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Abstract. For weighted sums of the form Sn =
∑vn

j=un

anj(Vnj − cnj) where {un, n ≥ 1} and {vn, n ≥ 1} are se-

quences of integers, {anj , un ≤ j ≤ vn, n ≥ 1} are constants,

{Vnj , un ≤ j ≤ vn, n ≥ 1} are random elements in a real separable

martingale type p Banach space, and {cnj , un ≤ j ≤ vn, n ≥ 1}
are suitable conditional expectations, a mean convergence theorem

is established. This result takes the forms ||Sn|| Lr−→0. No condi-

tions are imposed on the joint distributions of the {Vnj , un ≤ j ≤
vn, n ≥ 1}. The mean convergence theorem is proved assuming

that {||Vnj ||r, un ≤ j ≤ vn, n ≥ 1} is {|anj |r}-uniformly integrable

with respect to {un, vn} which is weaker than Cesàro uniform in-

tegrability. The current work extends that of Gut (1992), Adler,

Rosalsky and Volodin (1997) and Sung (1999).

1. Introduction. Let {un ≥ −∞, n ≥ 1} and {vn ≤ +∞, n ≥ 1} be

two sequences of integers. Consider an array of constants {anj , un ≤ j ≤
vn, n ≥ 1} and an array of random elements {Vnj , un ≤ j ≤ vn, n ≥ 1} de-

fined on a probability space (Ω,F , P ) and taking values in a real separable

Banach space X with norm || · ||. Let {cnj , un ≤ j ≤ vn, n ≥ 1} be a “center-

ing” array consisting of (suitably selected) conditional expectations. In this
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paper, a mean convergence theorem will be established. This convergence

result is of the form

||
vn∑

j=un

anj(Vnj − cnj)|| Lr−→0.

This expression is referred to as weighted sums with weights {anj , un ≤ j ≤
vn, n ≥ 1} which implies convergence in probability of the weighted sums by

the Markov inequality.

The hypotheses to the main result impose conditions on the growth

behavior of the weights {anj , un ≤ j ≤ vn, n ≥ 1} and on the marginal

distributions of the random variables {||Vnj ||, un ≤ j ≤ vn, n ≥ 1}. These

two types of conditions are conjoined in Theorem in Sections 2 by a uni-

form integrability type conditions which generalizes a uniform integrability

type condition formulated by Cabrera (1994). In the present inverstigation

random elements in the array are not assumed to be rowwise independent.

Further, no conditions are imposed on the joint distributions of the random

elements comprising the array. However, the Banach space X is assumed to

be of martingale type p.

The main result is an extension to a martingale type p Banach space set-

ting of results of Gut (1992) and Sung (1999), which were proved for arrays

of (real-valued) random variables. The main result is analogous to Theorem

1 of Adler, Rosalsky and Volodin (1997). Theorem (which establishes the Lr

convergence result) concerns arrays of random elements satisfying condtion

which is more general than the uniform integrability type conditons of Car-

brera (1994) and hence more general than the Cesàro uniform integrability

condition employed by Gut (1992).

As usual, the symbol C denotes throughout a generic constant (0 < C <

∞) which is not necessarily the same one in each appearance. The symbol

I(A) denotes the indicator function of an event A.
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A real separable Banach space X is said to be of martingale type p(1 ≤
p ≤ 2) if there exists a finite constant C such that for all martingales {Sn, n ≥
1} with values in X ,

sup
n≥1

E||Sn||p ≤ C
∞∑

n=1

E||Sn − Sn−1||p,

where S0 ≡ 0. It can be shown using classical methods from martingale

theory that if X is of martingale type p, then for all 1 ≤ r < ∞ there exists

a finite constant C ′ such that for all X -valued martingales {Sn, n ≤ 1}

E sup
n≥1

||Sn||r ≥ C ′E(
∞∑

n=1

||Sn − Sn−1||p)
r/p

.(1)

For more details, the reader may refer to Pisier (1986).

Let {un, n ≥ 1} and {vn, n ≥ 1} be two sequences of integers (not

necessarily positive or finite) and {anj , un ≤ j ≤ vn, n ≥ 1} be an array of

constants. An array of random variables {Xnj , un ≤ j ≤ vn, n ≥ 1} is said

to be {anj}-uniformly integrable with respect to (un, vn) if

sup
n≥1

vn∑

j=un

|anj |E|Xnj | < ∞(2)

and

lim
a→∞ sup

n≥1

vn∑

j=un

|anj |E|Xnj |I(|Xnj | > a) = 0.(3)

See Sung (1999) for details.

It is easy to prove that condition (3) implies condtions (2) if
∑vn

j=un
|anj |

< ∞. Of course, {anj}-uniformly integrability with respect to (un, vn) re-

duces to {anj}-uniform integrability of Cabrera (1994) when un = 1 and

vn = kn.
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2. The main result. To prove the main result we will need the

following lemma.

Lemma. Suppose that {Xnj, un ≤ j ≤ vn, n ≥ 1} is an array

of {αnj}-uniformly integrable with respect to (un, vn) random variables,

where {αnj, un ≤ j ≤ vn, n ≥ 1} is an array of constants. Denote

mn = 1/ supun≤j≤un
|αnj |. If mn →∞ as n →∞ and q > 1 then

vn∑

j=un

|αnj |qE|Xnj |qI{|Xnj | ≤ mn} = o(1).

Proof. Take q = β/r,mn = k
1/r
n and mnαnjXnj instead of Xnj in Lemma

1(ii) of Sung (1999).

Now we are able to formulate and prove the main result of this paper.

Theorem. Let 1 ≤ r < p ≤ 2 and {Vnj , un ≤ j ≤ vn, n ≥ 1} be an array

of random elements with values in real separable martingale type p Banach

space and suppose that array {||Vnj ||r, un ≤ j ≤ vn, n ≥ 1} is {|anj |r}-
uniformly integrable with respect to (un, vn) where {anj , un ≤ j ≤ vn, n ≥ 1}
is an array of constants satisfying mn = 1/ supun≤j≤vn

|anj | → ∞ as n →∞.

Then

||
vn∑

j=un

anj(Vnj −E(Vnj |Fn,j−1))|| Lr−→0.

otbains where Fnj = σ(Vnj , un ≤ j ≤ j), un ≤ j ≤ vn and Fn,un−1 =

{∅, Ω}, n ≥ 1.

Proof. Let V ′
nj = VnjI{||Vnj || ≤ mn} and V

′′
nj = VnjI{||Vnj || > mn}. In

the addition to these notations denote

cnj = E(Vnj |Fn,j−1), c′nj = E(V ′
nj |Fn,j−1) and c′′nj = E(V ′′

nj |Fn,j−1).
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Observe that

Vnj − cnj = (V ′
nj − c′nj) + (V ′′

nj − c′′nj).

and for every n ≥ 1 sequences {V ′
nj − c′nj , un ≤ j ≤ vn} and {V ′′

nj − c′′nj , un ≤
j ≤ vn} are martingale difference sequences. Hence

E||
vn∑

j=un

anj(Vnj − cnj)||r

≤C
(
E||

vn∑

j=un

anj(V ′
nj−c′nj)||r+E||

vn∑

j=un

anjV
′′
nj−c′′nj)||r

)
by cr-inequality

≤ CE(
vn∑

j=un

|anj |p||V ′
nj − c′nj ||p)r/p+ C ′′

vn∑

j=un

|anj |rE||V ′′
nj − c′′nj ||r by(1)

≤ C(
vn∑

j=un

|anj |pE||V ′
nj − c′nj ||p)r/p + C ′

vn∑

j=un

|anj |rE||V ′′
nj ||r

by Jensen’s inequality

≤ C(
vn∑

j=un

|anj |pE||Vnj ||pI{||Vnj || ≤ mn})r/p

+C
vn∑

j=un

|anj |rE||Vnj ||rI{||Vnj || > mn}

= o (1) by Lemma 1 with q = p/r,Xnj = ||Vnj ||r and αnj = |anj |r.

Thus the proof is complete.

Remarks 1. In the case 0 < r < 1 we don’t need to subtract the

conditional expectations. That is, the following result is true.

Let 0 < r < 1 and {Vnj , un ≤ j ≤ vn, n ≥ 1} be an array of random

elements with values in a real separable Banach space and suppose that array

{||Vnj ||r, un ≤ j ≤ vn, n ≥ 1} is {|anj |r}-uniformly integrable with respect to

(un, vn) where {anj , un ≤ j ≤ un, n ≥ 1} is an array of constants satisfying
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mn = 1/ supun≤j≤vn
|anj | → ∞ as n →∞. Then

∥∥∥
vn∑

j=un

anjVnj

∥∥∥ Lr−→0.

obtains.

The proof is basically the same as for the Theorem.

Remark 2. In the case un = 1 and vn = kn Remark 1 and Theorem

should be compared with Theorem 6 of Cabrera (1994) and Theorem 1 of

Adler, Rosalsky and Volodin (1997), respectively. In result of Cabrera (1994)

and of Adler, Rosalsky and Volodin (1997) conditions on the sum
∑kn

j=1 |anj |q

(q = r in Theorem 6 of Cabrera (1994) and q = p in Theorem 1 of Adler,

Rosalsky and Volodin (1997)) are assumed. In the paper we don’t use such

type of conditions.
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