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ABSTRACT

We extend and generalize some recent results on complete convergence (cf. Hu, Moricz,
and Taylor [14], Gut [11], Wang, Bhaskara Rao, and Yang [26], Kuczmaszewska and Szynal
[17], and Sung [23]) for arrays of rowwise independent Banach space valued random elements.
In the main result, no assumptions are made concerning the existence of expected values
or absolute moments of the random elements and no assumptions are made concerning the
geometry of the underlying Banach space. Some well-known results from the literature are
obtained easily as corollaries. The corresponding convergence rates are also established.

1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins [13] as follows.
A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant
C if

∑∞
n=1 P{|Un − C| > ε} < ∞ for all ε > 0. In view of the Borel-Cantelli lemma,

this implies that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1}
are independent. Hsu and Robbins [13] proved that the sequence of arithmetic means of
independent and identically distributed (i.i.d.) random variables converges completely to
the expected value if the variance of the summands is finite. Erdös [8] proved the converse.
The Hsu-Robbins-Erdös result may be formulated as follows.
Theorem 1.1. (Hsu and Robbins [13], Erdös [8]) If {X,Xn, n ≥ 1} are i.i.d. random
variables, then 1

n

∑n
k=1Xk converges completely to 0 if and only if EX = 0 and EX2 <∞.

This result has been generalized and extended in several directions (cf. Rohatgi [21], Hu,
Moricz, and Taylor [14], Gut [11], Wang, Bhaskara Rao, and Yang [26], Kuczmaszewska and
Szynal [17], and Sung [23] among others). Some of these articles concern a Banach space
setting. A sequence of Banach space valued random elements is said to converge completely
to the 0 element of the Banach space if the corresponding sequence of norms converges
completely to 0.

In Pruitt [20], weighted sums of i.i.d. random variables were considered permitting a
more general normalization than that in Theorem 1.1. Relying heavily on the techniques of
Pruitt [20], Rohatgi [21] generalized Pruitt’s result to the case of independent stochastically
dominated random variables.
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Theorem 1.2. (Pruitt [20], Rohatgi [21]) Let {Xn, n ≥ 1} be a sequence of independent
random variables which are stochastically dominated by a random variable X in the sense
that there exists a constant D > 0 such that P{|Xn| > x} ≤ DP{D|X| > x} for all x ≥ 0
and n ≥ 1. Let {ank, k ≥ 1, n ≥ 1} be a Toeplitz array such that supk≥1 |ank| = O(n−γ) for
some γ > 0. If E|X|1+γ−1

<∞, then
∑∞
k=1 ankXk converges completely to 0.

Hu, Moricz, and Taylor [14] generalized Theorem 1.1 for triangular arrays of rowwise
independent (but not necessarily identically distributed) random variables and obtained a
complete convergence theorem with a Marcinkiewicz-Zygmund type normalization.
Theorem 1.3. (Hu, Moricz, and Taylor [14]) Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular
array of rowwise independent mean 0 random variables which are stochastically dominated
in the Cesàro sense by a random variables X, that is, there exists a constant D > 0 such
that 1

n

∑n
k=1 P{|Xnk| > x} ≤ DP{D|X| > x} for all x ≥ 0 and n ≥ 1. If E|X|2t < ∞

where 1 ≤ t < 2, then n−1/t
∑n
k=1Xnk converges completely to 0.

Gut [11] simplified the proof of Theorem 1.3 and considered more general arrays. Tay-
lor and Hu [25] considered arrays of random elements taking values in a Banach space
of Rademacher type p. Wang, Bhaskara Rao, and Yang [26] obtained the corresponding
convergence rate for one of the Taylor and Hu [25] results as a corollary of the following
theorem.
Theorem 1.4. (Wang, Bhaskara Rao, and Yang [26]) Let {Xnk, 1 ≤ k ≤ n, n ≥ 1}
be a triangular array of rowwise independent random elements which are stochastically
dominated by a random variable X. If E|X|rt <∞ where r ≥ 1, 1 ≤ t < 2, rt > 1 and

max
1≤i≤n

P

{
||
∑i
k=1Xnk||
n1/t

> ε

}
→ 0 as n→∞ for all ε > 0, (1.1)

then

∞∑
n=1

nr−2P

{∣∣∣∣∣∣∣∣ n∑
k=1

xnk

∣∣∣∣∣∣∣∣ > εn1/t

}
<∞ for all ε > 0.

In Kuczmaszewska and Szynal [17], the same normalization as in Theorem 1.1 was
considered, but no assumption concerning identical distributions of the random elements
was made and no stochastic domination conditions were imposed. Also the case of Banach
space valued random elements was considered.

Sung [23] generalized the work of Stout [22, p. 226] to the case of Banach space valued
random elements by establishing the following result.
Theorem 1.5. (Sung [23]) Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of rowwise
independent random elements which are stochastically dominated by a random variable X.
Let {ank, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of real numbers satisfying

∑n
k=1 a

2
nk =

o(1/log n) and max1≤k≤n|ank| = O(n−1/p) for some p ≥ 1. If
∑n
k=1 ankXnk

P→ 0 and
E|X|2p <∞, then

∑n
k=1 ankXnk converges completely to 0.

Sung [23] also improved a result of Bozorgnia, Patterson, and Taylor [6] by establishing
the following theorem with a Marcinkiewicz-Zygmund type normalization.
Theorem 1.6. (Sung [23]) Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of rowwise
independent random elements such that

max
1≤k≤n

E||Xnk||ν = O(nα) (1.2)

where ν
p − α > max{ν2 , 2}, ν ≥ 1, and α ≥ 0. If

∑n
k=1Xnk/n

1/p P→ 0, then
∑n
k=1Xnk/n

1/p

converges completely to 0.
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Our work unifies and extends the ideas in the previously cited results. Versions of those
results can be obtained from our work (except for the necessity half of Theorem 1.1) and
some of them will be presented as corollaries. The current work is devoted to an extension of
the Hsu-Robbins [13] theorem to general arrays of rowwise independent but not necessarily
identically distributed Banach space valued random elements.

In Section 2, we recall some definitions and we present some inequalities and lemmas
which will be used in the proofs of our results. In Section 3, we obtain complete convergence
for row sums with the corresponding rates of convergence. In the main result (Theorem 3.1),
no assumptions are made concerning the existence of expected values or absolute moments
of the random elements and no assumptions are made concerning the geometry of the
underlying Banach space. Finally, in Section 4, we present some well-known results as
corollaries of our results.

The pertinent devices employed in the proof of Theorem 3.1 are:

(i) an iterated version of the Hoffmann-Jφrgensen [12] inequality due to Jain [16],

(ii) a Banach space version of the classical Marcinkiewicz-Zygmund inequality due to de
Acosta [1],

(iii) a modified version of a result of Kuelbs and Zinn [18] concerning the relationship
between convergence in probability and mean convergence for sums of independent
bounded random variables.

Jain [16] had applied (i) to obtain a complete convergence theorem for a sequence of i.i.d.
Banach space valued random elements. On the other hand, for the random variable case, Gut
[10, 11] used (i) and the classical Marcinkiewicz-Zygmund inequality to establish complete
convergence results for rowwise independent arrays.

2 Preliminaries

Let (Ω,F , P ) be a probability space and let B be a real separable Banach space with
norm || · ||. A random element is defined to be an F-measurable mapping of Ω into B
with the Borel σ-algebra (that is, the σ-algebra generated by the open sets determined by
|| · ||). The concept of independent random elements is a direct extension of the concept of
independent random variables. A detailed account of basic properties of random elements
in real separable Banach spaces can be found in Taylor [24].

Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent, but not necessarily
identically distributed, random elements taking values in B. In general the case kn =∞ is
not being precluded. Rowwise independence means that the random elements within each
row are independent but that no independence is assumed between rows.

Before proceeding further, we will recall some definitions for an array of random ele-
ments. An array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} is said to be symmetric if Xnk is symmetrically
distributed for all 1 ≤ k ≤ kn and all n ≥ 1. An array {Xnk, 1 ≤ k ≤ n, n ≥ 1} is said to be
infinitesimal if for all ε > 0, limn→∞ sup1≤k≤kn P{||Xnk|| > ε} = 0. For a random element
Y , its symmetrization will be denoted by Y s = Y − Ỹ where Ỹ is an independent copy of
Y .

The concepts of stochastic domination and stochastic domination in the Cesàro sense by
a random variable also have direct extensions for arrays of random elements as follows. An
array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} of random elements is said to be:

(i) stochastically dominated by a random variable X if there exists a constant D > 0 such
that P{||Xnk|| > x} ≤ DP{D|X| > x} for all x ≥ 0 and for all 1 ≤ k ≤ kn and n ≥ 1,

3



(ii) stochastically dominated in the Cesàro sense by a random variable X if kn < ∞ for
all n ≥ 1 and there exists a constant D > 0 such that

∑kn
k=1 P{||Xnk|| > x} ≤

DknP{D|X| > x} for all x ≥ 0 and n ≥ 1.

A double array {ank, k ≥ 1, n ≥ 1} of real numbers is said to be a Toeplitz array if
limn→∞ ank = 0 for each k ≥ 1 and

∑∞
k=1 |ank| ≤ C for all n ≥ 1 where C is a positive

constant.
Throughout, let Sn =

∑kn
k=1Xnk, n ≥ 1. If kn = ∞ for any n ≥ 1, we will assume that

the series Sn converges a.s. if the a.s. convergence is not automatic from the hypotheses.
We are now ready to present some well-known inequalities and some lemmas which will

be useful in Section 3. The first proposition is an iterated form of the Hoffmann-Jφrgensen
[12] inequality and is due to Jain [16]. When j = 1, C1 and D1 can be taken to be 1 and 4,
respectively, according to the Hoffmann-Jφrgensen [12] inequality.
Proposition 2.1. (Jain [16]) If an array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} of rowwise independent
random elements is symmetric, then for all n ≥ 1, j ≥ 1, and t ≥ 0

P{||Sn|| > 3jt} ≤ CjP
{

sup
1≤k≤kn

||Xnk|| > t

}
+Dj(P{||Sn|| > t})2j

where Cj and Dj are positive constants depending only on j.
The next inequality is a Banach space analogue of the classical Marcinkiewicz-Zygmund

inequality due to de Acosta [1] (cf. also Berger [5]).
Proposition 2.2. (de Acosta [1]) Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise
independent random elements. Then for every p ≥ 1/2, there is a positive constant Ap
depending only on p such that for all n ≥ 1

E

∣∣∣∣||Sn|| − E||Sn||∣∣∣∣2p ≤ ApE
(

kn∑
k=1

||Xnk||2
)p

.

Proposition 2.3. (Etemadi [9]) If an array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} of rowwise indepen-
dent random elements is symmetric, then for every ε > 0 and n ≥ 1

kn∑
k=1

P{||Xnk|| > ε} ≤
P{||Sn|| > ε

8}
1− 8P{||Sn|| > ε

8}

provided P{||Sn|| > ε
8} ≤

1
8 .

The first lemma is a modification of a result of Kuelbs and Zinn [18] concerning the rela-
tionship between convergence in probability and mean convergence for sums of independent
bounded random variables.
Lemma 2.1. Let the array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} of rowwise independent random
elements be symmetric and suppose there exists δ > 0 such that ||Xnk|| ≤ δ a.s. for all
1 ≤ k ≤ kn, n ≥ 1. If Sn

P→ 0, then E||Sn|| → 0 as n→∞.
Proof. Fix ε > 0 andA > 0. Let the integerN be large enough so that supn≥N P{||Sn|| ≥

ε} ≤ 1/24. By the Hoffmann-Jφrgensen [12] inequality (Proposition 2.1 with j = 1), we
have for n ≥ N that ∫ A

0

P{||Sn|| ≥ t}dt = 3
∫ A/3

0

P{||Sn|| ≥ 3t}dt

≤ 3

(
4
∫ A/3

0

(P{||Sn|| ≥ t})2
dt+

∫ A/3

0

P

{
sup

1≤k≤kn
||Xnk|| ≥ t

}
dt

)
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≤ 12ε+ 12
∫ A/3

ε

1
24
P{||Sn|| ≥ t}dt+ 3

∫ δ

0

P

{
sup

1≤k≤kn
||Xnk|| ≥ t

}
dt

≤ 12ε+
1
2

∫ A

0

P{||Sn|| ≥ t}dt+ 3
∫ δ

0

P

{
sup

1≤k≤kn
||Xnk|| ≥ t

}
dt.

Hence for n ≥ N∫ A

0

P{||Sn|| ≥ t}dt ≤ 24ε+ 6
∫ δ

0

P

{
sup

1≤k≤kn
||Xnk|| ≥ t

}
dt. (2.1)

Next, by Lévy’s maximal inequality (cf. Araujo and Giné [2, p. 102]), (2.1) yields for
n ≥ N ∫ A

0

P{||Sn|| ≥ t}dt ≤ 24ε+ 12
∫ δ

0

P{||Sn|| ≥ t}dt.

Letting A→∞, it follows that

E||Sn|| =
∫ ∞

0

P{||Sn|| ≥ t}dt ≤ 24ε+ 12
∫ δ

0

P{||Sn|| ≥ t}dt.

Now the last integral is o(1) as n → ∞ by the Lebesgue bounded convergence theorem.
Thus lim supn→∞E||Sn|| ≤ 24ε and the result follows since ε > 0 is arbitrary. 2

We also need the following symmetrization inequalities in Section 3.
Lemma 2.2.

(i) If an array {Xnk, 1 ≤ k ≤ kn, n ≥ 1} of rowwise independent random elements is
infinitesimal, then for all t > 0 and all sufficiently large n and all 1 ≤ k ≤ kn, we have

P{||Xnk|| > t} ≤ 2P{||Xs
nk|| > t/2}. (2.2)

(ii) If {Yn, n ≥ 1} is a sequence of random elements with Yn
P→ 0, then for all t > 0 and

sufficiently large n
P{||Yn|| > t} ≤ 2P{||Y sn || > t/2}. (2.3)

Proof.

(i) Let mnk denote any median of the random variable ||Xnk||, 1 ≤ k ≤ kn, n ≥ 1. Since
the array is infinitesimal, we have sup1≤k≤kn mnk → 0 as n → ∞. Let the integer N
be large enough so that supn≥N sup1≤k≤kn mnk ≤ t/2. Then for n ≥ N

P{||Xnk|| > t} ≤ P{||Xnk|| −mnk > t/2}

≤ P
{∣∣∣∣||Xnk|| −mnk

∣∣∣∣ > t/2
}

≤ 2P
{∣∣∣∣||Xnk|| − ||X̃nk||

∣∣∣∣ > t/2
}

(cf. Loève [19, p. 257])

≤ 2P{||Xs
nk|| > t/2}.

(ii) Use the same argument as in part (i). 2
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The following lemma will also be used in Section 3.
Lemma 2.3. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements such that for some δ > 0

kn∑
k=1

P{||Xnk|| > δ} → 0 as n→∞. (2.4)

Then Sn
P→ 0 if and only if S′n =

∑kn
k=1XnkI{||Xnk|| ≤ δ}

P→ 0.
Proof. Let S′′n =

∑kn
k=1XnkI{||Xnk|| > δ}, n ≥ 1. Observe that for arbitrary ε > 0

P{||Sn|| ≥ ε} ≤ P{||S′n|| ≥ ε/2}+ P{||S′′n|| ≥ ε/2}

≤ P{||S′n|| ≥ ε/2}+
kn∑
k=1

P{||Xnk|| > δ}

and the sufficiency half follows from (2.4).
To prove the necessity half, observe that for arbitrary ε > 0

P{||Sn|| ≥ ε} ≥ P

{
||Sn|| ≥ ε, sup

1≤k≤kn
||Xnk|| ≤ δ

}
= P

{
||S′n|| ≥ ε, sup

1≤k≤kn
||Xnk|| ≤ δ

}
≥ P{||S′n|| ≥ ε} − P

{
sup

1≤k≤kn
||Xnk|| > δ

}
implying by (2.4) that

P{||S′n|| ≥ ε} ≤ P{||Sn|| ≥ ε}+
kn∑
k=1

P{||Xnk|| > δ} → 0 as n→∞. 2

In order to formulate the next lemma we recall a definition and introduce some notation.
Let 1 ≤ p ≤ 2 and let {εn, n ≥ 1} be a sequence of i.i.d. Bernoulli random variables with
P{ε1 = ±1} = 1/2. A real separable Banach space B is said to be of Rademacher type p if∑∞
n=1 εnxn converges a.s. whenever {xn, n ≥ 1} ⊆ B with

∑∞
n=1 ||xn||p < ∞. Every real

separable Banach space is of Rademacher type 1. For a real separable Banach space B, let
p(B) = sup{p ∈ [1, 2] : B is of Rademacher type p}.

The following lemma is a slight modification of Theorem 2 of Wei and Taylor [27] which
holds for sequences of random elements. The modification concerns arrays of random ele-
ments; its proof can be obtained from Theorem 2 of Wei and Taylor [27] line by line and so
will be omitted. We remark that the condition E|X|p < ∞ can be weakened as was done
in Theorem 4.1 of Adler, Rosalsky, and Volodin [3].
Lemma 2.4. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent mean
0 random elements in a real separable Banach space B with p(B) > 1. Suppose that
{Xnk, 1 ≤ k ≤ kn, n ≥ 1} is stochastically dominated in the Cesàro sense by a random
variable X. If E|X|p <∞ for some 1 < p < p(B), then

∑kn
k=1Xnk/k

1/p
n

P→ 0.

3 Mainstream

With the preliminaries accounted for, the main theorem can now be presented. It should
be noted that (3.5) is immediate if

∑∞
n=1 cn <∞ and thus Theorem 3.1 only has content if∑∞

n=1 cn =∞.

6



Theorem 3.1. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements in a real separable Banach space and let {cn, n ≥ 1} be a sequence of positive
constants such that

∞∑
n=1

cn

kn∑
k=1

P{||Xnk|| > ε} <∞ for all ε > 0, (3.1)

there exist p ≥ 1/2, J ≥ 2, and δ > 0 such that

∞∑
n=1

cn

(
E

[
kn∑
k=1

||XnkI{||Xnk|| ≤ δ}||2
]p)J

<∞, (3.2)

and
Sn

P→ 0. (3.3)

Furthermore, suppose that

kn∑
k=1

P{||Xnk|| > δ} = o(1) as n→∞ (3.4)

if lim infn→∞ cn = 0. Then
∞∑
n=1

cnP{||Sn|| > ε} <∞ for all ε > 0. (3.5)

Proof. Set Ynk = XnkI{||Xnk|| ≤ δ}, 1 ≤ k ≤ kn, n ≥ 1 and

S′n =
kn∑
k=1

Ynk and S′′n =
kn∑
k=1

XnkI{||Xnk|| > δ}, n ≥ 1

where δ > 0 is as in (3.2). Then for arbitrary ε > 0

P{||Sn|| ≥ ε} ≤ P{||S′n|| ≥ ε/2}+ P{||S′′n|| ≥ ε/2}

≤ P{||S′n|| ≥ ε/2}+
kn∑
k=1

P{||Xnk|| > δ}

and so in view of (3.1) it suffices to estimate P{||S′n|| ≥ ε}. Before estimating, note that
if lim infn→∞ cn > 0, then (3.1) ensures that

∑kn
k=1 P{||Xnk|| > δ} = o(1) as n → ∞ and

recall that this condition holds by hypothesis if lim infn→∞ cn = 0. Then by (3.3) and
Lemma 2.3, S′n

P→ 0. Thus, S′sn
P→ 0 and by Lemma 2.1 we have

E||S′sn || → 0 as n→∞. (3.6)

Now by Lemma 2.2(ii), Proposition 2.1 with j = [Log J ]+1 where Log denotes the logarithm
to the base 2 and [·] is the integer part function, and the weak symmetrization inequality
(cf. Loève [19, p. 257]), we have for all large n

P{||S′n|| ≥ ε} ≤ 2P{||S′sn || ≥ ε/2}

≤ 2Cj
kn∑
k=1

P{||Xs
nk|| ≥

ε

2 · 3j
}+ 2Dj

(
P
{
||S′sn || ≥

ε

2 · 3j
})J

≤ 4Cj
kn∑
k=1

P{||Xnk|| ≥
ε

4 · 3j
}+ 2Dj

(
P
{
||S′sn || ≥

ε

2 · 3j
})J

.
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Hence by (3.1) it suffices to estimate (P{||S′sn || ≥ ε})J . Now for all large n,

P {||S′sn || ≥ ε} ≤ P

{∣∣∣∣||S′sn || − E||S′sn ||∣∣∣∣ ≥ ε/2} (by (3.6))

≤ (2/ε)2pE

∣∣∣∣||S′sn || − E||S′sn ||∣∣∣∣2p (by the Markov inequality)

≤ (2/ε)2pApE

(
kn∑
k=1

||Y snk||2
)p

(by Proposition 2.2)

≤ (2/ε)2pApE

(
kn∑
k=1

2(||Ynk||2 + ||Ỹnk||2)

)p

≤ Const. E

(
kn∑
k=1

||Ynk||2
)p

.

In view of (3.2), the proof of (3.5) is completed. 2

Remark. Apropos of the last assumption in Theorem 3.1, it will now be shown that
(3.3) and

sup
1≤k≤kn

P{||Xnk|| > δ′} < 1
2

for some 0 < δ′ < δ and all large n (3.7)

imply (3.4).
Proof. By (3.3), Ssn

P→ 0. Then employing a random element version of Lévy’s maximal
inequality (cf. Araujo and Giné [2, p. 102]) and (if any kn = ∞) Theorem 8.1.3 of Chow
and Teicher [7, p. 278], we have for arbitrary ε > 0

P

{
sup

1≤k≤kn
||Xs

nk|| > ε

}
≤ 2P{||Ssn|| ≥ ε} = o(1) as n→∞

implying

1 ≥ exp

{
−

kn∑
k=1

P{||Xs
nk|| > ε}

}
≥

kn∏
k=1

(1− P{||Xs
nk|| > ε})

= P

{
kn⋂
k=1

[||Xs
nk|| ≤ ε]

}
= P

{
sup

1≤k≤kn
||Xs

nk|| ≤ ε
}
→ 1 as n→∞.

Thus, for all ε > 0
kn∑
k=1

P{||Xs
nk|| > ε} = o(1) as n→∞. (3.8)

Let {mnk, 1 ≤ k ≤ kn, n ≥ 1} be as in the proof of Lemma 2.2. Now (3.7) implies (cf. Chow
and Teicher [7, p. 72]) that |mnk| ≤ δ′ for all large n and all 1 ≤ k ≤ kn. Then arguing as
in the proof of Lemma 2.2, for all large n and all 1 ≤ k ≤ kn we have

P{||Xnk|| > δ} ≤ P{||Xnk|| −mnk > δ − δ′} ≤ 2P{||Xs
nk|| > δ − δ′}

and (3.4) follows from (3.8). 2

In the ensuing proposition, it will be shown that (3.1) is necessary for the convergence
rate in Theorem 3.1 provided that cn is bounded from 0 or Sn

P→ 0.
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Proposition 3.1. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an infinitesimal array of rowwise
independent random elements and let {cn, n ≥ 1} be a sequence of positive constants.
Suppose that cn is bounded from 0 or Sn

P→ 0. Then (3.5) implies (3.1).
Proof. Let ε > 0 be arbitrary. If Sn

P→ 0, then P{||Sn|| > ε/32} = o(1) as n → ∞.
Alternatively, if cn is bounded from 0, then (3.5) ensures that P{||Sn|| > ε/32} = o(1) as
n→∞. Thus, in either case, employing the weak symmetrization inequality (cf. Loève [19,
p. 257]) it follows that for all large n

P{||Ssn|| > ε/16} ≤ 2P{||Sn|| > ε/32} ≤ 1/16.

Then by Lemma 2.2(i) and Proposition 2.3, for all large n

kn∑
k=1

P{||Xnk|| > ε} ≤ 2
kn∑
k=1

P{||Xs
nk|| > ε/2}

≤ 2P{||Ssn|| > ε/16}
1− 8P{||Ssn|| > ε/16}

≤ 4P{||Sn|| > ε/32}
1− 16P{||Sn|| > ε/32}

≤ 8P{||Sn|| > ε/32}

and the implication (3.5) ⇒ (3.1) follows.
Remark.. Different values of p in the condition (3.2) of Theorem 3.1 yield different

results. For example, we consider p = 1/2 in Corollary 4.7, p = 1 in Theorem 3.2, and p = 2
in Corollary 4.3.

We can simplify the condition (3.2) of Theorem 3.1 when absolute moments of some
order q ≤ 2 exist for the random elements comprising the array.
Theorem 3.2. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements and let {cn, n ≥ 1} be a sequence of positive constants. Suppose that E||Xnk||q <
∞, 1 ≤ k ≤ kn, n ≥ 1 for some 0 < q ≤ 2, (3.1) holds, (3.3) holds, and there exists J ≥ 2
such that

∞∑
n=1

cn

(
kn∑
k=1

E||Xnk||q
)J

<∞. (3.9)

Furthermore, suppose that (3.4) holds for some δ > 0 if lim infn→∞ cn = 0. Then (3.5)
obtains.

Proof. In view of Theorem 3.1, it suffices to verify that (3.2) holds with p = 1. Let
δ1 = δ if lim infn→∞ cn = 0 and let δ1 > 0 be arbitrary otherwise. Then for n ≥ 1

E

(
kn∑
k=1

||XnkI{||Xnk|| ≤ δ1}||2
)

=
kn∑
k=1

E||XnkI{||Xnk|| ≤ δ1}||2

≤ δ2−q
1

kn∑
k=1

E||Xnk||q

and (3.2) with p = 1 follows from (3.9). 2

4 Corollaries

As applications of Theorem 3.2, we can obtain generalizations to a Banach space setting of
the main result of Hu, Moricz, and Taylor [14] and Theorem 4.1 of Gut [11]. Furthermore, we
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can obtain the rate of convergence as in Wang, Bhaskara Rao, and Yang [26] (cf. Theorems
1.3 and 1.4 above).

Following Gut [11], set ψ(0) = 0, ψ(x) = Card {n : kn ≤ x}, x > 0 where k0 = 0, and
Mr(x) =

∑[x]
n=1 k

r−1
n , x ≥ 0. We now obtain the following corollary.

Corollary 4.1. Let {Xnk, 1 ≤ k ≤ kn < ∞, n ≥ 1} be an array of rowwise indepen-
dent random elements which are stochastically dominated in the Cesàro sense by a ran-
dom variable X and let r ≥ 1 and 1 ≤ t < 2. If E|X|q < ∞ for some t < q ≤ 2,
EMr(ψ(|X|t)) <∞,

∑∞
n=1 k

−α
n <∞ for some α > 0, and

k−1/t
n

kn∑
k=1

Xnk
P→ 0, (4.1)

then
∞∑
n=1

kr−2
n P

{∣∣∣∣∣∣∣∣ kn∑
k=1

Xnk

∣∣∣∣∣∣∣∣ > εk1/t
n

}
<∞ for all ε > 0. (4.2)

Proof. We will apply Theorem 3.2 with cn = kr−2
n , n ≥ 1 and Xnk replaced by

Xnk/k
1/t
n , 1 ≤ k ≤ kn, n ≥ 1. The conditions (3.1) and (3.9) of Theorem 3.2 will be

rewritten, respectively, as follows using the stochastic domination in the Cesàro sense as-
sumption:

∞∑
n=1

kr−1
n P{|X| > εk1/t

n } <∞ for all ε > 0 (4.3)

and there exists J ≥ 2 such that
∞∑
n=1

kr−2
n (k1− qt

n E|X|q)J <∞. (4.4)

(We will not rewrite condition (3.3) of Theorem 3.2 since it is one of the assumptions.)
As in Lemma 2.1 of Gut [10], EMr(ψ(|X|t)) < ∞ implies (4.3). The condition (4.4) is

satisfied by taking J ≥ max{2, t(r−2+α)
q−t } recalling that

∑∞
n=1 k

−α
n < ∞. Finally, if r < 2,

then cn → 0 and the condition
∑kn
k=1 P{||Xnk||/k1/t

n > δ}
= o(1) as n → ∞ holds for any δ > 0 using stochastic domination in the Cesàro sense,
E|X|q <∞, the Markov inequality, and q > t. 2

Remark. The assumptions in Corollary 4.1 are weaker than those of Wang, Bhaskara
Rao, and Yang [26] in view of the following:

(i) We only assume (4.1) whereas Wang, Bhaskara Rao, and Yang [26] assume (1.1).

(ii) We consider general arrays of random elements {Xnk, 1 ≤ k ≤ kn <∞, n ≥ 1} instead
of the standard triangular array wherein kn = n, n ≥ 1.

(iii) The random elements are assumed to be stochastically dominated in the Cesàro sense
which is weaker than the random elements being stochastically dominated.

(iv) We allow for r = t = 1 whereas Wang, Bhaskara Rao, and Yang [26] require that
rt > 1.

Moreover, our proof is much simpler than that of Wang, Bhaskara Rao, and Yang [26].
When we place a geometric condition on the Banach space B (p(B) > 1), we can obtain

the following corollary (cf. Adler and Volodin [4]).
Corollary 4.2. Let {Xnk, 1 ≤ k ≤ kn < ∞, n ≥ 1} be an array of rowwise independent
mean 0 random elements taking values in a Banach space B with p(B) > 1. Suppose that
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{Xnk, 1 ≤ k ≤ kn, n ≥ 1} is stochastically dominated in the Cesàro sense by a random
variable X. Let r ≥ 1 and 1 < t < q < p(B). If E|X|q < ∞, EMr(ψ(|X|t)) < ∞, and∑∞
n=1 k

−α
n <∞ for some α > 0, then (4.2) obtains.

Proof. In view of Corollary 4.1, we only have to show that (4.1) holds. But this follows
immediately from Lemma 2.4. 2

Taking B to be the real line, r = 2, and kn = n, n ≥ 1 in Corollary 4.2 yields the main
result of Hu, Moricz, and Taylor [14] (cf. Theorem 1.3 above). Moreover, taking B to be
the real line and r = 2 in Corollary 4.2 yields (the main result) Theorem 4.1 of Gut [11].

We now present a modification for arrays of Theorem 2 of Kuczmaszewska and Szynal
[17].
Corollary 4.3. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements such that

∞∑
n=1

kn∑
k=1

P{||Xnk|| > ε} <∞ for all ε > 0,

∞∑
n=1

(
kn∑
k=1

E||XnkI{||Xnk|| ≤ δ}||4
)J

<∞ for some δ > 0 and J ≥ 2,

and

∞∑
n=1

(
kn∑
m=2

E||XnmI{||Xnm|| ≤ δ}||2
m−1∑
k=1

E||XnkI{||Xnk|| ≤ δ}||2
)J

<∞.

Then Sn converges completely to 0 if and only if Sn
P→ 0.

Proof. The result follows immediately from Theorem 3.1 by taking cn = 1, n ≥ 1 and
p = 2. 2

Frequently limit theorems are formulated for weighted sums
∑kn
k=1 ankXnk [where {ank, 1 ≤

k ≤ kn, n ≥ 1} and {Xnk, 1 ≤ k ≤ kn, n ≥ 1} are arrays of constants (called weights) and
random elements, respectively] instead of for sums

∑kn
k=1Xnk [where the weights can be

built into the array of random elements]. We now present two general results for weighted
sums. Corollary 4.4 generalizes Theorem 1.2 in two directions, namely:

(i) We consider Banach space valued random elements instead of random variables.

(ii) We consider an array rather than a sequence.

Corollary 4.4. Let {Xnk, k ≥ 1, n ≥ 1} be an array of rowwise independent random
elements which is stochastically dominated by a random variable X and let {ank, k ≥ 1, n ≥
1} be a Toeplitz array. If for some γ > 0

sup
k≥1
|ank| = O(n−γ), E|X|1+ 1

γ <∞, and
∞∑
k=1

ankXnk
P→ 0,

then
∑∞
k=1 ankXnk converges completely to 0.

Proof. Note at the outset that the stochastic domination hypothesis ensures that
E||Xnk|| ≤ D2E|X|, k ≥ 1, n ≥ 1 and hence for all n ≥ 1

E

∞∑
k=1

||ankXnk|| =
∞∑
k=1

E||ankXnk|| ≤ D2E|X|
∞∑
k=1

|ank| ≤ CD2E|X| <∞.

11



Thus for all n ≥ 1,
∑∞
k=1 ||ankXnk|| converges a.s. Then for all n ≥ 1 and all K ≥ 1,

sup
L>K

∣∣∣∣∣∣∣∣ L∑
k=1

ankXnk −
K∑
k=1

ankXnk

∣∣∣∣∣∣∣∣ = sup
L>k

∣∣∣∣∣∣∣∣ L∑
k=K+1

ankXnk

∣∣∣∣∣∣∣∣
≤ sup

L>K

L∑
k=K+1

||ankXnk|| =
∞∑

k=K+1

||ankXnk||
K→∞→ 0 a.s.

Thus for all n ≥ 1, with probability 1, {
∑K
k=1 ankXnk,K ≥ 1} is a Cauchy sequence whence∑∞

k=1 ankXnk converges a.s.
Let cn = 1, n ≥ 1. Then we only need to verify that the conditions (3.1) and (3.9) of

Theorem 3.2 hold with ankXnk playing the role of Xnk, 1 ≤ k ≤ kn, n ≥ 1 in the formulation
of that theorem. To establish (3.1), for arbitrary ε > 0, the stochastic domination hypothesis
ensures that

∞∑
n=1

∞∑
k=1

P{||ankXnk|| > ε} ≤ D
∞∑
n=1

∞∑
k=1

P{|ankX| > ε/D} <∞

by Lemma 1 of Rohatgi [21] (see also Lemma 1 of Pruitt [20]).
To establish (3.9), let q = min {1 + γ−1, 2} and let J > max {γ−1, 2}. Then

∞∑
n=1

( ∞∑
k=1

|ank|qE||Xnk||q
)J

≤ D(q+1)J
∞∑
n=1

(
sup
k≥1
|ank|q−1

∞∑
k=1

|ank|E|X|q
)J

(by stochastic domination)

≤ Const.
∞∑
n=1

1
nγ(q−1)J

<∞. 2

In the next result for weighted sums we obtain the rate of convergence.
Corollary 4.5. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements which is stochastically dominated by a random variable X and let {ank, 1 ≤ k ≤
kn, n ≥ 1} be an array of constants such that for some 0 < q ≤ 2 and γ > 1

kn∑
k=1

|ank|q = O(n−γ). (4.5)

If E|X|q <∞ and
∑kn
k=1 ankXnk

P→ 0, then for all β < γ − 1

∞∑
n=1

nβP

{∣∣∣∣∣∣∣∣ kn∑
k=1

ankXnk

∣∣∣∣∣∣∣∣ > ε

}
<∞ for all ε > 0.

Proof. Without loss of generality assume that β ≥ 0. Let cn = nβ , n ≥ 1. Then we
only need to verify that the conditions (3.1) and (3.9) of Theorem 3.2 hold with ankXnk

playing the role of Xnk, 1 ≤ k ≤ kn, n ≥ 1 in the formulation of that theorem. To establish
(3.1), for arbitrary ε > 0,

∞∑
n=1

nβ
kn∑
k=1

P{||ankXnk|| > ε}
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≤ D
∞∑
n=1

nβ
kn∑
k=1

P

{
|X| > ε

D|ank|

}
(by stochastic domination)

≤ D
∞∑
n=1

nβ
kn∑
k=1

Dqε−q|ank|qE|X|q (by the Markov inequality)

= Const.
∞∑
n=1

nβ
kn∑
k=1

|ank|q

≤ Const.
∞∑
n=1

nβ−γ (by (4.5))

< ∞ (since β < γ − 1).

To establish (3.9), note that for J ≥ 2

∞∑
n=1

nβ

(
kn∑
k=1

E||ankXnk||q
)J

≤ D(q+1)J
∞∑
n=1

nβ

(
kn∑
k=1

|ank|qE|X|q
)J

(by stochastic domination)

≤ Const.
∞∑
n=1

nβ−Jγ (by (4.5))

< ∞

since 0 ≤ β < γ − 1 ensures for J ≥ 2 that β − Jγ < −1. 2

We now present simple proofs of the two results of Sung [23] which were stated in Section
1 (Theorems 1.5 and 1.6 above). However, Theorem 1.5 will be proved under somewhat
modified conditions which are formulated in the ensuing Corollary 4.6. After Corollary 4.6
is proved, it will be compared with Theorem 1.5. (The proviso

∑n
k=1 a

2
nk = o(1/log n)

automatically follows from max1≤k≤n |ank| = O(n−1/p) when 0 < p < 2.)
Corollary 4.6. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of rowwise independent
random elements which are stochastically dominated by a random variable X. Let {ank, 1 ≤
k ≤ n, n ≥ 1} be a triangular array of real numbers satisfying max1≤k≤n|ank| = O(n−1/p)

for some 0 < p < 2. If
∑n
k=1 ankXnk

P→ 0 and E|X|p+1 <∞, then
∑n
k=1 ankXnk converges

completely to 0.
Proof. Let cn = 1, n ≥ 1. As in the proof of Corollaries 4.4 and 4.5, we only need to

verify that the conditions (3.1) and (3.9) of Theorem 3.2 hold with ankXnk playing the role
of Xnk, 1 ≤ k ≤ n, n ≥ 1 in the formulation of that theorem. Since p > 0, (3.1) follows
exactly as it did in the proof of Corollary 4.4.

To establish (3.9), let q = 2 and let J > max{p/(2− p), 2}. Then recalling 0 < p < 2

∞∑
n=1

(
n∑
k=1

E||ankXnk||2
)J

≤ Const.
∞∑
n=1

(n max1≤k≤na
2
nkEX

2)J (by stochastic domination)

≤ Const.
∞∑
n=1

1

n( 2
p−1)J

<∞. 2
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Remark. Corollary 4.6 will now be compared with Theorem 1.5. Suppose that max1≤k≤n |ank| =
O(n−1/p) for some p > 0. If 0 < p < 1, then Corollary 4.6 requires E|X|1+p < ∞ whereas
Theorem 1.5 requires the stronger condition EX2 <∞. If p = 1, Corollary 4.6 and Theorem
1.5 coincide. If 1 < p < 2, then Corollary 4.6 requires E|X|p+1 < ∞ whereas Theorem 1.5
requires the stronger condition E|X|2p < ∞. However, if p ≥ 2, then Corollary 4.6 might
not apply whereas Theorem 1.5 can apply provided

∑n
k=1 a

2
nk = o(1/log n).

Proof of Theorem 1.6. We will apply Theorem 3.2 with kn = n, n ≥ 1, cn = 1, n ≥ 1, q
= min{ν, 2}, and with Xnk replaced by Xnk/n

1/p, 1 ≤ k ≤ n, n ≥ 1. To verify (3.1), note
that

∞∑
n=1

n∑
k=1

P{||Xnk|| > εn1/p} ≤
∞∑
n=1

n∑
k=1

E||Xnk||ν

ενnν/p
(by the Markov inequality)

≤ Const.
∞∑
n=1

nα+1

nν/p
(by (1.2))

= Const.
∞∑
n=1

1
n
ν
p−α−1

<∞ (since
ν

p
− α > 2).

To verify (3.9), we consider the two cases ν ≤ 2 and ν > 2. If ν ≤ 2, then q = ν and taking
J = 2 gives

∞∑
n=1

(
n∑
k=1

E

∣∣∣∣∣∣∣∣Xnk

n1/p

∣∣∣∣∣∣∣∣q
)2

≤ Const.
∞∑
n=1

(
n∑
k=1

nα

nν/p

)2

(by (1.2))

= Const.
∞∑
n=1

1

n2( νp−α−1)
<∞ (since

ν

p
− α > 2).

On the other hand if ν > 2, then q = 2. Note that ν
p − α >

ν
2 ensures that 2

p −
2α
ν > 1 and

so J ≥ 2 can be chosen so that J( 2
p −

2α
ν − 1) > 1. Then

∞∑
n=1

(
n∑
k=1

E

∣∣∣∣∣∣∣∣Xnk

n1/p

∣∣∣∣∣∣∣∣q
)J
≤
∞∑
n=1

(
n∑
k=1

(
E

∣∣∣∣∣∣∣∣Xnk

n1/p

∣∣∣∣∣∣∣∣ν)
2
ν

)J
(by Liapounov’s inequality)

≤ Const.
∞∑
n=1

(
n∑
k=1

n
2α
ν

n
2
p

)J
(by (1.2))

= Const.
∞∑
n=1

1

nJ( 2
p−

2α
ν −1)

<∞ (by the choice of J).

Thus (3.9) holds in each case. 2

By modifying the condition (3.2) of Theorem 3.1 we can omit the assumption (3.3) of
that theorem. This will be accomplished by the following corollary.
Corollary 4.7. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements and let {cn, n ≥ 1} be a sequence of positive constants such that (3.1) holds and
such that there exist J ≥ 2 and δ > 0 with

∞∑
n=1

cn

(
kn∑
k=1

E||XnkI{||Xnk|| ≤ δ}||

)J
<∞. (4.6)
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Furthermore, suppose that (3.4) holds and

kn∑
k=1

E||XnkI{||Xnk|| ≤ δ}|| = o(1) as n→∞. (4.7)

Then (3.5) obtains.
Proof. We will verify that the conditions (3.2) and (3.3) of Theorem 3.1 hold. Condition

(3.2) with p = 1/2 follows from

E

[
kn∑
k=1

||XnkI{||Xnk|| ≤ δ}||2
]1/2

≤
kn∑
k=1

E||XnkI{||Xnk|| ≤ δ}||

and (4.6).
Regarding condition (3.3), we note by (3.4) and Lemma 2.3 that it can be replaced by

kn∑
k=1

XnkI{||Xnk|| ≤ δ}
P→ 0. (4.8)

But from (4.7) we obtain the convergence in L1 of the expression in (4.8) to 0 which implies
its convergence in probability to 0. 2

We will now reformulate Theorem 3.1 for arrays of random variables. For a different
proof and for some additional corollaries we refer the reader to Hu, Szynal, and Volodin
[15].
Corollary 4.8. Let {ξnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
variables and let {cn, n ≥ 1} be a sequence of positive constants which are bounded from 0.
Suppose that

∞∑
n=1

cn

kn∑
k=1

P{|ξnk| > ε} <∞ for all ε > 0, (4.9)

there exist p ≥ 1, J ≥ 2, and δ > 0 such that

∞∑
n=1

cn

(
E

[
kn∑
k=1

|ξnkI{|ξnk| ≥ δ}|2
]p)J

<∞, (4.10)

and
kn∑
k=1

EξnkI{|ξnk| ≤ δ} → 0 as n→∞. (4.11)

Then

∞∑
n=1

cnP

{∣∣∣∣ kn∑
k=1

ξnk

∣∣∣∣ > ε

}
<∞ for all ε > 0.

Proof. We note at the outset that in the case kn =∞ for any n ≥ 1, the series
∑kn
k=1 ξnk

converges a.s. by the Kolmogorov three-series criterion (cf. Loève [19, p. 249]).
In view of Theorem 3.1, it only needs to be shown that

∑kn
k=1 ξnk

P→ 0. By the degenerate
convergence criterion (cf. Loève [19, p. 329]), we must verify that for some δ > 0 and all
ε > 0

kn∑
k=1

P{|ξnk| > ε} → 0 as n→∞,
kn∑
k=1

EξnkI{|ξnk| ≤ δ} → 0 as n→∞,
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kn∑
k=1

Var ξnkI{|ξnk| ≤ δ} → 0 as n→∞. (4.12)

Now (4.13) is exactly (4.11), and (4.12) and (4.14) follow immediately from (4.9) and (4.10),
respectively. 2

Example 4.1. Let {ξn, n ≥ 1} be a sequence of i.i.d. random variables with E|ξ1|
4(α+2)
α+3 <

∞ for some α ≥ 0. Set ξnk = ξk/n
α+3+λ

4 , 1 ≤ k ≤ n, n ≥ 1 where λ > max {1 − α, 0}.
We will verify that the conditions (4.9), (4.10), and (4.11) of Corollary 4.8 hold with
kn = n, n ≥ 1, cn = nα, n ≥ 1, p = 1, J = 2, and δ = 1. To verify (4.9), note that for
ε > 0

∞∑
n=1

nα
n∑
k=1

P{|ξnk| > ε} =
∞∑
n=1

nα+1P
{
|ξ1| > εn

α+3+λ
4

}
≤ Const.

∞∑
n=1

nα+1 · 1

n(α+3+λ
4 )

(
4(α+2)
α+3)

) (by the Markov inequality)

= Const.
∞∑
n=1

1

n1+
λ(α+2)
α+3

<∞.

To verify (4.10), note that

∞∑
n=1

nα

(
E

[
n∑
k=1

ξ2
kI{|ξk| ≤ n

α+3+λ
4 }

n
α+3+λ

2

])2

≤ Const.
∞∑
n=1

nαn2

nα+3+λ
= Const.

∞∑
n=1

1
n1+λ

<∞.

Finally, to verify (4.11), note that∣∣∣∣ n∑
k=1

EξkI{|ξk| ≤ n
α+3+λ

4 }
n
α+3+λ

4

∣∣∣∣ ≤ n∑
k=1

E|ξk|I{|ξk| ≤ n
α+3+λ

4 }
n
α+3+λ

4

≤ Const.n

n
α+3+λ

4

=
Const.

n
α−1+λ

4

→ 0 as n→∞.

Thus by Corollary 4.8,

∞∑
n=1

nαP

{
|
∑n
k=1 ξk|

n
α+3+λ

4

> ε

}
<∞ for all ε > 0.

The following modification of an example presented in Kuczmaszewska and Szynal [17]
shows that Corollary 4.8 can fail for arrays of independent Banach space valued random
elements.

Example 4.2. Let `1 denote the real separable Banach space of absolutely summable
real sequences x = (x1, x2, · · ·) with norm ||x|| =

∑∞
i=1 |xi|. Let ek denote the k-th element

of the standard basis in `1, that is, the element having 1 for its k-th coordinate and 0 for the
other coordinates. Let {εnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise independent random
variables each with a symmetric Bernoulli distribution, that is, P{εnk = ±1} = 1/2 for
1 ≤ k ≤ n, n ≥ 1. Define Xnk = εnkek/n, 1 ≤ k ≤ n, n ≥ 1. Thus {Xnk, 1 ≤ k ≤ n, n ≥ 1}
is a symmetric array of rowwise independent `1-valued random elements. Let cn = 1, n ≥ 1.
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Now the array {Xnk, 1 ≤ k ≤ n, n ≥ 1} satisfies the conditions (4.9), (4.10), and (4.11) of
Corollary 4.8 but

||Sn|| =
∣∣∣∣∣∣∣∣ 1n

n∑
k=1

εnkek

∣∣∣∣∣∣∣∣ =
1
n

n∑
k=1

1 = 1 a.s. , n ≥ 1.

Thus the conclusion
∑∞
n=1 P{||Sn|| > ε} <∞ fails for all ε in (0, 1). We note that Sn

P→ 0
also fails.
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