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Abstract

In this paper, we discuss various large sample estimation techniques for eigen
values of Wishart matrix. Pret est estimators are proposed and these are compared
with the sample eigen values using asymptotic quadratic distributional risk. The
relative dominance picture of the proposed estimators is presented. A criteria for
the selection of the size of pretest is discussed. It is shown that the significance level
for the proposed pretest estimator often coincides with the commonly used level of
significance.
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1. INTRODUCTION

The main purpose of this investigation is to consider the problem of estimating the

eigen values of the scale matrix Σ of a Wishrat distribution. Let the sample covariance

matrix denoted by S has a non-singular Wishart distribution with unknown covariance

matrix Σ and n degrees of freedom, i.e.,

nS ∼Wp(n,Σ).

Let ξ1, ḑots, ξp(> 0) denote the distinct roots, in the population, of the determinantal

equation |Σ − ξI| = 0. Here we are primarily interested in the estimation of parameter

vector ξ = (ξ1, · · · , ξp)′ when the nonsample information (NSI) given by

ξ = ξo, ξo = (ξo1 , · · · , ξop)′, (1.1)

may hold. Here ξo is a prior guessed valued vector of eigen values which may be obtained

from the past experience of the experimenter. Thus, we are primarily interested in the

estimation of ξ when we may have nonsample or uncertain prior information (UPI) in

(1.1).

Various authors including James and Stein (1961), Olkin and Selliah (1977) and Dey

and Srinivasan (1986) considered the problem of estimating Σ directly by perturbing

the eigen values of S. However for small samples, Dey (1988) estimated the eigen values

directly by shrinking or expanding the sample eigen values towards their geometric means.

Jin (1993) also considered the problem of simultaneous estimation of eigen values of

multivariate normal covariance matrix and proposed a new class of estimators which is

a generalization of Dey’s result (1988). Leung (1992) considered the estimation of eigen
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values of the scale matrix of the multivariate F distribution. More recently, Joarder and

Ahmed (1996) extended these results to a multivariate t distribution.

In the present investigation, emphasis is on a situation where sample size is taken large

while the parameter vector is taken close to ξo. In this context, the notion of asymptotic

distributional quadratic risk (ADQR) will be used. This will enable us to study the large

sample properties of the proposed pretest estimator to be defined in the next section.

Let the sample eigen values be ξ̃ = (ξ̃1, · · · , ξ̃p)′. The asymptotic distribution of ξ̃ in

the Guassian case is described by the following theorem.

Theorem: L et Υ be the diagonal matrix of eigen values ξ1, · · · , ξp of covariance matrix

Σ, then for large n, the quantity n
1
2 (ξ̃ − ξ) is approximately Np(0, 2Υ2).

For proof we refer to Anderson (1963) and Girshick (1939). The above theorem implies

that, for large n, the ξ̃i, i = 1, · · · , p are independently distributed. Furthermore, ξ̃i, has

an Gaussian distribution with mean ξi and variance 2ξ2
i /n respectively.

Alternatively, one can use the variance stabilizing transformation i.e., logξ̃ = (logξ̃1, · · · , logξ̃p)′,
then the limiting distribution of n

1
2 (logξ̃ − logξ) is approximately Np(0, 2I), where I is

an identity matrix of order p× p. The rest of the paper is organized as follows. Section 2

proposes pretest estimators of ξ. The expressions for the quadratic bias and ADQR are

provided in section 3.

The properties of the propo sed estimators and their comparison with the sample eigen

values are given in section 4. Section 5 deals with the size of the test.

2. PROPOSED PRETEST ESTIMATION

The statistical objective is to estimate parameter vector ξ simultaneously when UPI

is available. Note that the ξ̃ of ξ is based on sample data only, and does not incorporate

the nonsample information in estimating ξ. However, it may be advantageous to use

the available nonsample information to obtain improved estimates. In the following sub-

sections, we introduce two improved estimation methodologies.

2.1. Shrinkage Estimator

It is reasonable to shrink ξ̃ towards ξo (Thompson, 1968). Thus, a shrinkage estimator

(SE) of ξ is defined by

ξ̂ = ξ̃ − (1− π)(ξ̃ − ξo),

where π ∈ (0, 1) is a coefficient reflecting degree of distrust in the prior information. Note

that ξ̂ is a convex combination of ue and ξo via fixed value of π.
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2.2. Standard Preliminary Test Estimator

For the pretest on Ho : ξ = ξo, we consider the test statistic: Qn = y′Ω̃
−1

y, where

y =
√
n(ξ̃ − ξo) and Ω̃ = 2Υ̃

2
with Υ̃ be the diagonal matrix of sample eigen values

ξ̃1, · · · , ξ̃p of sample covariance matrix S. The usual pretest estimator (PTE) of ξ denoted

by ξ̂
(P )

= (ξP1 , · · · ξPk ) is obtained by replacing π by I(Qn ≤ qn,α) in ξ̂ to have a random

weight. Thus,

ξ̂
(P )

= ξ̃ − (ξ̃ − ξo)I(Qn ≤ qn,α),

where I(A) is the indicator function of the set A and qn,α be the upper 100α% (0 < α < 1)

point of the test statistic.

2.3. Improved Pretest Estimator

The improved preliminary test estimator (IPTE) of ξ denoted by ξ̂
(I)

is

ξ̂
(I)

= ξ̃ − (1− π)(ξ̃ − ξo)I(Qn ≤ qn,α).

The value of π may be completely determined by the experimenter, depending upon the

degree of disbelief in the NSI. A value near 1 causes ξ̂
(I)

to be based essentially on the

sample data alone. More specifically, for π = 0, ξ̂
(I)

= ξ̂
(P )

and for π = 1, ξ̂
(I)

= ξ̃.

3. USEFUL ASYMPTOTIC RESULTS

In this section, we obtain the expressions for the quadratic bias and risk of the esti-

mators. Let ξo be any estimator of ξ, we use a quadratic loss function:

L(ξo) = n(ξo − ξ)′Γ(ξo − ξ),

where Γ is a positive semidefinite weighting matrix. Dey (1988) and Leung (1992) ad-

vocated this loss function with Γ = I. The quadratic risk for ξo is given by R(ξo) =

nE{(ξo − ξ)′Γ(ξo − ξ)}. Now we define a sequence {K(n)} of local alternatives as

K(n) : ξ = ξ(n), where ξ(n) = ξo +
λ√
n
. (3.1)

We compute the asymptotic distributional quadratic risk (ADQR) defined below. First,

the asymptotic distribution function of {
√
n(ξo − ξ(n))} is given by

G(z) = lim
n→∞

Pr{
√
n(ξo − ξ(n)) ≤ z},

for which the limit in the above relation exists. Further, the dispersion matrix of the

distribution G is V. Finally, the ADQR is defined by R(ξo) = tr(ΓV), where tr(A)

denotes the trace of the matrix A.

4



In the case of fixed alternatives,

n(ξ̂
(P )
− ξ̃)′Γ(ξ̂

(P )
− ξ̃) = n(ξ̃ − ξo)′Γ(ξ̃ − ξo)I(Qn < qn,α)

= QnI(Qn < qn,α)
n(ξ̃ − ξo)′Γ(ξ̃ − ξo)
n(ξ̃ − ξo)′Ω̃

−1
(ξ̃ − ξo)

≤ {QnI(Qn < qn,α)}chmax(ΓΩ̃
−1

)

≤ {QnI(Qn < qn,α)}trace(ΓΩ̃
−1

) 3.2

where chmax(A) is the largest characteristic root of the matrix A. Also, for ξ 6∈ Ho,

E{QnI(Qn < qn,α)} ≤ qn,α{P (Qn < qn,α)}. But the test statistic Qn is consistent, hence

E{QnI(Qn < qn,α)} → 0 as n → ∞. Thus, for fixed alternative ξ̃ and ξ̂
(P )

have

asymptotically the same bounded risk. Finally, for any ξ 6∈ Ho, (ξ̂ − ξ)
a.s.→ ζ(6= 0), and

n(ξ̂ − ξ)′Γ(ξ̂ − ξ)
p→ +∞, as n→∞.

The asymptotic risk of ξ̂, for any ξ 6∈ Ho, approaches +∞. However, the asymptotic risk

of ξ̃ is bounded for every ξ ∈ Ω. The followin g theorem summarizes the results.

Theorem 3.1: When ξ 6∈ Ho, ξ̂ has asymptotic risk of +∞, while ξ̂
(P )

and ξ̃ have the

same finite asymptotic risk.

For this reason we consider a sequence {K(n)} of local alternatives in (3.1). First, we

have the following lemma.

Lemma 3.1: Under local alternatives as n→∞, y follows approximately a multivari-

ate Guassian distribution with mean λ and covariance matrix 2Υ2.

As a consequence of Lemma 1, under local alternatives, the test statistic Qn follows

asymptotically a non-central chi-square distribution with p degrees of freedom and non-

centrality parameter Λ = 1
2
λ′Υ−2λ. Thus, under the null hypothesis, ξ = ξo, Qn will

have a central chi-square distribution with p degrees of freedom.

Now, we present the expressions for the asymptotic distributional biases (ADB) of the

estimators as fo llows. The ADB of an estimator ξo is defined as

ADB(ξo) = lim
n→∞

E{n
1
2 (ξo − ξ)}.

Using the above definition of the ADB, under {Kn} in (3.1), as n→∞,

ADB(ξ̃) = 0,

ADB(ξ̂) = −(1− π)λ,

ADB(ξ̂
(P )

) = −λΦp+2(χ2
p,α; Λ),

ADB(ξ̂
(I)

) = −(1− π)λΦp+2(χ2
p,α; Λ),
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where the notation Φp(x ; Λ) stands for the noncentral chi-square distribution function

with noncentrality parameter Λ and p degrees of freedom.

The ADB(ξ̂
(I)

) is obtained by direct computation and using the same argument as in

Section 4.3 of Judge and Bock (1978). Consequently, for π = 0 we obtain ADB expression

for ξ̂
(P )

.

Further, we transform these functions in a scalar (quadratic) form by defining

B(.) = [ADB(ξo)]′
1

2
Υ−2[ADB(ξo)]

as quadratic bias of an estimator ξo of parameter vector ξ. Thus, by the above definition,

we have the following

B(ξ̃) = 0,

B(ξ̂) = (1− π)2Λ,

B(ξ̂
(P )

) = Λ{Φp+2(χ2
p,α; Λ)}2,

B(ξ̂
(I)

) = (1− π)2Λ{Φp+2(χ2
p,α; Λ)}2.

We notice that only ξ̃ is an asymptotically unbiased estimator of ξ. However, if the

nonsample information is correct, then Λ = 0 and all the remaining estimators are also

unbiased. For Λ > 0, the quadratic bias of ξ̂ is a function of Λ and is unbounded in Λ

which goes to ∞ as Λ tends to ∞. On the other hand, quadratic bias function of all the

remaining estimators are bounded in Λ. Noting that as Λ→∞

Λe−
Λ
2 (Λ

2
)r

r!
→ 0.

As Λ increases, B(ξ̂
(I)

) increases monotonically at first, reaches a maximum and then

monotonically decreases towards zero. Hence it is a bounded function of Λ. It is clear

that B(ξ̂
(I)

) = (1 − π)2[B(ξ̂
(P )

)]. Since 0 < π < 1, B(ξ̂
(I)

) < B(ξ̂
(P )

). Thi s indicates

that ξ̂
(I)

has an edge over ξ̂
(P )

from the quadratic bias point of view. Thus, ξ̂
(I)

can be

viewed as a quadratic bias reduction technique over the usual pretest estimation.

Under local alternatives, we obtain the ADQR functions of the estimators in the

following theorem.

Theorem 3.2:

ADQR(ξ̃) = 2tr(ΓΥ2), (3.3a)

ADQR(ξ̂) = 2tr(ΓΥ2)− (1− π2)2tr(ΓΥ2) + (1− π)2λ′Γλ (3.3b)

ADQR(ξ̂
(P )

) = 2tr(ΓΥ2)−2tr(ΓΥ2)Φp+2(χ2
p,α; Λ)+λ′Γλ{2Φp+2(χ2

p,α; Λ)−Φp+4(χ2
p,α; Λ)},

(3.3c)
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ADQR(ξ̂
(I)

) = 2tr(ΓΥ2)− (1− π2)2tr(ΓΥ2)Φp+2(χ2
p,α; Λ)+

λ′Γλ(1− π){2Φp+2(χ2
p,α; Λ)− (1 + π)Φp+4(χ2

p,α; Λ)}, 3.3d

Proof. The computation of (3.3a) and (3.3b) are straightforward. After some tedious

algebra and by the use of Lemma 3.1, the relations (3.3c) and (3.3d) are obtained with

th e same arguments as in Section 4.3 of Judge and Bock (1978)

4. RISK COMPARISON OF THE ESTIMATORS

We now investigate the statistical properties of the various estimators using ADQR

functions and determine their dominance characteristics.

Comparison of ξ̃ and ξ̂ First, note that ξ̃ has a constant risk since it is unrelated to the

nonsample information. The R(ξ̂) is an unbounded function of λ. However, it is superior

to ξ̃ near the null hypothesis. It is seen that

R(ξ̂) ≤ R(ξ̃) if λ′Γλ ≤ 2tr(ΓΥ2)(1 + π)(1− π)−1.

Specifically, if λ is a null vector, that is under the null hypothesis, ξ̂ is superior to ξ̃. Using

the Mahalanobis (squared) distance asthe loss function, that is putting Γ = (2Υ2)−1,

2tr(ΓΥ2) = p and λ′Γλ = Λ. For the above chice of Γ we will have

R(ξ̂) ≤ R(ξ̃)⇐⇒ Λ ∈
[
0,

p(1 + π)

(1− π)

]

and

R(ξ̃) ≤ R(ξ̂)⇐⇒ Λ ∈
(
p(1 + π)

(1− π)
, ∞

)
.

Clearly, when Λ moves away from Ho beyond the value p(1+π)
(1−π)

, the risk of ξ̂ increases

and becomes unbounded. This clearly indicates that the performance of ξ̂ will strongly

depend on the reliability of the nonsample information. The performance of ξ̃ is always

steady throughout Λ ∈ [0,∞).

Remark 1. In the light of above discussions, we may conclude that none of the two

estimators ξ̃ and ξ̂ dominate the other asymptotically.

However, under Ho, ξ̂ ≺ ξ̃, where the notation ≺ stands for dominance. However, in

reality one do not know whether Ho holds or not and generally the value of Λ is unknown.

The above remark and conclusions drawn in sequel are rather of theoretical nature, which

serve the purpose of the this investigation.

Comparison of ξ̃ with ξ̂
(I)

and ξ̂
(P )
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First, note that

Φp+4(χ2
p,α; Λ) ≤ Φp+2(χ2

p,α; Λ) ≤ Φp+2(χ2
p,α; 0) = 1− α,

for α ∈ (0, 1) and Λ > 0. The left hand side of the above relation converges to 0 as

Λ → ∞. Also, as ||λ|| → ∞ ⇒ Λ → ∞, then Φp+4(χ2
p,α; Λ), λ′ΓλΦp+2(χ2

p,α; Λ) and

λ′ΓλΦp+4(χ2
p,α; Λ) approach 0, and the risk of ξ̂

(I)
approaches 2tr(ΓΥ2), i.e., the risk of

ξ̃. The risk of ξ̂
(I)

is smaller than the risk of ξ̃ near the null hypothesis which keeps on

increasing, crosses the line 2tr(ΓΥ2), reaches to maximum then decreases monotonically

to the risk of ξ̃. Hence a pretest approach controls the magnitude of the risk. In fact, ξ̂
(I)

dominates ξ̃ if λ′Γλ ∈ [0, u1 ] where,

u1 =
2tr(ΓΥ2)(1 + π)Φp+2(χ2

p,α; Λ)

{2Φp+2(χ2
p,α; Λ)− (1 + π)Φp+4(χ2

p,α; Λ)}
.

There are points in the parameter space for which ξ̂
(I)

is inferior to ξ̃ and a sufficient

condition is λ′Γλ ∈ (u1 ,∞). Moreover, as α (the le vel of significance of pretest) tends

to 1, R(ξ̂
(I)

) tends to R(ξ̃). At Λ = 0, the R(ξ̂
(I)

) assumes value 2tr(ΓΥ2)[1 − (1 −
π2)Φp+2(χ2

p,α; 0)], then keeps on increasing crossing the line 2tr(ΓΥ2), reaches to maximum

then decreases monotonically to the R(ξ̃).

For π = 0, we obtain the comparison of ξ̃ and ξ̂
(P )

. Thus, ξ̂
(P )

performs better than

ξ̃ whenever λ′Γλ ∈ [0, u2 ] where,

u2 =
2tr(ΓΥ2)Φp+2(χ2

p,α; Λ)

{2Φp+2(χ2
p,α; Λ)− Φp+4(χ2

p,α; Λ)}
,

and for λ′Γλ ∈ (u2 ,∞) opposite conclusion holds. Further, by comparing the u1 and u2

we find that ξ̂
(I)

provides a wider range than ξ̂
(P )

in which it has smaller risk than ξ̃.

This indicates the superiority of ξ̂
(I)

over ξ̂
(P )

in sense of dominance range. We will also

demonstrate later in this paper that ξ̂
(I)

has an edge over ξ̂
(P )

with respect to the size of

the pretest. This important fact was first noticed by Ahmed (1992a, 1992b).

We observe that performance of the pretest estimators, which combine sample infor-

mat ion with NSI, heavily depend on the correctness of the NSI. The gain in the risk is

substantial over classical procedure when information is correct or nearly correct. How-

ever, ξ̂
(I)

and ξ̂
(P )

combine the information in a superior way than that of ξ̂ in the sense

that their risk is a bounded function of the NSI.

Remark 2 None of the three estimators is inadmissible with respect to others. How-

ever, when the null hypothesis is true then the risks of the estimators may be ordered

according to the magnitude of their risk as follows:

ξ̂
(P )
≺ ξ̂

(I)
≺ ξ̃.
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Comparison of ξ̂ and ξ̂
(I)

When the nonsample information is correct, then the risk difference

R(ξ̂
(I)

)−R(ξ̂) = (1− π2)2tr(ΓΥ2){1− Φp+2(χ2
p,α; Λ)} ≥ 0.

This clearly indicates superiority of ξ̂ over ξ̂
(I)

at the null hypothesis. However, under

local alternative, the risk difference indicates that ξ̂ will be superior to ξ̂
(I)

if

λ′Γλ ≤
(1 + π){2tr(ΓΥ2)− 2tr(ΓΥ2)Φp+2(χ2

p,α; Λ)}
{(1− π)− 2Φp+2(χ2

p,α; Λ) + (1 + π)Φp+4(χ2
p,α; Λ)}

.

Let us consider Γ = (2Υ2)−1, then in term of Λ, ξ̂ is superior to ξ̂
(I)

if

0 ≤ Λ ≤
(1 + π)p{1− Φp+2(χ2

p,α; Λ)}
{(1− π)− 2Φp+2(χ2

p,α; Λ) + (1 + π)Φp+4(χ2
p,α; Λ)}

,

while opposite holds if

(1 + π)p{1− Φp+2(χ2
p,α; Λ)}

{(1− π)− 2Φp+2(χ2
p,α; Λ) + (1 + π)Φp+4(χ2

p,α; Λ)}
< Λ <∞.

The proposed estimators ξ̂ and ξ̂
(P )

both use the data and NSI, however, neither ξ̂
(I)

nor ξ̂ is superior with respect to each other.

Remark 3 Under the null hypothesis ξ̂ ≺ ξ̂
(I)

.

Comparison of ξ̂
(I)

and ξ̂
(P )

We now compare the risk performance of the ξ̂
(I)

and ξ̂
(P )

and determine the conditions

under which ξ̂
(I)

performs better than ξ̂
(P )

. First, under the null hypothesis R(ξ̂
(I)

) −
R(ξ̂

(P )
) = π22tr(ΓΥ2)Φp+2(χ2

p,α; 0) > 0. Thus, under the null hypothesis ξ̂
(P )

is superior

to ξ̂
(I)

. However, the risk difference may not be noticeable for the smaller values of π.

Alternatively, when the hypothesis error grows then ξ̂
(I)

will be superior to ξ̂
(P )

in the

rest of the parameter space. More specifically,

R(ξ̂
(I)

) < R(ξ̂
(P )

)⇐⇒ λ′Γλ ≥ π2tr(ΓΥ2)Φp+2(χ2
p,α; Λ){2Φp+2(χ2

p,α; Λ)−πΦp+4(χ2
p,α; Λ)}−1.

Let us consider the situation Γ = (2Υ2)−1, then ξ̂
(P )

is superior to ξ̂
(I)

if

0 ≤ Λ ≤ πpΦp+2(χ2
p,α; Λ){2Φp+2(χ2

p,α; Λ)− πΦp+4(χ2
p,α; Λ)}−1,

while opposite result holds if

πpΦp+2(χ2
p,α; Λ){2Φp+2(χ2

p,α; Λ)− πΦp+4(χ2
p,α; Λ)}−1 < Λ <∞.
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Let Λπ be a point in the parameter space at which the risk of ξ̂
(I)

and ξ̂
(P )

intersect for

a given π. Then, for Λ ∈ (0,Λπ], ξ̂
(P )

performs better than ξ̂
(I)

, while for Λ ∈ (Λπ,∞),

ξ̂
(I)

is superior to ξ̂
(P )

. Further, for large values of π (close to 1), the interval (0,Λπ] may

be negligible. Nevertheless, ξ̂
(I)

and ξ̂
(P )

share a common asymptotic property that, as

Λ→∞, their risk converge to a common limit, i.e., to the risk of ξ̃ from the above.

Remark 4 None of ξ̂
(I)

and ξ̂
(P )

is inadmissible with respect to other. At Λ = 0,

ξ̂
(P )
≺ ξ̂

(I)
.

Finally, by combining all the remarks we have made so far, we arrive at the following

conclusion.

Conclusion None of the four estimators is inadmissible with respect to any of others.

However, at Λ = 0, ξ̂ ≺ ξ̂
(P )
≺ ξ̂

(I)
≺ ξ̃.

The statistical properties of the ξ̂
(I)

and hence that of ξ̂
(P )

depend, among other

factors, on the size of the test chosen for the pretest which has not been given serious

consideration. The size of the test plays an important role in selecting the estimator.

Since the level of significance α is in the control of statistician, thus, we have a statistical

decision problem for choosing α. In the following section, a method for the choice of α

using efficiency criterion is discussed.

We demonstrate below that the optimal significance level is smaller for the proposed

ξ̂
(I)

than that of ξ̂
(P )

and the smaller significance level often coincides with the traditional

level of significance.

5. Size of the Pretest

One method to determine the value of α is to compute the minimum guaranteed

asymptotic efficiency, a rule was first given in Han and Bancroft (1968) and extended by

Ahmed (1992a, 1992b).

First, we introduce the notion of the asymptotic relative efficiency. The asymptotic

relative efficiency (ARE) of an estimator ξ? to another estimator ξ� is defined by

ARE(ξ? : ξ�) = R(ξ�,Γ)/R(ξ?,Γ).

Bear in mind that an ARE greater than 1 indicates the degree of asymptotic superiority

of ξ? over ξ�.

In order to facilitate numerical computation of risk functions of the various estimators,

we consider the case Γ = (2Υ2)−1 and then obtain the values ofARE on a digital computer

.
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Thus, the ARE of ξ̂
(I)

with respect to ξ̃ is given by

ARE(ξ̂
(I)

: ξ̃) = [1−(1−π2)Φp+2(χ2
p,α; Λ)+

Λ

p
{2(1−π)Φp+2(χ2

p,α; Λ)−(1−π2)Φp+4(χ2
p,α; Λ)}]−1.

(5.1)

Note that for α = 0 relation (5.1) defines the ARE of ξ̂ relative to ξ̃ while for π = 0, we

get the ARE of ξ̂
(P )

relative to ξ̃. Further, when the null hypothesis is true then

ARE(ξ̂
(I)

: ξ̃) = AREmax =
{

1− (1− π2)Φp+2(χ2
p,α; 0)

}−1
> 1.

Note that for fixed α, π and p, Φp+4(χ2
p,α; Λ) ≤ Φp+2(χ2

p,α; 0). Thus, the maximum value

of ARE(ξ̂
(I)

: ξ̃) occurs at Λ = 0. This maximum efficiency is decreasing function of α for

fixed π and of π for fixed α. This picture is different for the non-null case. Noting that, for

fixed values of α and π, ARE(ξ̂
(I)

: ξ̃) is a monotone decreasing function of Λ, where α and

π are held constant. It crosses the line ARE(ξ̂
(I)

: ξ̃) = 1 at
p(1+π)Φp+2(χ2

p,α;Λ)

{2Φp+2(χ2
p,α;Λ)−(1+π)Φp+4(χ2

p,α;Λ)} ,

then decreases and attains a minimum value AREmin at a point Λo and then increases

asymptotically to 1. The minimum efficiency is an increasing function of α.

On the other hand, for any fixed value of α, the maximum value of the ARE(ξ̂
(I)

: ξ̃) is

a decreasing function of π, while the minimum efficiency AREmin is an increasing function

of π. In order to determine the critical value for the pretest with minimum guaranteed

efficiency AREmin, the researcher is willing to accept for fixed π, one needs to solve the

equation

sup
α

{
inf
Λ
ARE(α, π,Λ)

}
≥ AREmin,

or

sup
α1

{
inf
Λ
ARE(α, π,Λ)

}
≥ AREmin,

where α1 is the required value. In the same way, by selecting π = 0, we obtain α2 by

using

sup
α2

{
inf
Λ
ARE(α, 0,Λ)

}
≥ AREmin,

where α2 is the desired value. Finally, by the property of inf
Λ
AREmax(α, π,Λ), we observe

that α1 < α2. Hence, ξ̂
(I)

has a remarkable edge over ξ̂
(P )

with respect to the size of the

pretest. The use of the usual pretest estimation may be limited by the larger value of α,

the level of significance. However, by employing a shrinkage technique one may control

the value of size of the test.

5.1. Illustrative Example

In order to provide a numerical example we compute the table of maximum (AREmax)

and minimum (AREmin) efficiencies along with corresponding value of the Λ = Λmin at

11



which the minimum efficiency occurred. The purpose of preparing the table is bi-fold; one

is to appraise the behavior of the estimators and the other is to determine the optimum

value of α for the pretest which provides the minimum guarantee d efficiency.

For an example, if p = 2 and the experimenter is looking for an estimator with a

minimum ARE of at least 0.90, with π = 0.6 then from table 1 the value of α1 is found

to be 0.05 . Such a choice of α1 would yield an estimator with a maximum efficiency of

2.05 at Λ = 0, with a minimum guaranteed efficiency of 0.91. If the experimenter selects

π = 0, then from table 1 the size of the pretest, i.e., the value of α2 will be approximately

0.30. Hence, ξ̂
(I)

outperforms ξ̂
(P )

with respect to the size of the preliminary test. Not

only that, the maximum efficiency drops from 2.05 to 1.51. We conclude this section with

the following remark.

Remark 5: The proposed ξ̂
(I)

has an edge over ξ̂
(P )

with respect to smaller level of

significance as well as wider range of dominance over ξ̃. Hence, ξ̂
(I)

is superior to ξ̂
(P )

.

The computations for the table are carried out with a FORTRAN program.
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