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Abstract

Some notions of uniform integrability of an array of random elements in a separable Banach space with respect to an
array of random variables are introduced and characterized, in order to obtain weak laws of large numbers for randomly
weighted sums. The paper contains results which generalize some previous results for weighted sums with nonrandom
weights, and one of them is used to obtain a result of convergence for sums with a random number of addends. Furthermore,
a result of almost everywhere convergence of the sequence of certain conditional expectations of the row sums is obtained.
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1. Introduction

There exists an extensive literature about the weak or strong convergence of weighted partial sums∑n
j=1 anjXj, where {Xn; n¿1} is a sequence of random variables, and {anj; 16j6n; n¿1} is an array of

(nonrandom) constants. In this scope, Rosalsky and Sreehari (1998) provide a complete list of references
from 1965 to 1995.
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Starting from the 1970s, the random nature of many problems arising in the applied sciences is noted. This
leads to mathematical models which deal with the limiting behaviour of weighted sums of random elements
in normed linear spaces, where the weights are random variables.
Taylor and Padgett (1972, 1974, 1976) obtain (still in the scope of constant weights) some basic results

by considering a sequence {An; n¿1} of random weights. From 1978 on, it begins to be studied directly
the convergence of randomly weighted partial sums of random elements in separable Banach spaces or in
separable normed linear spaces, in general. The reader may refer to Wei and Taylor (1978a, b), Taylor and
Calhoun (1983), Taylor et al. (1984), Ordoñez Cabrera (1988), Adler et al. (1992), Wang and Rao (1995) and
Hu and Chang (1999). In these papers, the (weak or strong) convergence of sums

∑n
j=1 AnjVj is analyzed,

where {Anj; 16j6n; n¿1} is an array of random variables, and {Vn; n¿1} is a sequence of random elements
taking values in a separable normed linear space (or in a Banach space). This structure can be subsumed in
the general structure of randomly weighted partial sums

∑n
j=1 AnjVnj, by putting Vnj = Vj; 16j6n; n¿1.

The limiting behaviour of randomly weighted partial sums
∑n

j=1 AnjVnj plays an important role in various
applied and theoretical problems. On the matter, see the Example of Rosalsky and Sreehari (1998), in queueing
theory, where the sums

∑n
j=1 AnjVnj can be used to represent the total output for a customer being served

by n machines.
At once, this structure can be subsumed in a more general structure, where the sums are not necessarily

partial sums. Let {un¿−∞; n¿1} and {vn6+∞; n¿1} be two sequences of integers, vn ¿un for all n¿1.
Consider an array of random elements {Vnj; un6j6vn; n¿1} de�ned on a probability space (
;A; P) and
taking values in a real separable Banach space X with norm ‖ · ‖. Let {Anj; un6j6vn; n¿1} be an array of
random variables de�ned on the same probability space (
;A; P). We consider the randomly weighted sums∑vn

j=un AnjVnj. When un = 1; vn = n; n¿1, we have randomly weighted partial sums.
In the case of a triangular array of constant weights, the notion of uniform integrability of the array of

random elements or the notion of uniform integrability of this array concerning the constant weights have
been useful in order to obtain weak laws of large numbers. We refer, among others, to Gut (1992), Ordoñez
Cabrera (1994) and Sung (1999).
In this note, we introduce some notions of uniform integrability of an array {Vnj; un6j6vn; n¿1} of

random elements with respect to an array {Anj; un6j6vn; n¿1} of random variables. De�nitions 2 and 3
are close to corresponding ones for an array of constants (non random weights). An interesting feature of the
current work is the notion of {Anj}-conditional uniform integrability relative to a sequence {Bn} of �-algebras
(De�nition 5). This notion is of the greatest interest when Bn = �(Anj; un6j6vn), i.e., when {Bn} is the
�-algebra generated by {Anj; un6j6vn}, for each n¿1.
Under the condition supn¿1

∑vn
j=un |Anj|6C a:e: we obtain a characterization of this notion, which involves

respective characterizations of the notions of {Anj}-uniform integrability in the strong and weak senses. These
results extend in a natural way the characterizations of {anj}-uniform integrability (for nonrandom weights)
in Ordoñez Cabrera (1994).
Theorems 3 and 4 and Corollary 3 give results of convergence for randomly weighted sums of random

elements which generalize some previous results for weighted sums with nonrandom weights. Independence
between weights and random elements is required. By supposing the hypothesis of {Anj}-conditional uniform
integrability relative to a sequence {Bn} of �-algebras, we prove Theorems 5 and 6 for randomly weighted
sums of random elements. Theorem 5 gives a result of convergence in L1 and Theorem 6 gives a result of
almost everywhere (a.e.) convergence of the sequence of conditional expectations of the row sums.

2. De�nitions

Let {un; n¿1} and {vn; n¿1} be two sequences of integers (not necessary positive or �nite) such that
vn ¿un for all n¿1 and vn − un → ∞ as n→ ∞. Consider two arrays of random variables {Xnj; un6j6vn;
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n¿1} and {Anj; un6j6vn; n¿1} de�ned on a probability space (
, A, P) and an array of constants
{anj; un6j6vn; n¿1}.
(1) The following concept was introduced in Ordoñez Cabrera (1994), with un = 1.
We say that {Xnj; un6j6vn; n¿1} is {anj}-uniformly integrable if

lim
a→∞ supn¿1

(
vn∑

j=un

|anj|E(|Xnj|I[|Xnj|¿a])
)
= 0:

(2) We say that {Xnj; un6j6vn; n¿1} is {Anj}-uniformly integrable in the strong sense if for all �¿ 0,
there exists a0¿ 0 such that

sup
n¿1

(
vn∑

j=un

|Anj|E(|Xnj|I[|Xnj|¿a0])
)
¡� a:e:

(3) Let the random variables {Anj; un6j6vn; n¿1} be integrable.
We say that {Xnj; un6j6vn; n¿1} is {Anj}-uniformly integrable in the weak sense if {Xnj; un6j6vn; n¿1}

is {E|Anj|}-uniformly integrable, i.e., if

lim
a→∞ supn¿1

(
vn∑

j=un

E|Anj|E(|Xnj|I[|Xnj|¿a])
)
= 0;

It is easy to check that if supn¿1
∑vn

j=un E|Anj|¡∞; then (2)⇒ (3):
Let Bn be a sequence of sub �-algebras of A. For each n¿1, denote by EBn(Y ) the conditional expectation

of the random variable Y relative to Bn, and by PBn(A) the conditional probability of the event A∈A relative
to Bn.
(4) We say that {Xnj; un6j6vn; n¿1} is conditionally uniformly integrable relative to Bn if

lim
a→∞ supn¿1

sup
un6j6vn

EBn(|Xnj|I[|Xnj|¿a]) = 0 a:e:

(5) We say that {Xnj; un6j6vn; n¿1} is {Anj}-conditionally uniformly integrable relative to Bn if for
all �¿ 0, there exists a0¿ 0 such that

sup
n¿1

(
vn∑

j=un

|Anj|EBn(|Xnj|I[|Xnj|¿a0])
)
¡� a:e:

In particular, it is of interest when Bn = �(Anj; un6j6vn) is the �-algebra generated by {Anj; un6j6vn}
for each n¿1.
Note that if supn¿1

∑vn
j=un |Anj|¡∞; a:e:, then (4)⇒(5):

If Anj=anj (nonrandom) a.s for all un6j6vn; n¿1; de�nitions (2), (3) and (5) (when Bn={∅; 
} ∀n ∈N )
coincide with De�nition 1).
(6) Let {Vnj; un6j6vn; n¿1} be an array of random elements in a separable Banach space X with norm

‖ · ‖. We say that {Vnj; un6j6vn; n¿1} is uniformly (or conditionally uniformly) integrable in each one of
the preceding senses if the array of random variables {‖Vnj‖; un6j6vn; n¿1} is so.

3. Characterizations

In this section we will obtain characterizations of the various concepts of uniform integrability which have
been introduced in the previous section.
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Theorem 1. Let {Xnj; un6j6vn; n¿1} and {Anj; un6j6vn; n¿1} be two arrays of random variables with
supn¿1

∑vn
j=un |Anj|6C a:e:, for some constant C¡∞ and let {Bn; n¿1} be a sequence of sub �-algebras

of A.
Then, {Xnj; un6j6vn; n¿1} is {Anj}-conditionally uniformly integrable relative to Bn if, and only if:

(a) supn¿1
∑vn

j=un |Anj|EBn |Xnj|=M ¡∞ a:e:
(b) for each �¿ 0, there exists �¿ 0 such that whenever {Bnj; un6j6vn; n¿1} is an array of events
satisfying supn¿1

∑vn
j=un |Anj|PBn(Bnj)¡� a:e:, then supn¿1

∑vn
j=un |Anj|EBn(|Xnj|IBnj)¡� a:e:

Proof. Let {Xnj; un6j6vn; n¿1} be an array of random variables which is {Anj}-conditionally uniformly
integrable relative to Bn.
Then, given �¿ 0, there exists a¿ 0 such that

sup
n¿1

vn∑
j=un

|Anj|EBn(|Xnj|I[|Xnj|¿a])¡
�
2

a:e:

Then

EBn |Xnj|= EBn(|Xnj|I[|Xnj|6a] + |Xnj|I[|Xnj|¿a])6a+ EBn(|Xnj|I[|Xnj|¿a]) a:e:

Therefore, for every n∈N :

vn∑
j=un

|Anj|EBn |Xnj|6a
vn∑

j=un

|Anj|+
vn∑

j=un

|Anj|EBn(|Xnj|I[|Xnj|¿a]) a:e:

and so

sup
n¿1

vn∑
j=un

|Anj|EBn |Xnj|=M ¡∞ a:e:

Now let �¿ 0, and let {Bnj; un6j6vn; n¿1} be an array of events with

sup
n¿1

vn∑
j=un

|Anj|PBn(Bnj)¡
�
2a
= � a:e:

Then, for every n∈N :

vn∑
j=un

|Anj|EBn(|Xnj|IBnj) =
vn∑

j=un

|Anj |EBn(|Xnj| IBnj∩[|Xnj|6a] + |Xnj| IBnj∩[|Xnj|¿a])

6 a
vn∑

j=un

|Anj|PBn(Bnj) +
vn∑

j=un

|Anj|EBn(|Xnj| I[|Xnj|¿a])¡a
�
2a
+
�
2
= � a:e:
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Conversely, for each a¿ 0 and every n∈N :
vn∑

j=un

|Anj|PBn([|Xnj|¿a]) =
vn∑

j=un

|Anj|EBn I[|Xnj|¿a]6
1
a

vn∑
j=un

|Anj|EBn |Xnj|6Ma a:e:

since aI[|Xnj|¿a]6|Xnj| a:e:
Given �¿ 0, we have, for each a¿a0 = 2M=� and every n∈N :

vn∑
j=un

|Anj|PBn([|Xnj|¿a])6
M
a0
=
�
2
¡� a:e:

Therefore, the array of events {Bnj}= {[|Xnj|¿a]}, for each a¿a0, veri�es condition (b). So:

sup
n¿1

vn∑
j=un

|Anj|EBn(|Xnj|I[|Xnj|¿a])¡� a:e:

for each a¿a0, i.e., {Xnj; un6j6vn; n¿1} is {Anj}-conditionally uniformly integrable relative to Bn.

By considering the sequence of �-algebras Bn = {∅; 
} for every n∈N , we obtain the characterization of
{Anj}-uniform integrability in the strong sense and in the weak sense:

Corollary 1. Let {Xnj; un6j6vn; n¿1} and {Anj; un6j6vn; n¿1} be two arrays of random variables
with supn¿1

∑vn
j=un |Anj|6C a:e:

Then; {Xnj; un 6j6vn; n¿1} is {Anj}-uniformly integrable in the strong sense if and only if:
(a) supn¿1

∑vn
j=un |Anj|E|Xnj|=M ¡∞ a:e:

(b) for each �¿ 0; there exists �¿ 0 such that whenever {Bnj; un6j6vn; n¿1} is an array of events
satisfying supn¿1

∑vn
j=un |Anj|P(Bnj)¡� a:e:; then supn¿1

∑vn
j=un |Anj|E(|Xnj|IBnj)¡� a:e:

Corollary 2. Let {Xnj; un6j6vn; n¿1} and {Anj; un6j6vn; n¿1} be two arrays of random variables
with supn¿1

∑vn
j=un E|Anj|¡∞.

Then; {Xnj; un6j6vn; n¿1} is {Anj}-uniformly integrable in the weak sense if and only if:
(a) supn¿1

∑vn
j=un E|Anj|E|Xnj|=M ¡∞

(b) for each �¿ 0; there exists �¿ 0 such that whenever {Bnj; un6j6vn; n¿1} is an array of events
satisfying supn¿1

∑vn
j=un E|Anj|P(Bnj)¡�; then supn¿1

∑vn
j=un E|Anj|E(|Xnj|IBnj)¡�.

Note that if, in particular, Anj=anj (nonrandom) for all un6j6vn; n¿1, Corollary 1 gives a characterization
of the {anj}-uniform integrability of an array {Xnj; un6j6vn; n¿1} which extends the characterization of
the {anj}-uniform integrability of a sequence {Xn; n¿1} in Ordoñez Cabrera (1994). From this point of
view, Corollary 2 is the characterization of the {anj}-uniform integrability of {Xnj; un6j6vn; n¿1} when
we consider anj ≡ E|Anj| for all un6j6vn; n¿1.
By using a similar technique to that we used in the proof of Theorem 1, the following characterization of

the conditional uniform integrability relative to a sequence of �-algebras can be obtained:

Theorem 2. Let {Xnj; un6j6vn; n¿1} be an array of random variables; and let {Bn; n¿1} be a sequence
of sub �-algebras of A.
Then; {Xnj; un6j6vn; n¿1} is conditionally uniformly integrable relative to Bn if; and only if:

(a) supn¿1 supun6j6vnE
Bn |Xnj|=M ¡∞ a:e:

(b) for each �¿ 0; there exists �¿ 0 such that whenever {Bnj; un6j6vn; n¿1} is an array of events
satisfying supn¿1 supun6j6vnP

Bn(Bnj)¡� a:e:, then supn¿1 supun6j6vnE
Bn(|Xnj|IBnj)¡� a:e:
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4. Convergence of randomly weighted sums

In the following results, we suppose that all the random elements and the random variables are de�ned on
the same probability space (
;A; P).

Theorem 3. Let {Vnj; un6j6vn; n¿1} be an array of random elements taking values in a real separable
Banach space and {Anj; un6j6vn; n¿1} be an array of random variables such that:
(1) Anj and Vnj are independent for each j; un6j6vn and every n¿1,
(2) lim

n→∞
∑vn

j=un E|Anj|= 0,
(3) {‖Vnj‖q; un6j6vn; n¿1} is {|Anj|q}-uniformly integrable in weak sense for some 0¡q61.
Then

∑vn
j=un |Anj|‖Vnj‖ → 0 in Lq as n→ ∞ and; consequently;

∥∥∥∥∥
vn∑

j=un

AnjVnj

∥∥∥∥∥→ 0 in Lq:

Proof. For any a¿ 0 de�ne

V ′
nj = VnjI[‖Vnj‖6a]; V ′′

nj = VnjI[‖Vnj‖¿a]:

Then since q61

E

[
vn∑

j=un

|Anj|‖Vnj‖
]q
6 E

[
vn∑
j=un

|Anj|‖V ′
nj‖
]q
+ E

[
vn∑

j=un

|Anj|‖V ′′
nj‖
]q

6 E

[
vn∑
j=un

|Anj|‖V ′
nj‖
]q
+

vn∑
j=un

E|Anj|qE‖V ′′
nj‖q

6 aq
[

vn∑
j=un

E|Anj|
]q
+

vn∑
j=un

E|Anj|qE‖V ′′
nj‖q

Now, the �rst sum tends to zero by assumption (2) and the second one tends to zero by assumption (3).

Remark. If Anj = anj (nonrandom) a.s for all un6j6vn; n¿1; then Theorem 3 gives Theorem 6 of Ordoñez
Cabrera (1994).

Corollary 3. Let {Vnj;−∞¡j¡ + ∞; n¿1} be an array of random elements taking values in a real
separable Banach space; {Anj; −∞¡j¡+∞; n¿1} be an array of random variables and {Nn; n¿1} and
{Mn; n¿1} be two sequence of (not necessarily positive) integer-valued random variables with Nn6Mn a:e:;
n¿1; and such that for some nonrandom sequences {un; n¿1} and {vn; n¿1}; we have

P[Nn¡un] = o(1) and P[Mn¿vn] = o(1) as n→ ∞:

Suppose also that assumptions (1)–(3) of Theorem 3 hold. Then
∑Mn

j=Nn |Anj|‖Vnj‖ → 0 in probability as
n→ ∞ and; consequently; ‖∑vn

j=un AnjVnj‖ → 0 in probability.
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Proof. For arbitrary �¿ 0 and n¿1:

P


 Mn∑
j=Nn

|Anj|‖Vnj‖¿�


 = P


 Mn∑
j=Nn

|Anj‖|Vnj‖¿�;Nn¿un;Mn6vn




+P


 Mn∑
j=Nn

|Anj‖|Vnj‖¿�;Nn¿un;Mn¿vn

+ P


 Mn∑
j=Nn

|Anj‖|Vnj‖¿�;Nn¡un




6 P

[
vn∑
j=un

|Anj‖|Vnj‖¿�

]
+ P[Mn¿vn] + P[Nn¡un] = o(1)

by Theorem 3 and assumptions of Corollary 3.

We need the following lemma for proof of Theorem 4.

Lemma. Suppose that {Xnj; un6j6vn; n¿1} is an array of {anj}-uniformly integrable random variables
satisfying supn¿1

∑vn
j=un |anj|E|Xnj|¡∞:

Denote mn = 1=supun6j6vn |anj|. If mn→∞ as n→∞ and p¿ 1 then
vn∑

j=un

|anj|pE|Xnj|pI [|Xnj|6mn] = o(1):

Proof. For any a¡mn, we have
vn∑

j=un

|anj|pE|Xnj|pI [|Xnj|6mn] =
vn∑

j=un

|anj|pE|Xnj|p(I [|Xnj|6a] + I [a¡ |Xnj|6mn])

6
vn∑

j=un

|anj|pap−1E|Xnj|I [|Xnj|6a] +
vn∑

j=un

|anj|pmp−1n E|Xnj|I [|Xnj|¿a]

6m1−pn ap−1 sup
m¿1

vm∑
j=um

|amj|E|Xmj|+ sup
m¿1

vm∑
j=um

|amj|E|Xmj|I [|Xmj|¿a]:

By the assumption to the Lemma, the �rst term above is o(1) as n→∞ since mn→∞; and the second
term above is o(1) as a→∞.

Theorem 4. Let {Vnj; un6j6vn; n¿1} be an array of random elements taking values in a real separable
Banach space; and {Anj; un6j6vn; n¿1} be an array of random variables such that; for some 0¡q¡ 1;
(1) Anj and Vnj are independent for each j; un6j6vn and every n¿1;
(2) limn→∞ supun6j6vnE|Anj|= 0;
(3) {‖Vnj‖q} is {(E|Anj|)q}-uniformly integrable;
(4) supn¿1

∑vn
j=un(E|Anj|)qE‖Vnj‖

q ¡∞:
Then ‖∑vn

j=un AnjVnj‖ → 0 in Lq; as n→∞.

Proof. Denote mn = 1=supun6j6vnE|Anj|. We de�ne:
V ′
nj = VnjI[‖Vnj‖6mn]; V ′′

nj = VnjI[‖Vnj‖¿mn]:
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Given �¿ 0, there exists a¿ 0 such that

sup
n¿1

(
vn∑

j=un

(E|Anj|)qE(‖Vnj‖qI[‖Vnj‖¿a])
)
¡
�
2
:

As limn→∞mn =∞, there exists n0 ∈N such that mn¿a for all n¿n0. Therefore, for all n¿n0:
vn∑

j=un

(E|Anj|)qE‖V ′′
nj‖q ¡

�
2
:

By applying Lemma with p= 1=q; anj = (E|Anj|)q, we can choose n0 ∈N such that for all n¿n0
vn∑

j=un

((E|Anj|)q)pE(‖Vnj‖q)pI[‖Vnj‖q61=supun6j6vn (E|Anj|)q] =
vn∑

j=un

E|Anj|E‖V ′
nj‖¡

( �
2

)1=q
Then since q¡ 1, we have for all n¿n0

E

∥∥∥∥∥
vn∑

j=un

AnjVnj

∥∥∥∥∥
q

6 E

∥∥∥∥∥
vn∑

j=un

AnjV ′
nj

∥∥∥∥∥
q

+ E

∥∥∥∥∥
vn∑

j=un

AnjV ′′
nj

∥∥∥∥∥
q

6

(
E

∥∥∥∥∥
vn∑

j=un

AnjV ′
nj

∥∥∥∥∥
)q
+

vn∑
j=un

E|Anj|qE‖V ′′
nj‖q

6

(
vn∑

j=un

E|Anj|E‖V ′
nj‖
)q
+

vn∑
j=un

(E|Anj|)qE‖V ′′
nj‖q ¡

�
2
+
�
2
= �:

Theorem 5. Let {Vnj; un6j6vn; n¿1} be an array of random elements taking values in a real separable
Banach space and {Anj; un6j6vn; n¿1} be an array of random variables such that assumption (2) of
Theorem 3; that is; limn→∞

∑vn
j=un E|Anj|=0; holds. Let Bn=�(Anj; un6j6vn); for each n¿1 and suppose

that {Vnj; un6j6vn; n¿1} is {Anj}-conditionally uniformly integrable relative to Bn.
Then

∑vn
j=un |Anj|‖Vnj‖ → 0 in L1 as n→ ∞ (and; consequently; ‖∑vn

j=un AnjVnj‖ → 0 in L1):

Proof. Given �¿ 0, there exists a¿ 0 such that

sup
n¿1

(
vn∑

j=un

|Anj|EBn(‖Vnj‖I[‖Vnj‖¿a])
)
¡
�
2

a:e:

We de�ne V ′
nj and V

′′
nj, as in Theorem 3. Then, since the {Anj; un6j6vn} are Bn-measurable:

EBn

(
vn∑

j=un

|Anj|‖Vnj‖
)
6 EBn

(
vn∑

j=un

|Anj|‖V ′
nj‖
)
+ EBn

(
vn∑

j=un

|Anj|‖V ′′
nj‖
)

6 aEBn

(
vn∑

j=un

|Anj|
)
+ EBn

(
vn∑

j=un

|Anj‖|V ′′
nj‖
)

6 a

(
vn∑

j=un

|Anj|
)
+

(
vn∑

j=un

|Anj|EBn‖V ′′
nj‖
)
:
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There exists n0 ∈N such that the expectation of the �rst sum is less than �=2 for all n¿n0, and the
expectation of the second sum is less than �=2 by the choice of a. Then, given �¿ 0, there exists n0 ∈N such
that for all n¿n0:

E

(
EBn

(
vn∑

j=un

|Anj|‖Vnj‖
))

= E

(
vn∑

j=un

|Anj|‖Vnj‖
)
¡�:

A light modi�cation of conditions in Theorem 5 allow us to obtain a result of strong convergence of the
sequence of conditional expectations.

Theorem 6. Let {Vnj; un6j6vn; n¿1} be an array of random elements taking values in a real separable
Banach space and {Anj; un6j6vn; n¿1} be an array of random variables such that supun6j6vn |Anj| =
o((vn − un)−1) a:e:
Let Bn=�(Anj; un6j6vn); for each n¿1 and suppose that {Vnj; un6j6vn; n¿1} is {Anj}-conditionally

uniformly integrable relative to Bn.
Then EBn

∑vn
j=un |Anj|‖Vnj‖→ 0 a.e. as n→ ∞.

Proof. The begining is the same as in Theorem 5. Next, estimate the �rst sum in the following way:

a
vn∑

j=un

|Anj|6a(vn − un) sup
un6j6vn

|Anj|:

We often use assumption (2) from the Theorem 3. In order to check it, the following statement may be
useful.

Proposition. Let {Anj; un6j6vn; n¿1} be an array of random variables such that supn
∑vn

j=un (E|Anj|)r¡∞;
for some r ∈ (0; 1) and limn→∞ supun6j6vn E|Anj| = 0. Then assumption (2) of Theorem 3 holds; that is,
limn→∞

∑vn
j=un E|Anj|= 0.

Proof. It is easy to see that
vn∑

j=un

E|Anj|¡
(

sup
un6j6vn

E|Anj|
)1−r vn∑

j=un

(E|Anj|)r :
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