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In this paper, the authors study limiting behavior for arrays of rowwise negatively orthant
dependent random variables and obtain some new results which extend and improve the
corresponding theorems byHu,Móricz, and Taylor (1989), Taylor, Patterson, and Bozorgnia
(2002) and Wu and Zhu (2010).
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1. Introduction

The concept of negatively orthant dependent (NOD) random variables was introduced by Ebrahimi and Ghosh (1981).

Definition 1.1. The random variables X1, . . . , Xk are said to be negatively upper orthant dependent (NUOD) if for all real
x1, . . . , xk,

P(Xi > xi, i = 1, 2, . . . , k) ≤

k
i=1

P(Xi > xi), (1.1)

and negatively lower orthant dependent (NLOD) if

P(Xi ≤ xi, i = 1, 2, . . . , k) ≤

k
i=1

P(Xi ≤ xi). (1.2)

Random variables X1, . . . , Xk are said to be negatively orthant dependent (NOD) if they are both NUOD and NLOD.
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It is easily seen that independent random variables and negatively associated (NA, in short, cf. Joag-Dev & Proschan,
1983) random variables are NOD. Since the paper of Ebrahimi and Ghosh (1981) appeared, the convergence properties of
NOD random sequences have been studied in some papers. We refer the reader to Bozorgnia, Patterson, and Taylor (1996),
Gan and Chen (2008), Ko, Han, and Kim (2006), Taylor et al. (2002), Volodin, Ordóñez Cabrera, and Hu (2006) and Wu and
Zhu (2010).

A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant a if for any ε > 0,
∞
n=1

P(|Un − a| > ε) < ∞.

In this case we write Un → a completely. This notion was given first by Hsu and Robbins (1947).
Let {Zn, n ≥ 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞
n=1

anE{b−1
n |Zn| − ε}

q
+ < ∞ for some or all ε > 0,

then the above result was called the complete moment convergence by Chow (1988).
An array of rowwise random variables {Xnk, 1 ≤ k ≤ n, n ≥ 1} is said to be uniformly bounded by a random variable X

(write {Xnk} ≺ X) if there exists a constant C > 0 such that

sup
n,k

P(|Xnk| > x) ≤ CP(|X | > x), ∀x > 0.

Clearly if {Xnk} ≺ X , for 0 < p < ∞ and any 1 ≤ k ≤ n, n ≥ 1, E|Xnk|
p

≤ CE|X |
p.

Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables and {an, n ≥ 1} be a sequence of positive real
numbers with an ↑ ∞. Also, let {Ψn(t), n ≥ 1} be a sequence of nonnegative even functions satisfying

Ψn(|t|)
|t|

↑ and
Ψn(|t|)

|t|p
↓ as |t| ↑ . (1.3)

Introduce the conditions

EXnk = 0, 1 ≤ k ≤ n, n ≥ 1, (1.4)
∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)
< ∞, (1.5)

∞
n=1


n

k=1

E|Xnk|
r

arn

s

< ∞, (1.6)

where 0 < r ≤ 2, s > 0.
Wu and Zhu (2010) obtained the following theorems.

Theorem A. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables and {an, n ≥ 1} be a sequence of
positive real numbers with an ↑ ∞. Also, let {Ψn(t), n ≥ 1} be a sequence of nonnegative even functions satisfying (1.3) for some
real number 1 < p ≤ 2. Then conditions (1.4) and (1.5) imply

1
an

n
k=1

Xnk → 0 completely. (1.7)

Theorem B. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables and {an, n ≥ 1} be a sequence of
positive real numbers with an ↑ ∞. Also, let {Ψn(t), n ≥ 1} be a sequence of nonnegative even functions satisfying (1.3) for
p > 2. Then conditions (1.4)–(1.6) imply (1.7).

Theorem C. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables and {an, n ≥ 1} be a sequence of
positive real numbers with an ↑ ∞. Also, let {Ψn(t), n ≥ 1} be a sequence of nonnegative even functions satisfying (1.3) for some
real number 1 < p ≤ 2. Then conditions (1.4) and (1.5) imply

∞
n=1

a−1
n E

 n
k=1

Xnk

− εan


+

< ∞, ∀ε > 0. (1.8)

Theorem D. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables and {an, n ≥ 1} be a sequence of
positive real numbers with an ↑ ∞. Also, let {Ψn(t), n ≥ 1} be a sequence of nonnegative even functions satisfying (1.3) for
p > 2. Then conditions (1.4)–(1.6) imply (1.8).
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In addition, Hu et al. (1989) obtained the following result in complete convergence.

Theorem E. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise independent random variables with EXnk = 0 and {Xnk} ≺ X.
If E|X |

2p < ∞ for some 1 ≤ p < 2, then

n−1/p
n

k=1

Xnk → 0 completely. (1.9)

In this work, we shall improve Theorems A–E under some weaker conditions. In addition, we study L1 convergence and
convergence in probability for the arrays of NOD random variables under some appropriate conditions.

Below, C will denote generic positive constants, whose valuemay vary from one application to another, I(A)will indicate
the indicator function of A.

2. Main results

Now we will present the main results of the paper. The proofs will be detailed in the next section.

Theorem 2.1. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose the following
conditions hold:
(i) for every ε > 0

∞
n=1

n
k=1

P(|Xnk| > ε) < ∞, (2.1)

(ii) for some δ > 0 and η > 1

∞
n=1


n

k=1

EX2
nkI(|Xnk| ≤ δ)

η

< ∞. (2.2)

(iii)
n

k=1

E|Xnk|I(|Xnk| > δ) → 0 as n → ∞. (2.3)

Then
n

k=1

Xnk → 0 completely. (2.4)

By a similar argument as the proof of Theorem 1 in Qiu, Chang, Antonini, and Volodin (2011), we can prove Theorem 2.1.
Therefore, we will omit the details of the proof.

Let {an, n ≥ 1} be a sequence of positive real numbers with an ↑ ∞, and take Xnk/an instead of Xnk in Theorem 2.1, we
can get the following corollary.

Corollary 2.1. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4), and {an, n ≥ 1} be a
sequence of positive real numbers with an ↑ ∞. Suppose the following conditions hold:
(i) for every ε > 0

∞
n=1

n
k=1

P(|Xnk| > anε) < ∞, (2.5)

(ii) for some δ > 0 and η > 1

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ)

η

< ∞, (2.6)

(iii)

a−1
n

n
k=1

E|Xnk|I(|Xnk| > anδ) → 0 as n → ∞. (2.7)

Then (1.7) holds.
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Remark 2.1. The following statements show that the conditions of Corollary 2.1 are weaker than those of
Theorems A and B.

First, without loss of generality we may assume 0 < ε < 1. By the Markov inequality, (1.3) and (1.5), we have
∞
n=1

n
k=1

P(|Xnk| > anε) ≤

∞
n=1

n
k=1

E|Xnk|

anε
I(|Xnk| > anε)

≤

∞
n=1

n
k=1

E|Xnk|
p

(anε)p
I(anε < |Xnk| ≤ an) +

∞
n=1

n
k=1

E|Xnk|

anε
I(|Xnk| > an)

≤ (ε−p
+ ε−1)

∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)
< ∞.

Second, we state that (1.3), (1.5) and (1.6) implies (2.6). For δ < 1 and 1 < p ≤ 2, by (1.3) and (1.5), we can get easily
∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ)

η

≤

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ an)

η

≤


∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)

η

< ∞.

For δ < 1 and p > 2, take 0 < r ≤ 2, s > 0 and η > max{1, s}. By (1.3) and (1.6), we can get

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ)

η

≤

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ an)

η

≤


∞
n=1


n

k=1

E|Xnk|
r

arn

sη/s

< ∞.

For δ ≥ 1 and 1 < p ≤ 2, by (1.3) and (1.5), we have
∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ)

η

=

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ an)

η

+

∞
n=1


a−2
n

n
k=1

EX2
nkI(an < |Xnk| ≤ anδ)

η

≤


∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)

η

+ δη
∞
n=1


a−1
n

n
k=1

E|Xnk|I(an < |Xnk| ≤ anδ)

η

≤ (1 + δη)


∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)

η

< ∞.

For δ ≥ 1 and p > 2, by (1.3), (1.5) and (1.6), we have
∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ)

η

=

∞
n=1


a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ an)

η

+ δη
∞
n=1


a−1
n

n
k=1

E|Xnk|I(an < |Xnk| ≤ anδ)

η

≤


∞
n=1


n

k=1

E|Xnk|
r

arn

sη/s

+ δη


∞
n=1

n
k=1

EΨk(Xnk)

Ψk(an)

η

< ∞.

Finally, we state that (1.3), (1.5) and (1.6) implies (2.7). For δ ≥ 1, by (1.3) and (1.5), we have
n

k=1

E|Xnk|

an
I(|Xnk| > anδ) ≤

n
k=1

E|Xnk|

an
I(|Xnk| > an) ≤

n
k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

For δ < 1, by (1.3) and (1.5), we also have
n

k=1

E|Xnk|

an
I(|Xnk| > anδ) ≤

n
k=1

E|Xnk|

an
I(|Xnk| > an) + δ1−p

n
k=1

E|Xnk|
p

apn
I(anδ < |Xnk| ≤ an)

≤ (1 + δ1−p)

n
k=1

EΨk(Xnk)

Ψk(an)
→ 0 as n → ∞.

To sum up, we know that Corollary 2.1 improve Theorems A and B.
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Take Xnk/n1/p (1 ≤ p < 2) instead of Xnk in Theorem 2.1, we can get the following corollary.

Corollary 2.2. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose the following
conditions hold:
(i) for every ε > 0

∞
n=1

n
k=1

P(|Xnk| > n1/pε) < ∞, (2.8)

(ii) for some δ > 0 and η > p/(2 − p)

∞
n=1


n−2/p

n
k=1

EX2
nkI(|Xnk| ≤ n1/pδ)

η

< ∞, (2.9)

(iii)

n−1/p
n

k=1

E|Xnk|I(|Xnk| > n1/pδ) → 0 as n → ∞, (2.10)

where 1 ≤ p < 2. Then (1.9) holds.

Remark 2.2. The following statements show that the conditions of Corollary 2.2 are weaker than those of Theorem E.

First, by {Xnk} ≺ X and E|X |
2p < ∞, we have

∞
n=1

n
k=1

P(|Xnk| > n1/pε) ≤

∞
n=1

nP(|X | > n1/pε) ≤ CE|X |
2p < ∞.

Second, since E|X |
2p < ∞ for 1 ≤ p < 2, we know E|X |

2 < ∞. Hence, by η > p/(2 − p) and {Xnk} ≺ X , we have
∞
n=1


n−2/p

n
k=1

EX2
nkI(|Xnk| ≤ n1/pδ)

η

≤ C
∞
n=1

n(1−2/p)η(E|X |
2)η < ∞.

Finally, by {Xnk} ≺ X and E|X |
2p < ∞, we have

n−1/p
n

k=1

E|Xnk|I(|Xnk| > n1/pδ) ≤ δ1−2p
n

k=1

E|Xnk|
2p

n2
I(|Xnk| > n1/pδ) ≤ δ1−2pn−1E|X |

2p
→ 0 as n → ∞.

To sumup,we know that Corollary 2.2 extends and improves TheoremE. In addition, Corollary 2.2 also improves partially
Theorem 3.1 by Taylor et al. (2002).

The following theorem shows that, under some appropriate conditions, we can obtain complete moment convergence
for the array of rowwise NOD random variables.

Theorem 2.2. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose that for some
δ > 0 and η > 1

∞
n=1

n
k=1

E|Xnk|I(|Xnk| > δ/4η) < ∞. (2.11)

Then (2.1), (2.2) and (2.11) imply

∞
n=1

E

 n
k=1

Xnk

− ε


+

< ∞, for all ε > 0. (2.12)

Let {an, n ≥ 1} be a sequence of positive real numbers with an ↑ ∞, and take Xnk/an instead of Xnk in Theorem 2.2, we
can get the following corollary.

Corollary 2.3. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose that for some
δ > 0 and η > 1

∞
n=1

a−1
n

n
k=1

E|Xnk|I(|Xnk| > anδ/4η) < ∞. (2.13)

Then (2.5), (2.6) and (2.13) imply (1.8).
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Remark 2.3. By a similar argument as in Remark 2.1, we can show that the conditions of Corollary 2.3 areweaker than those
of Theorems C and D. Here we omit the details.

Theorem 2.3. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose that for some
δ > 0

n
k=1

E|Xnk|I(|Xnk| > δ) → 0 as n → ∞, (2.14)

n
k=1

EX2
nkI(|Xnk| ≤ δ) → 0 as n → ∞. (2.15)

Then
n

k=1

Xnk
L1

−→ 0. (2.16)

Let {an, n ≥ 1} be a sequence of positive real numbers with an ↑ ∞, and take Xnk/an instead of Xnk in Theorem 2.3, we
can get the following corollary.

Corollary 2.4. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose that for some
δ > 0

a−1
n

n
k=1

E|Xnk|I(|Xnk| > anδ) → 0 as n → ∞, (2.17)

a−2
n

n
k=1

EX2
nkI(|Xnk| ≤ anδ) → 0 as n → ∞. (2.18)

Then

a−1
n

n
k=1

Xnk
L1

−→ 0.

Remark 2.4. By a similar argument as in Remark 2.1, we can show that the conditions of Corollary 2.4 areweaker than those
of Theorem 1.5 by Wu and Zhu (2010). Here we omit the details.

The following theorem shows that, under someweaker conditions, we can obtain convergence in probability for the array
of rowwise NOD random variables.

Theorem 2.4. Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise NOD random variables with (1.4). Suppose that for some
δ > 0

n
k=1

P(|Xnk| > δ) → 0 as n → ∞. (2.19)

Then (2.15) and (2.19) imply

n
k=1

Xnk
P

−→ 0. (2.20)

3. Proofs

To prove main results in this paper, we need the following lemmas.

Lemma 3.1 (Cf. Bozorgnia et al., 1996). Let random variables X1, X2, . . . , Xn be NOD and f1, f2, . . . , fn be all nondecreasing (or
nonincreasing) functions, then random variables f1(X1), f2(X2), . . . , fn(Xn) are NOD.

Lemma 3.2 (Cf. Wu & Zhu, 2010). Let {Xn, n ≥ 1} be a sequence of NOD random variable with mean zero and 0 < Bn =n
k=1 EX

2
k < ∞. Let Sn =

n
k=1 Xk, then
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P(|Sn| ≥ x) ≤

n
k=1

P(|Xk| ≥ y) + 2 exp


x
y

−
x
y
log


1 +

xy
Bn


for all x > 0, y > 0.

Lemma 3.3 (Cf. Gan, Chen, & Qiu, 2011). Let {Xn, n ≥ 1} be a sequence of NODmean zero random variables. Sn =
n

k=1 Xk, n ≥

1, p ≥ 2. Then for any n ≥ 1,

E|Sn|p ≤ C


n

k=1

E|Xk|
p
+


n

k=1

EX2
k

p/2
,

where C is a positive constant depending only on p. Especially we have

E|Sn|2 ≤ C
n

k=1

EX2
k .

Remark before the proof of Theorem 2.2. A reviewer of the paper suggested an interesting idea to provide a proof of
Theorem 2.2 based on Theorem 2.1 from the paper (Gan et al., 2011). But in this case wemust add some stronger conditions
than we have in Theorem 2.2. For example,


∞

n=1
n

k=1 E|Xnk|
pI(|Xnk| ≤ δ) < ∞ should be required. �

Proof of Theorem 2.2. Since
∞
n=1

E

 n
k=1

Xnk

− ε


+

=

∞
n=1


∞

0
P

 n
k=1

Xnk

− ε > t


dt

=

∞
n=1

 δ

0
P

 n
k=1

Xnk

 > ε + t


dt +


∞

δ

P

 n
k=1

Xnk

 > ε + t


dt



≤ δ

∞
n=1

P

 n
k=1

Xnk

 > ε


+

∞
n=1


∞

δ

P

 n
k=1

Xnk

 > t


dt

=: I1 + I2,

to prove (2.12), it is enough to prove that I1 < ∞ and I2 < ∞. Noting that (2.11) implies (2.3), by Theorem 2.1 in this paper,
we have I1 < ∞. To prove (2.12), it suffices to prove I2 < ∞. Let

Ynk = −tI(Xnk < −t) + XnkI(|Xnk| ≤ t) + tI(Xnk > t),
Znk = Xnk − Ynk = (Xnk + t)I(Xnk < −t) + (Xnk − t)I(Xnk > t).

Obviously

P

 n
k=1

Xnk

 > t


≤

n
k=1

P(|Xnk| > t) + P

 n
k=1

Ynk

 > t


.

Hence

I2 ≤

∞
n=1

n
k=1


∞

δ

P(|Xnk| > t)dt +

∞
n=1


∞

δ

P

 n
k=1

Ynk

 > t


dt

=: I3 + I4.

For I3, by (2.11), we have

I3 ≤

∞
n=1

n
k=1

E|Xnk|I(|Xnk| > δ) < ∞.

By (1.4) and (2.11), we have

max
t≥δ

t−1

 n
k=1

EYnk

 = max
t≥δ

t−1

 n
k=1

EZnk

 ≤ max
t≥δ

t−1
n

k=1

E|Xnk|I(|Xnk| > t)

≤ δ−1
n

k=1

E|Xnk|I(|Xnk| > δ) → 0 as n → ∞. (3.1)
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Therefore, while n is sufficiently large, |
n

k=1 EYnk| ≤ t/2 holds uniformly for t ≥ δ. Then

P

 n
k=1

Ynk

 > t


≤ P

 n
k=1

(Ynk − EYnk)

 > t/2


. (3.2)

Let B′′
n =

n
k=1 E(Ynk − EYnk)

2. Take x = t/2, y = t/2η. By Lemma 3.2 and (3.2), we have

I4 ≤

∞
n=1


∞

δ

P

 n
k=1


Ynk − EYnk

 > t/2


dt

≤

∞
n=1

n
k=1


∞

δ

P (|Ynk − EYnk| > t/2η) dt + C
∞
n=1


∞

δ


B′′
n

B′′
n + t2/4η

η

dt

=: I5 + I6.

By a similar argument as in theproof of (3.1),we canprovemaxt≥δ t−1
|EYnk| → 0 asn → ∞. Therefore,whilen is sufficiently

large, by |Ynk| ≤ |Xnk| and (2.11), we have

I5 ≤

∞
n=1

n
k=1


∞

δ

P

|Ynk| > t/4η


dt ≤

∞
n=1

n
k=1


∞

δ

P

|Xnk| > t/4η


dt

≤ C
∞
n=1

n
k=1

E|Xnk|I(|Xnk| > δ/4η) < ∞.

Then we prove I6 < ∞. By Cr -inequality, we have

I6 ≤ C
∞
n=1


∞

δ


t−2B′′

n

η
dt ≤ C

∞
n=1


∞

δ


t−2

n
k=1

EY 2
nk

η

dt

= C
∞
n=1


∞

δ


t−2

n
k=1

EX2
nkI(|Xnk| ≤ t) +

n
k=1

P(|Xnk| > t)

η

dt

≤ C
∞
n=1


∞

δ


t−2

n
k=1

EX2
nkI(|Xnk| ≤ δ)

η

dt

+ C
∞
n=1


∞

δ


t−1

n
k=1

E|Xnk|I(δ < |Xnk| ≤ t)

η

dt + C
∞
n=1


∞

δ


n

k=1

P(|Xnk| > t)

η

dt

=: I61 + I62 + I63.

By η > 1 and (2.2), we have

I61 ≤ C
∞
n=1


n

k=1

EX2
nkI(|Xnk| ≤ δ)

η 
∞

δ

t−2ηdt

≤ C
1

2η − 1
δ1−2η

∞
n=1


n

k=1

EX2
nkI(|Xnk| ≤ δ)

η

< ∞.

By η > 1 and (2.11), we have

I62 ≤ C
∞
n=1


n

k=1

E|Xnk|I(|Xnk| > δ)

η 
∞

δ

t−ηdt

≤ C
1

η − 1
δ1−η


∞
n=1

n
k=1

E|Xnk|I(|Xnk| > δ)

η

< ∞.
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For t ≥ δ, by (2.11), we know

max
t≥δ

n
k=1

P(|Xnk| > t) ≤

n
k=1

P(|Xnk| > δ)

≤ δ−1
n

k=1

E|Xnk|I(|Xnk| > δ) → 0 as n → ∞.

Therefore, while n is sufficiently large, we know that
n

k=1 P(|Xnk| > t) < 1 holds uniformly for t ≥ δ. Hence, by a similar
argument as in the proof of I3 < ∞, we have

I63 ≤ C
∞
n=1


∞

δ

n
k=1

P(|Xnk| > t)dt ≤ C
∞
n=1

n
k=1

E|Xnk|I(|Xnk| > δ) < ∞.

The proof is complete. �

Proof of Theorem 2.3. Let

Ynk = −δI(Xnk < −δ) + XnkI(|Xnk| ≤ δ) + δI(Xnk > δ),

Znk = Xnk − Ynk = (Xnk + δ)I(Xnk < −δ) + (Xnk − δ)I(Xnk > δ).

Then

E

 n
k=1

Xnk

 ≤ E

 n
k=1

(Znk − EZnk)

+ E

 n
k=1

(Ynk − EYnk)


≤ E

 n
k=1

(Znk − EZnk)

+

E


n

k=1

(Ynk − EYnk)

21/2

=: I7 + I8.

Noting that |Znk| ≤ |Xnk|I(|Xnk| > δ). By (2.14), we have

I7 ≤ 2
n

k=1

E|Xnk|I(|Xnk| > δ) → 0 as n → ∞.

Then we prove I8 → 0 as n → ∞. By Lemma 3.3 and Cr -inequality, we have

I28 ≤ C
n

k=1

E(Ynk − EYnk)
2

≤ C
n

k=1

EY 2
nk

= C
n

k=1

EX2
nkI(|Xnk| ≤ δ) + C

n
k=1

P(|Xnk| > δ)

≤ C
n

k=1

EX2
nkI(|Xnk| ≤ δ) + C

n
k=1

E|Xnk|I(|Xnk| > δ)

=: I81 + I82.

By (2.14) and (2.15),we have I81 → 0 and I82 → 0 as n → ∞. Hencewe get I8 → 0 as n → ∞. The proof is complete. �

Proof of Theorem 2.4. Following the notations of the proof in Theorem 2.3. For all ε > 0, we have

P

 n
k=1

Xnk

 > 2ε


≤ P

 n
k=1

(Ynk − EYnk)

 > ε


+ P

 n
k=1

(Znk − EZnk)

 > ε


=: I9 + I10.

By the Markov inequality, Lemma 3.3 and Cr -inequality, we have

I9 ≤ C
n

k=1

E(Ynk − EYnk)
2

≤ C
n

k=1

EY 2
nk

= C
n

k=1

EX2
nkI(|Xnk| ≤ δ) + C

n
k=1

P(|Xnk| > δ).

By (2.15) and (2.19), we have I9 → 0 as n → ∞.
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Taking into account the definition of Znk and (2.19), we have

I10 ≤ P

∃k; 1 ≤ k ≤ n, such that |Xnk| > δ


≤

n
k=1

P(|Xnk| > δ) → 0 as n → ∞.

The proof is complete. �
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