b_{n} \rightarrow 0 \text { in probability }
$$

For $n \geq 1$ and any integers $j<m$ denote

$$
B_{j, m}^{n}=\left\{\left\|\sum_{i=j}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|>b_{n} \epsilon\right\}
$$

and $D_{n}=\cup_{u_{n} \leq j<m \leq v_{n}} B_{j, m}^{n}$. Then

$$
\begin{aligned}
P\left(B_{U_{n}, V_{n}}^{n}\right) & \leq P\left(B_{U_{n}, V_{n}}^{n}, U_{n} \geq u_{n}, V_{n} \leq v_{n}\right)+P\left(U_{n}<u_{n}\right)+P\left(V_{n}>v_{n}\right) \\
& \leq P\left(D_{n}\right)+o(1)
\end{aligned}
$$

and hence it is sufficient to show that $P\left(D_{n}\right)=o(1)$.

First, we consider the case of $0<p \leq 1$. Since $c_{n i}=0$, it follows by the Markov's inequality and Lemma 1 that

$$
\begin{aligned}
& P\left(D_{n}\right)=P\left(\max _{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=j}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|>b_{n} \epsilon\right) \\
\leq & \frac{1}{\epsilon^{p} b_{n}^{p}} E \max _{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=j}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p} \\
\leq & \sum_{i=u_{n}}^{v_{n}} E\left\|X_{n i}^{\prime}\right\|^{p} /\left(\epsilon^{p} b_{n}^{p}\right) \rightarrow 0 .
\end{aligned}
$$

Now we consider the case of $1<p \leq 2$. In this case, $X_{n i}^{\prime}-c_{n i}, u_{n} \leq$ $i \leq v_{n}$, form a martingale difference sequence. Since the underlying Banach space is of martingale type p,

$$
\begin{aligned}
& P\left(D_{n}\right)=P\left(\max _{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=j}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|>b_{n} \epsilon\right) \\
\leq & \frac{1}{\epsilon^{p} b_{n}^{p}} E \max _{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=j}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p} \quad \text { (by Markov's inequality) } \\
= & \frac{1}{\epsilon^{p} b_{n}^{p}} E \max _{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=u_{n}}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)-\sum_{i=u_{n}}^{j-1}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p} \\
\leq & \frac{2^{p-1}}{\epsilon^{p} b_{n}^{p}} E \sum_{u_{n} \leq j<m \leq v_{n}}\left\|\sum_{i=u_{n}}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p}+\left\|\sum_{i=u_{n}}^{j-1}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p} \\
\leq & \frac{2^{p}}{\epsilon^{p} b_{n}^{p}} E \max _{c_{r} \text {-inequality) }}\left\|\sum_{u_{n} \leq m \leq v_{n}}^{m}\left(X_{n i}^{\prime}-c_{n i}\right)\right\|^{p} \\
\leq & \frac{C_{p} 2^{p}}{\epsilon^{p} b_{n}^{p}} \sum_{i=u_{n}}^{v_{n}} E\left\|X_{n i}^{\prime}-c_{n i}\right\|^{p} \\
\leq & \frac{C_{p} 2^{2 p-1}}{\epsilon^{p} b_{n}^{p}} \sum_{i=u_{n}}^{v_{n}} E\left\|X_{n i}^{\prime}\right\|^{p}+E\left\|c_{n i}\right\|^{p} \quad \text { (by } c_{r} \text {-inequality) } \\
\leq & \frac{C_{p} 2^{2 p}}{\epsilon^{p} b_{n}^{p}} \sum_{i=u_{n}}^{v_{n}} E\left\|X_{n i}^{\prime}\right\|^{p} \rightarrow 0 \quad \text { (by Jensen's inequality and Lemma 1), }
\end{aligned}
$$

where C_{p} is a constant depending only on p.

Corollary 1. Assume that the underlying Banach space is of martingale type $p, 1 \leq p \leq 2$ and $0<r<p$. Suppose that

$$
\sup _{a>0} \sup _{n \geq 1} \frac{1}{k_{n}} \sum_{i=u_{n}}^{v_{n}} a P\left(\left\|X_{n i}\right\|^{r}>a\right)<\infty
$$

and

$$
\lim _{a \rightarrow \infty} \sup _{n \geq 1} \frac{1}{k_{n}} \sum_{i=u_{n}}^{u_{n}} a P\left(\left\|X_{n i}\right\|^{r}>a\right)=0 .
$$

Moreover, assume that

$$
P\left(U_{n}<u_{n}\right)=o(1) \text { and } P\left(V_{n}>v_{n}\right)=o(1) \text { as } n \rightarrow \infty .
$$

Then

$$
\sum_{i=U_{n}}^{V_{n}}\left(X_{n i}-c_{n i}\right) / k_{n}^{1 / r} \rightarrow 0 \text { in probability, }
$$

where $c_{n i}=0$ if $0<r<1$ and $c_{n i}=E\left(X_{n i} I\left(\left\|X_{n i}\right\|^{r} \leq k_{n}\right) \mid \mathcal{F}_{n, i-1}\right)$ if $1 \leq r<2$.

Proof. The proof is similar to that of Corollary 1 of Sung et al. [13] and is omitted.

Theorem 2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random elements taking values in a real separable Banach space of martingale type $p(1 \leq$ $p \leq 2$), which is uniformly bounded by a random variable X such that $a P\left(|X|^{r}>a\right) \rightarrow 0$ as $a \rightarrow \infty$ for some $0<r<p$. Let $\left\{\left|a_{n i}\right|^{r}, 1 \leq i<\right.$ $\infty, n \geq 1\}$ be a Toeplitz array of constants, i.e.,

$$
\lim _{n \rightarrow \infty} a_{n i}=0 \text { for every } i
$$

and

$$
\sup _{n \geq 1} \sum_{i=1}^{\infty}\left|a_{n i}\right|^{r}<C \text { for some constant } C>0 .
$$

If $\sup _{i \geq 1}\left|a_{n i}\right| \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\sum_{i=1}^{\infty} a_{n i}\left(X_{i}-c_{n i}\right) \rightarrow 0 \text { in probability, }
$$

where $c_{n i}=0$ if $0<r<1$ and $c_{n i}=E\left(X_{i} I\left(\left\|a_{n i} X_{i}\right\|^{r} \leq 1\right) \mid \mathcal{F}_{i-1}\right)$ if $1 \leq r<2\left(\mathcal{F}_{n}=\sigma\left\{X_{i}, 1 \leq i \leq n\right\}\right.$ and $\left.\mathcal{F}_{0}=\{\emptyset, \Omega\}\right)$.

Proof. The proof is similar to that of Theorem 3 of Sung et al. [13] and is omitted.

References

[1] A. Adler, A. Rosalsky, and A. Volodin, A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 32 (1997), no. 2, 167-174.
[2] S. E. Ahmed, S. H. Sung, and A. Volodin, Mean convergence theorem for arrays of random elements in martingale type p Banach spaces, Bull. Inst. Math. Acad. Sinica 30 (2002), no. 2, 89-95.
[3] A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), no. 1, 49-52.
[4] J. Hoffmann-J ϕ rgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), no. 4, 587-599.
[5] D. H. Hong and S. Lee, A general weak law of large numbers for arrays, Bull. Inst. Math. Acad. Sin. 24 (1996), no. 3, 205-209.
[6] D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), no. 1, 55-57.
[7] D. H. Hong, M. Ordóñez Cabrera, S. H. Sung, and A. Volodin, On the weak law for randomly indexed partial sums for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 46 (2000), no. 2, 177-185.
[8] P. Kowalski and Z. Rychlik, On the weak law of large numbers for randomly indexed partial sums for arrays, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), no. 1, 109-119.
[9] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350.
[10] , Probabilistic methods in the geometry of Banach spaces, in: G. Lette and M. Pratelli, Eds., Probability and Analysis, Lectures given at the 1st 1985 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Varenna (Como), Italy, May 31-June 8, 1985, Lecture Notes in Mathematics (SpringerVerlag, Berlin), Vol. 1206 (1986), 167-241.
[11] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.
[12] S. H. Sung, Weak law of large numbers for arrays, Statist. Probab. Lett. 38 (1998), no. 2, 101-105.
[13] S. H. Sung, T.-C. Hu, and A. Volodin, On the weak laws for arrays of random variables, Statist. Probab. Lett. 72 (2005), no. 4, 291-298.

Soo Hak Sung, Department of Applied Mathematics, Pai Chai University, TaEjon 302-735, Korea
E-mail: sungsh@pcu.ac.kr
Tien-Chung Hu, Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan
E-mail: tchu@math.nthu.edu.tw
Andrei I. Volodin, Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
E-mail: andrei@math.uregina.ca

[^0]: Received June 7, 2005.
 2000 Mathematics Subject Classification: 60B11, 60B12, 60F05, 60G42.
 Key words and phrases: arrays of random elements, convergence in probability, martingale type p Banach space, weak law of large numbers, randomly indexed sums, martingale difference sequence, Cesàro type condition.

 The work of A. Volodin is supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The work of T.-C. Hu is supported by the grant NSC 94-2118-M-007-005.

