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ABSTRACT ARTICLE HISTORY
The authors study the complete moment convergence of weighted Received 21 October 2012
sums for arrays of rowwise negatively dependent random variables. Accepted 19 February 2014

The obtained results improve the corresponding results of Baek and
Park (2010). Convergen.ce of Weighted sums for arrays of.negatively Complete moment
dependent random variables and its applications. As an application, the convergence; Weighted
authors obtain the complete moment convergence of linear processes sums; Negatively dependent
based on pairwise negatively dependent random variables. In addition, random variables; Linear
the authors point out a gap of the proof in Baek and Park (2010) and raise processes.

an open problem.
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1. Introduction
Lehmann (1966) introduced the following concept of pairwise negatively dependent (ND).
Definition 1.1. Two random variables X and Y are said to be negatively dependent if

P(X <x,Y<y)<P(X<x)P(Y <y) forall xandy.

A sequence of random variables {X,,, n > 1} is said to be pairwise negatively dependent if
every pair of random variables in the sequence are negatively dependent.

Definition 1.2. The random variables X, ..., X; are said to be upper negatively depen-
dent(UND) if for all real x,, . . ., x,

k
PX;>x,i=1,2,....k) < l_[P(Xi > x;),
i=1

and lower negatively dependent (LND) if
k
PO, <xi=12....0) < [[PCX < x).
i=1

Random variables X, ..., Xj are said to be negatively dependent (ND) if they are both
UND and LND. This concept was introduced by Ebrahimi and Ghosh (1981).

CONTACT Yongfeng Wu @ wyfwyf@126.com @ Department of Mathematics and Computer Science, Tongling University,
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Recently, many authors studied various properties for sequences of pairwise ND random
variables. We refer the reader to Matula (1992), Wu (2002), Liang et al. (2002), Cabrera and
Volodin (2005), Li and Yang (2008), Gan and Chen (2008), Baek et al. (2008), Sung et al.
(2008), Meng and Lin (2009), Baek and Park (2010), Wu and Guan (2011), Sung (2012), and
Wu and Wang (2012).

Meanwhile, sequences of ND random variables also have been an attractive research topic
in the recent literature; see Taylor et al. (2001, 2002), Volodin (2002), Volodin and Cabrera
(2006), Ko et al. (2006), Gan and Chen (2008), Wu and Zhu (2010), Qiu et al. (2011), and Wu
etal. (2012).

A sequence of random variables {U,, n > 1} is said to converge completely to a constant a
ifforany e > 0,

o0
ZP(|U,, —al >¢e) < oo.
n=1

This notion was given firstly by Hsu and Robbins (1947).
Let {Z,, n > 1} be a sequence of random variables and a,, > 0, b, > 0,¢q > 0. If

oo
ZanE{bgllan — ¢}l < oo forsomeorall & >0,
n=1
then the above result was called the complete moment convergence by Chow (1988).
It is worthy to point out that the complete moment convergence is the more general version
of the complete convergence, which will been shown in Sec. 3.
An array of random variables {X,;, i > 1, n > 1} is said to be stochastically dominated by
a random variable X (write {X,;} < X) if there exists a constant C > 0 such that
sup P(|X,i| > x) < CP(|X| > x), Vx> 0.
Stochastic dominance of {X,;, i > 1, n > 1} by the random variable X implies E|X;|? <
CE|X|? if the p-moment of | X]| exists, i.e., if E|X|? < oo.
Baek and Park (2010) studied the complete convergence of weighted sums for arrays of
rowwise negatively dependent random variables. They obtained the following results.

Theorem 1.1. Let {X,;, i > 1, n > 1} be an array of rowwise pairwise ND random variables
with EX,;; = 0 and {X,;;} < X. Suppose that § > —1 and that {a,;,i > 1, n > 1} is an array of
constants such that

sup |a,| = O(n™7") for some y >0 (1.1)
i>1
and
Zlam| =0#") for some a € [0,y). (1.2)

i=1

(a) If14+ o + B > 0and there exists somed > Osuchthata/y +1 < < 2,5 = max{l +
A+a+8)/y, §},and E|X|° < oo, then we have

=9 =9
Z l’lﬂp<‘z am-Xm-
n=1 i=1

(b) If1+a+ B =0and E(|X|log(1 + |X|)) < oo, then (1.3) remains true.

> s) < oo for all € > 0. (1.3)
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Remark 1.1. We find that there exists a gap in Baek and Park (2010). When they proved
I; < oo in their paper, they presented I} <CY - n? Y * Ele/,|* and Y Ele/,|* <
Cn~76=(%a/Y)] "We think that they can only get I} < CY o2 nf~vI-1+e/M] jngtead of I} <
C Y7 nPyB-0+e/vIM Tn this case, to obtain I} < oo, it should be ensured that 8 — y[§ —
(1+a/y)] < —1 holds, namely, 1 + (1 +« + B)/y < 6. Then 1 +« + B < y follows by
1+ (1+a+pB)/y <dandd <2.

Then we clarify why the proof of Beak and Park (2010) only holds true when1 + o + 8 <
y.If we assume that 1 + o + 8 > y, then 8 > y — 1 — «. Hence, we obtain

B-vls—(U+a/y)]=p-—yi+y+taz=Q2-38y -1
Since Beak and Park (2010) assume § < 2, we can only derive that
B—vlb—Q0+a/y)]z -1
Hence, we derive that

oo
I < Cznﬁ—y[é—(l+a/y)1 = o0,

n=1

which does not imply that I < co. Therefore, by means of the method of Baek and Park
(2010), we can not make sure whether (1.3) remains true for the case 1 + @ + 8 > y.

Theorem 1.2. Let {X,;, 1 <i < k,, n > 1} be an array of rowwise ND random variables with
EX,i =0 and {X,;} < X, where {k,,n > 1} is a sequence of positive integers. Assume that
{an, 1 <i<k,, n=>1}isan array of real numbers satisfying

maic la,i| = O(log_1 k) (1.4)
1<i<ky
and

kn

Zafﬂ. = o(log_1 k). (1.5)

i=1

IfEe"™! < oo foralln > 0, then

o) kn
Z kgP( Z (/'lm'Xm‘

n=1 i=1

>8> <oo for all e >0 and B> 0. (1.6)

The main goal of this article is to obtain some results on the complete moment convergence
for arrays of rowwise ND random variables. These results improve Theorems 1.1 and 1.2 (see
Remarks 3.1 and 3.2). As an application, we establish the complete moment convergence of
linear processes based on pairwise negatively dependent random variables, which improves
Theorem 4.1 of Baek and Park (2010).

Throughout this article, the symbol C represents positive constants whose values may
change from one place to another.

2. Preliminaries

In this section, we state some lemmas which will be used in the proof of our main result.

Lemma 2.1. (Ebrahimi and Ghosh, 1981) If{X,,, n > 1} is a sequence of ND random variables
and { f,, n > 1} is a sequence of monotone increasing, Borel functions, then { f,(X,), n > 1} is
a sequence of ND random variables.
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Lemma 2.2. (Bozorgniaetal., 1996) IfX;, ...,X, be a finite sequence of ND random variables,
andty, ..., t, be all nonnegative (nonpositive), then

n
EeXi i < [ Bei™.
i=1

Lemma 2.3. (Wu, 2002) Let {X,,, n > 1} be a sequence of pairwise ND random variables with
mean zero and EX2 < oo, and Tj(k) = Y"1*%. X, j > 0. Then,

i=j+1
j+k j+n
E(Tj(k))’ <C Y EX!, E max (T;(k))” < Clog’ n > EX].
1<k=n
i=j+1 - i=j+1

Lemma 2.4. (Burton and Dehling, 1990) Let > ;= _ a; be an absolutely convergent series of
real numbers witha =) = a;andb =Y ;= _ |a;|. Suppose ® : [—b, b] — R is a function
satisfying the following conditions.

(i) @ is bounded and continuous at a.

(ii) There exist § > 0 and C > 0 such that for all |x| < 8, |®(x)| < C|x|. Then,

00 i+n
nli%nolon*1 Z CID( Z aj> = ®(a).

i=—00 j=i+1

Lemma2.5. Let {X,;, i > 1, n > 1} be an array of random variables with {X,;} < X. Then there
exists a constant C such that, for all ¢ > 0 and x > 0:

(i) E|Xul(1X0] < x) < CLEIX]1I(|X]| < x) + xTP(|X| > x)} and

(i) E|Xpu|I(|Xu| > x) < CEIX|I(|X]| > x).

This lemma can be easily proved by using integration by parts. We omit the details.

3. Complete moment convergence of the weighted sums

Theorem 3.1. Let {X,;,i > 1, n > 1} be an array of rowwise pairwise ND random variables
with EX,; = 0 and {X,;} < X. Suppose that § > —1 and that {a,;,i > 1, n > 1} is an array of
constants satisfying (1.1) and (1.2):

(@) If0 < 1 +a+ B < y and E|X|'T1+eB/Y < o0, then

0o =)
Z nﬁE{ ‘Z am-Xm-
n=1 i

=1

—8} < oo for all ¢ >0. (3.1)
+

(b) If1+a+ B =0and E(|X|log(1 + |X|)) < oo, then (3.1) remains true.

Remark 3.1. As stated in Remark 1.1, since we can not make sure whether (1.3) holds for
1+ o+ B > y,wecan only consider thecases0 < 1 +o+ B <yandl +a + B =0.

As we point out in Remark 1.1, Theorem 1.1(a) remains true for 0 < 1+ o + 8 <
y and 1+ (1 +a+B)/y <8. Thus s =max{l + (1 + o+ B)/y, §} =35. Noting that
E|X|® < oo implies E|X|'"T+*+A)/Y < o0 and

00 0 0 00 0
ZnﬂEHZ A, Xpi| — 8} = Znﬁ[ P( Zaani
n=1 i=1 + n=1 0 i=1

> s—{—t)dt
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> 28),

Theorem 3.2. Let {X,;, 1 <i < k,, n > 1} be an array of rowwise ND random variables with
EX,i = 0 and {X,;} < X, where {k,, n > 1} is a sequence of positive integers such that k, 1 0o
strictly. Assume that {a,;, 1 <i < k,, n > 1} is an array of real numbers satisfying (1.4) and
(1.5). If Ee™" < oo foralln > 0, then

o) kn
ICLH IR
n=1 i=1

Remark 3.2. Since the conditions of Theorems 3.2 and 1.2 are same and

kn kn
ika{ Zame- — s} > sikﬁP( Zame» > 28),
n=1 i=1 + n=1 i=1

Theorem 3.2 improves Theorem 1.2.

00 e 0o
= Z nﬁ / P( Z am'Xni
n=1 0 i=1

o0 o0
> £+t>dt > eZnﬂP(‘Zaani
n=1 i=1

we know that Theorem 3.1 improves Theorem 1.1.

—8} <oo for all € >0 and B > 0. (3.2)
+

Proof of Theorem 3.1. Let S, = Y - a,;X,,;. For any given ¢ > 0,

i=1
oo

n’E{|S,| — e}, = Znﬁ/ P(IS,| > & + t)dt
n=1 0
00 1 00 00
Znﬁ/ P(IS,| > e + H)dt + Znﬂ/ P(|S,| > & + t)dt
n=1 0 n=1 1

Znﬁp(|sn| > &) + Znﬁ/ P(|S,| > t)dt
n=1 n=1 1

=211+12.

n=1

IA

To prove (3.1), it need only to show thatI; < coand I, < co. By Theorem 1.1, we have I; <
00. Next, we prove I, < co. For all t > 1, let Y,; = —t1(a,;:X,; < —t) + Xl (|apXi| <
) 4+ t1(aniXni > t), Zyi = 05iXpi — Yuir S, = oo} Yy Then we have

o0 o0 00 o0 00
L < ZnﬂZf P(|anX, > t)dt + Znﬂ/ P(|S,| > t)dt
n=1 i=1 Y1 n=1 1
= 13 +I4

First, we prove I; < oo. From (1.1) and (1.2), without loss of generality, we assume

sup |a,| =n"" (3.3)

i>1

o0
Z |an| = n®. (3.4)
i=1

Noting that floo P(laX,i| > t)dt < Ela,X,i|I(la, X, > 1). By Lemma 2.5, (3.3), and (3.4),
we have

and

oo oo
L < ") ElauXull(ja,Xl > 1)

n=1 i=1
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o0 o0
<CY "> ElauX|I(X| > laul™)

n=1 i=1

o0
<CY n*PEX|I(X| > n")

n=1

=CY n*"P Y EX|[I(m" < |X| < (m+1)")

n=1 m=n

=C) EIX|I(m" <|X| < (m+1)) ) n7.

m=1 n=1

If1+a + B > 0,by E[X|"T0H+A/Y < o0, we get

oo
L<Cy m™ P EX|Im < |X| < (m+1))
m=1

< CEle1+(1+a+ﬁ)/)/ < 0.

If14+a+ B =0,byE(IX|log(1+ |X])) < 0o, we also get

L <C) logm E|X|I(m" < X| < (m+1)")
m=1

< CE(|X|log(1 + [X])) < oo.

Then we consider I,. Noting that |Z,;| < |a,; XlI(|a,iXni| > t). By EX,; = 0, Lemma 2.5,
(3.3), and (3.4),

< supt™" Y E|Z,|

tz1 i=1

supt '|ES,| = supt™
t>1 t>1

i EZni
i=1

o0
<supt™ Y ElapXull(|anX,l > )
i=1

t>1

o0
< Csupt™! ZE|amX|I(|amX| > t)

tz1 i=1

oo
<C) ElauX|I(|lauX| > 1)

i=1

o0

< CY Ela X" I(|a,X| > 1)
i=1

< Cn*(ﬂ+1)E|X|1+(1+a+ﬂ)/VI(|X| > n’).

Ifl+a+ B >0byB >—1and E|X|'TIT*AY < o0, we get

sup t*1|ES;|—> 0 as n— (3.5)
t>1

Ifl1+a+B=0,byB>—1and E[X| < 00, we also get (3.5). Therefore, while n is suffi-
ciently large, |ES)| < t/2 holds uniformly for £ > 1. Then by the Markov inequality, Lemma
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2.3, and Lemma 2.5, we have

Znﬂ/ P(|S, — ES,| > t/2)dt
n=1 1
B —2pv2
CY n Z/l t2EY2dt
n=1 i=1

=Cy oy /1 t 2 E@iXo) (105 X,i] < 1) + £ P(|a,X,| > t)}dt
n=1 i=1

L

IA

IA

IA

cy o Z/l t7{E(@uX)’1(la,X| < t) +2°P(la,X| > t)}dt
n=1 i=1

0 0 00
=Cy nﬁZ/l t2E(anX)*I(JauX| < 1)dt
n=1 i=1

+CZ nﬂz / t2E(auX)?I(1 < |auX| < t)dt
i=1 71!

n=1

[ () 0o
+cznﬁ2/ P(laX| > t)dt
n=1 i=1 V1
:ZIS+I6+I7.

By a similar argument as in the proof of I; < 0o, we can prove I; < co. For Is, we have

I5

IA

CY Y E@uX)1(X] < lau|™)

n=1 i=1

o0 o0 [o¢] o0
= CY > E@iX)I(X| <n") +CY nP Y E(@X)I(n < |X| < |aul™)

n=1 i=1 n=1 i=1

=218+Ig.

By (3.3) and (3.4), we have

o0
I <CY_ n"PVEX’I(X| < n”)

n=1

o0 n
= CZn‘”ﬂ_V ZEXZI((m — 1) < |X] <m")

n=1 m=1

o0 o0
=CY EXI(m—1) <|X|<m”)Y n*P7 (since a+B—y <—1)
Y

m=1 n=m

o0
<CY (m— DT VEXI(m—1) < |X| <m”)
m=1

< CElX'1+(1+C{+ﬂ)/V < 00.

By a similar argument as in the proof of I; < oo, we have

oo o0
L <CY n" Y ElauX|I(n" < X| < |aul™)

n=1 i=1
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o0
< CZn‘”*ﬁEleI(le > n’) < 00.

n=1

Finally, we prove Iy < oco. Noting that

f t?E(a,X)*I(1 < |aX| < t)dt
1

m+1
t?E(a;X)’I(1 < |aX| < t)dt

[
K

m

3
[}

m ?E(a,X)*I(1 < |a,X| <m+1)

Mg

3
I

Z E(a,X)’I(s < |auX| < s+ 1)

ME% ||M8

oo
E(@,X)I(s < |auX| <s+1)) m™

m=s

P
Il
=

< CZ(s — 1) E(@uX)*I(s < |auX| < s+1)
s=1

< CE|a,X|I(|anX| > 1).
Hence, by a similar argument as in the proof of I; < 0o, we have
I, <CY Y ElaX|I(la,X| > 1) < oo.
n=1 i=1
The proof is completed. O

Proof of Theorem 3.2. Since a,; = a!, — a;,
Noting that
y
+

) kn
Z k{:E{ Z a,,,»Xm- —
n=1 i=1
00 00 kn
= Zkﬁ / P( Z a,,iX,,i
n=1 0 i=1
00 kn 00 0 kn
Zkij( X, >e> + Zkﬁ/ P< X, >t>dt
n=1 i=1 n=1 1 i=1
= IIO + Ill-
By Theorem 1.2, we get I, < oo. To prove (3.2), it suffices to show that I;; < co. From
Definition 1.2, we know that {a,,X,;, 1 <i < k,, n > 1} is still an array of rowwise ND ran-
dom variables. Noting that the inequality e < 1+ x + 1x%¢" for all x € R. Taking A =

qlog k,, where q is a large constant and its value will be specified below.
By Lemma 2.2, (1.4), and (1.5), we have

00 00 kn
Z kfl} / P(Z am‘Xm‘ > t) dt
n=1 1 i=1

without loss of generality, we assume a,; > 0.

ni’

> 8+t)dt

IA
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NE

o !
kﬂ / e_MEe)L Ziil anixm'dt
n
1

n=1

(o]
<C Z kb A~te *Eé* X i

n=1

00 kn
=C Z K (logk,)™! 1‘[ Eehnitn

kn

< CZkﬁ 1 (logk,)™ ‘1_[ (1 4 A Xo + )LZ 2 X2, Aamlxml>

n=1 i=1

=C Z kﬁiq (lOg kn) 1 ( )\zaiiEX’fieAan”Xn”)

= CZkQ*q (logk,)~ 1 (1 + C(logk, )zaz Ee(1+C)\X|>

n=1

<CZkﬁ 1 (logk,)~ 1exp:C(logk) Z m} (taking g > B+e+1)

< CZ K1 (logk,) ™! < oo, (3.6)

n=1

By replacing X,,; into —X,,; in the above statement, we can also get

o0 00 kn
Zkﬁ/ P(—ZaniXm > t)dt < 0. (3.7)
n=1 1

i=1

From (3.6) and (3.7), we have I;; < oco. The proof is completed. O

4. Complete moment convergence of linear processes

In this section, we state one result about the complete moment convergence of linear processes
which follows from Theorem 3.1. The result improves Theorem 4.1 of Baek and Park (2010).

Theorem 4.1. Assume that {Y;, —00 < i < oo} is a sequence of rowwise pairwise ND random
variables with EY; = 0 and {Y;} < Y for some random variable Y. Let {a;, —00 < i < 0o} be

an absolutely summable sequence of real numbers and X = Y = aixYs k > 1.
(1) Let B> —1,1 < p<2and(B+2)p <2 IfE|Y|PPP < oo, then

oo n

>owrel |3

n=1 k=1
(2) Let1 < p < 2. IfE|Y|? < oo, then

X

k=1

—8n1/p} < oo for all & > 0.

[e.0]

Z nll/PE{

n=1

—snl/f’} < oo for all € > 0.
+



Downloaded by [Suzhou University] at 07:20 30 April 2016

3194 Y. WU AND A. VOLODIN

(3) IfE(|Y|log(1 + |Y|)) < oo, then
Zn_zE{ > Ox
n=1 k=1

Proof. Let X,; = Y; and a,; = n""/? Y }_ a; for i > 1 and n > 1. The result follows by
Theorem 3.1 witha =1—1/p, y =1/pand 1 < p < 2 (see the proof of Theorem 4.1 in
Baek and Park (2010)). ]

Remark 4.1. Similarly to the statement of Remark 3.1, we know that this result improves
Theorem 4.1 in Baek and Park (2010).

—8n} <oo for all € >0.
+

Finally, we present a difficult but very interesting problem as follows.
Open problem. As stated in Remarks 1.1 and 3.1, it is still unknown whether Theorem 1.1
or Theorem 3.1 remains true for the case 1 + « + B > y. Despite our efforts to solve this
problem, it is still an open problem.
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