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Abstract

The almost sure convergence of weighted sums of ϕ-subgaussian m-acceptable random variables is investigated. As corollaries,
the main results are applied to the case of negatively dependent and m-dependent subgaussian random variables. Finally, an appli-
cation to random Fourier series is presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The main focus of the present investigation is to obtain convergence theorems for weighted sums of dependent ϕ-
subgaussian random variables. The roots of the subject are in classical probability theory, and certainly can be traced
back to Kolmogorov’s theory of summation of independent random variables. We refer to the book of Kwapien and
Woyczynski [13] that contains classical results as well as more recent results on sums of independent random vectors.

Subgaussianity (or, more generally, ϕ-subgaussianity) properties of random variables and random processes (see
Buldygin and Kozachenko [3]) are important features, since they allow us to derive results concerning, for instance,
large deviations inequalities, asymptotic behaviour of particular processes or the behaviour of their supremum (see
Buldygin and Kozachenko [3], Castellucci and Giuliano Antonini [4], or Giuliano Antonini and Kozachenko [7]).

This paper was inspired by a celebrated paper by Chow [5] which deals with almost sure convergence of series of
independent classical subgaussian random variables. Chow [5] provides interesting applications of his results to the
strong law of large numbers and also to Fourier analysis.
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There are three more papers that are closely related to our investigation: Ouy [17] and Amini et al. [1,2]. First of all,
we point out that our results are more general than all of the above quoted papers since we consider the wider class
of ϕ-subgaussian random variables. Moreover, sequences of m-acceptable random variables are considered, which
is a more general case than that of independent random variables considered in Chow [5] and the m-dependent case
considered in Ouy [17]. In this paper more accurate estimation of subgaussian standard is obtained than in the paper
Ouy [17]. In the papers [1] and [2] the case of negatively dependent subgaussian random variables is considered.
Our results are more general and different from the results of Amini et al. [1] since we do not need the assumption
that a particular conditional expectation of the considered random variables is equal to zero, as it is required in
Amini et al. [1]. Our results are different from the results of Amini et al. [2] since we consider the wider class of
ϕ-subgaussian random variables.

One of the most interesting applications of series of subgaussian random variables can be obtained in Fourier
analysis. The study of random Fourier series has been exploited by Kahane in his celebrated book Kahane [11], and
has remarkable applications for instance in harmonic analysis (see Marcus and Pisier [15]). In Kahane [11] some
important examples of random trigonometric series are given: Rademacher series, Steinhaus series, gaussian series.
Here we consider the case of ϕ-subgaussian random series; note that all the above examples are particular cases of
our general situation. In this setting we prove an extension of the classical Salem and Zygmund Theorem, cf. [19].

The plan of the paper is as follows. In Section 2 we present all important definitions and provide six lemmas to
be used in the proofs of the main results. The main results are two theorems presented in Section 3. In Section 4 we
give applications to the case of negatively dependent random variables and show how our statements are related to
those in Amini et al. [1,2] in the special case of classical subgaussian random variables; this type of variables is also
discussed in Section 5, where we mainly consider the case of m-dependent random variables and show that our results
are stronger than those in Ouy [17]. In Section 6 we present other corollaries. In Section 7 we give an interesting
application to Fourier analysis.

2. Definitions and technical lemmas

In this section we present definitions and a few technical results to be used in the proofs of our main results.
A continuous even convex function ϕ(x), x ∈ R, is called an N -function, if

(a) ϕ(0) = 0 and ϕ(x) monotone increasing for x > 0;
(b) limx→0

ϕ(x)
x

= 0 and limx→∞ ϕ(x)
x

= ∞.

The following condition is important to ensure that the class of ϕ-subgaussian random variables (cf. definition
below) is nonempty. An N -function ϕ(x) satisfies condition Q if limx→0

ϕ(x)

x2 = C > 0, where C is not necessarily
finite.

In the following the notation ϕ(x) always stands for an N -function with condition Q.
The function ϕ∗(x), x ∈ R, defined by ϕ∗(x) = supy∈R(xy −ϕ(y)) is called the Young–Fenchel transform of ϕ(x).

It is well known that ϕ∗(x) is an N -function, too, and if ϕ(x) = |x|p/p, p > 1 for sufficiently large x, then ϕ∗(x) =
|x|q/q for sufficiently large x, where 1

p
+ 1

q
= 1.

Lemma 1. Let ϕ(x) be an N -function such that ϕ(x1/r ), x � 0, is convex. Let 0 < p < r , then the function ϕ(x1/p),
x � 0, is convex, too.

Proof. Since the function xr/p is convex, then for any 0 � α � 1,(
αx1 + (1 − α)x2

)r/p � αx
r/p

1 + (1 − α)x
r/p

2 .

Therefore

ϕ
((

αx1 + (1 − α)x2
)1/p) = ϕ

(((
αx1 + (1 − α)x2

)r/p)1/r)
� ϕ

((
αx

r/p

1 + (1 − α)x
r/p

2

)1/r) � αϕ
((

x
r/p

1

)1/r) + (1 − α)ϕ
((

x
r/p

2

)1/r)
= αϕ

(
x

1/p

1

) + (1 − α)ϕ
(
x

1/p

2

)
. �
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Now we introduce a class of N -function that plays an important role in the main results of this paper. Let p and q

be positive constants. We say that an N -function ϕ(x) belongs to the class N(p,q) (ϕ ∈ N(p,q) in short), if the
functions ϕ(|x|1/p) and ϕ∗(|x|1/q) are both convex.

Before we formulate a proposition that gives a sufficient condition for an N -function to belong to the class N(p,q),
we introduce some notations.

By the well-known criterion of convexity (cf. Krasnosel’skij and Rutitskij [12, Theorem 1.1]) every continuous
convex function ϕ satisfying ϕ(0) = 0 can be represented as follows

ϕ(x) =
|x|∫

0

fϕ(t) dt,

where fϕ(t), t � 0, is a nondecreasing right continuous function. Consider the generalized inverse function g(t), t � 0,
of fϕ(t), defined by the formula

g(t) = sup
{
u � 0: fϕ(u) � t

}
.

Then the Young–Fenchel transform of ϕ(x) can be represented as follows

ϕ∗(x) =
|x|∫

0

g(t) dt.

Proposition 1. Let ϕ(x) be an N -function such that fϕ(t)t−r is nonincreasing for some r > 0 and ϕ(|x|1/p) is convex
for some p > 1; then ϕ ∈ N(p,q) where q = p/r .

Proof. Note that

ϕ
(|x|1/p

) =
|x|1/p∫
0

fϕ(t) dt = 1

p

|x|∫
0

fϕ

(
u1/p

)
u(1/p)−1 du.

Since ϕ(|x|1/p) is convex, then fϕ(u1/p)u(1/p)−1 is nondecreasing. Consider the change of variables

v1/q = fϕ

(
u1/p

)
, that is, u = gp

(
v1/q

)
.

Then

fϕ

(
u1/p

)
u(1/p)−1 = v1/qg1−p

(
v1/q

)
is nondecreasing.

We have

ϕ∗(|x|1/q
) =

|x|1/q∫
0

g(t) dt = 1

q

|x|∫
0

g
(
v1/q

)
v(1/q)−1 dv,

hence in order to show that ϕ∗(|x|1/q) is convex we prove that

g
(
v1/q

)
v(1/q)−1 is nondecreasing.

We can write

g
(
v1/q

)
v(1/q)−1 = [

v1/qg1−p
(
v1/q

)][
gp

(
v1/q

)
v−1].

The function in the first square brackets is nondecreasing by the above arguments. Hence it is sufficient to consider
the function in the second square brackets. Letting gp(v1/q) = t , hence v = f

q
ϕ (t1/p), we have

gp
(
v1/q

)
v−1 =

(
t r/p

fϕ(t1/p)

)p/r

,

which is nondecreasing by the assumption of the proposition. �
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A random variable X is said to be ϕ-subgaussian if there exists a constant a > 0 such that, for every λ ∈ R, we
have E exp{λX} � exp{ϕ(aλ)}. The ϕ-subgaussian standard τϕ(X) is defined as

τϕ(X) = inf
{
a > 0: E exp{λX} � exp

{
ϕ(aλ)

}
, λ ∈ R

}
.

We refer to the monograph Buldygin and Kozachenko [3] and the paper Giuliano Antonini et al. [8] where this notion
is discussed in detail and important examples are provided. In the case ϕ(t) = t2/2, ϕ-subgaussianity is simply the
subgaussianity in the classical sense, cf. for example Hoffmann-Jørgensen [9].

The following lemma gives us an important estimation for the tail probabilities of a ϕ-subgaussian random variable
(cf. Buldygin and Kozachenko [3, Chapter 2, Lemma 4.3]).

Lemma 2. If a random variable X is ϕ-subgaussian, then for every ε > 0 we have

P
{|X| > ε

}
� 2 exp

{
−ϕ∗

(
ε

τϕ(X)

)}
.

We say that a finite family of random variables X1,X2, . . . ,Xn is acceptable if for any real λ,

E exp

{
λ

n∑
k=1

Xk

}
�

n∏
k=1

E exp{λXk}.

A sequence of random variables {Xk, k � 1} is acceptable if every finite subfamily is acceptable.
The notion of m-dependent random variables is well known (cf. Section 5). The notion of m-acceptable associated

random variables seems to be new.
Let m > 1 be a fixed integer. A sequence of random variables {Xn, n � 1} is said to be m-acceptable if for any

n � 2 and any i1, . . . , in such that |ik − ij | � m for all 1 � k �= j � n, we have that Xi1, . . . ,Xin are acceptable.
An array of random variables {Xnk, k � 1, n � 1} is rowwise m-acceptable if for any fixed n � 1 the row

{Xnk, k � 1} is a sequence of m-acceptable random variables.
A sequence of negatively dependent random variables (cf. Section 4) as well as a sequence of m-dependent random

variables (cf. Section 5) provide us two examples of sequences of m-acceptable random variables.
Another interesting example of a sequence {Zn, n � 1} of acceptable random variables can be constructed in the

following way. Feller [6, Problem III.1] (cf. also Romano and Siegel [18, Section 4.30]) provides an example of
two random variables X and Y such that the density of their sum is the convolution of their densities, yet they are not
independent. It is simple to see that X and Y are not negatively dependent either. Since they are bounded, their Laplace
transforms E exp{λX} and E exp{λY } are finite for any λ. Next, since the density of their sum is the convolution of
their densities, we have

E exp
{
λ(X + Y)

} = E exp{λX}E exp{λY }.
The announced sequence of acceptable random variables {Zn, n � 1} can be now constructed in the following way.
Let (Xk,Yk) be independent copies of the random vector (X,Y ), k � 1. For any n � 1 set Zn = Xk if n = 2k + 1 and
Zn = Yk if n = 2k.

The next lemma allows us to estimate the ϕ-subgaussian standard of sums of acceptable random variables.

Lemma 3. Let X1, . . . ,Xn be ϕ-subgaussian random variables. Then

(a) the variable
∑n

k=1 Xk is ϕ-subgaussian and τϕ(
∑n

k=1 Xk) �
∑n

k=1 τϕ(Xk);
(b) if in addition X1, . . . ,Xn are acceptable and the function ϕ(|x|1/p) is convex for some p ∈ [1,2], then

τ
p
ϕ (

∑n
k=1 Xk) �

∑n
k=1 τ

p
ϕ (Xk).

Proof. Part (a) can be found in Buldygin and Kozachenko [3, p. 69]. Part (b) can be proved in the same way as
Buldygin and Kozachenko [3, Theorem 5.2]. �

The next lemma is an important technical tool in the proof of our main result. Before we formulate and prove it,
we introduce the following notations. Let n � 0 and l � 1 be integers, and {ak, k � 1}, {αk, k � 1} be sequences of
real numbers such that αk � 0 for all k � 1. For integer j � 1 denote
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δnl(j) =
{

1 if n + 1 � j � n + l,

0 elsewhere.

Let m � 1 be a fixed integer and L = � l
2m

� + 1, where �·� denotes the integer part function, that is the largest
integer that is less or equal to the given value. For any k � 1 denote the sets of integers:

Ik = {
j : n + 1 + 2(k − 1)m � j � n + (2k − 1)m

}
,

Jk = {
j : n + 1 + (2k − 1)m � j � n + 2km

}
,

and

Nk = Ik ∪ Jk = {
n + 1 + 2(k − 1)m, . . . , n + 2km

}
.

If j ∈ Ik for some k, then let s = j − (n + 2(k − 1)m) and hence 1 � s � m. Denote

aI
sk = aj , αI

sk = αj and δnl(s, k) = δnl(j).

If j ∈ Jk for some k, then let s = j − (n + (2k − 1)m) and hence 1 � s � m. Denote

aJ
sk = aj , αJ

sk = αj and δnl(s, k) = δnl(j).

Next, let p � 1 be a positive constant. Denote

B
(p)
nl =

m∑
s=1

(
L∑

k=1

(
αI

sk

∣∣aI
sk

∣∣δnl(s, k)
)p

)1/p

+
(

L∑
k=1

(
αJ

sk

∣∣aJ
sk

∣∣δnl(s, k)
)p

)1/p

and

A
(p)
nl =

n+l∑
j=n+1

(
αj |aj |

)p
.

We can write the following

Estimate. (A
(p)
nl )1/p � B

(p)
nl � (2m)1−1/p(A

(p)
nl )1/p.

Proof of the estimate. Recall that if zi � 0, i = 1, . . . ,m, and p � 1, then (
∑m

i=1 zi)
p � mp−1 ∑m

i=1 z
p
i .

This inequality can be proved using classical multivariate calculus procedure: Search for the maximum of the
function f (z1, . . . , zm) = (

∑m
i=1 zi)

p on the constraint
∑m

i=1 z
p
i = 1 using the method of Lagrange multipliers. We

leave the details to the reader.
By the above inequality we obtain that

(
B

(p)
nl

)p � 2p−1

((
m∑

s=1

(
L∑

k=1

∣∣aI
skα

I
skδnl(s, k)

∣∣p)1/p)p

+
(

m∑
s=1

(
L∑

k=1

(
aJ
skα

J
skδnl(s, k)

)p

)1/p)p)
.

We estimate each term of this expression separately; for the first summand we get(
m∑

s=1

(
L∑

k=1

∣∣aI
skα

I
skδnl(s, k)

∣∣p)1/p)p

� mp−1

(
m∑

s=1

L∑
k=1

∣∣aI
skα

I
skδnl(s, k)

∣∣p)
.

By the same arguments we may estimate the second term. We conclude that

(
B

(p)
nl

)p � (2m)p−1
m∑

s=1

L∑
k=1

(∣∣aI
skα

I
skδnl(s, k)

∣∣p + ∣∣aJ
skα

J
skδnl(s, k)

∣∣p) = A
(p)
nl .

Hence B
(p)
nl � (2m)

1− 1
p (A

(p)
nl )1/p . The inequality B

(p)
nl � (A

(p)
nl )1/p is obvious since
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(
N∑

i=1

zi

)1/p

�
N∑

i=1

z
1/p
i

for p > 1, any positive integer N and zi > 0. �
Lemma 4. Let {Xn, n � 1} be a sequence of m-acceptable ϕ-subgaussian random variables and αn = τϕ(Xn).
Assume that the function ϕ(|x|1/p) is convex for some p ∈ [1,2] and let {an, n � 1} be a sequence of constants. For
n � 0, l � 1 denote

Tnl =
n+l∑

j=n+1

ajXj .

Then Tnl is ϕ-subgaussian and τϕ(Tnl) � B
(p)
nl .

Proof. In order to estimate the sum Tnl = ∑n+l
j=n+1 ajXj consider the largest union of the sets Nk which is a subset

of the segment [n + 1, . . . , n + l],
L−1⋃
k=1

Nk ⊂ [n + 1, . . . , n + l] ⊂
L⋃

k=1

Nk.

Put

Uk =
∑
j∈Ik

ajXj δnl(j),Vk =
∑
j∈Jk

ajXj δnl(j).

In addition to our previous notations consider the following.

If j ∈ Ik for some k, then let s = j − (n + 2(k − 1)m) and hence 1 � s � m. Denote Xsk = Xj .
If j ∈ Jk for some k, then let s = j − (n + (2k − 1)m) and hence 1 � s � m. Denote Xsk = Xj .

Fix s with 1 � s � m, then the sequence {Xsk, 1 � k � L} is acceptable, and by Lemma 3 we have

τφ

(
L∑

k=1

Uk

)
�

m∑
s=1

τφ

(
L∑

k=1

askXskδnl(s, k)

)
�

m∑
s=1

(
L∑

k=1

(∣∣aI
sk

∣∣αI
skδnl(s, k)

)p

)1/p

.

The estimation of τφ(
∑L

k=1 Vk) can be established in the same way. Hence

τφ(Tnl) � τφ

(
L∑

k=1

Uk

)
+ τφ

(
L∑

k=1

Vk

)

�
m∑

s=1

(
L∑

k=1

(∣∣aI
sk

∣∣αI
skδnl(s, k)

)p

)1/p

+
m∑

s=1

(
L∑

k=1

(∣∣aJ
sk

∣∣αJ
skδnl(s, k)

)p

)1/p

= B
(p)
nl . �

Lemma 5, stated below (cf. Móricz [16, Theorem 2]), will be used to establish the almost sure convergence for our
main result. We need the following notations. Let ψ(·) be a positive strictly increasing continuous function, ψ(0) = 0
and {Yk, k � 1} be a sequence of random variables (it is not assumed that the random variables are independent or
that they are identically distributed). For any n � 0 and l � 1 set

Tnl =
n+l∑

j=n+1

Yj and Mnl = max
1�k�l

|Tnk|.

Let moreover g(n, l) be a nonnegative function depending on the joint distribution of Yn+1, . . . , Yn+l , and having the
property

g(n,h) + g(n + h, l − h) � g(n, l)

for all n � 0, l � 1, and 1 � h < l.
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Lemma 5. If there exists a constant C > 0 such that for all ε > 0, n � 0, and l � 1,

P
{|Tnl | > ε

}
� C exp

{
− ψ(ε)

g(n, l)

}
,

then there exist positive constants C1 and C2 such that

P
{|Mnl | > ε

}
� C1 exp

{
−C2ψ(ε)

g(n, l)

}
.

Remark 1. Lemma 5 is presented as Theorem 2 in Móricz [16] without a proof. We are not sure that this result is true
with the only restrictions on ψ(·) that it is a positive strictly increasing continuous function, ψ(0) = 0. But we were
able to prove this result under the additional assumption ψ(tx) � tψ(x) for 0 < t < 1. Lemma 5 is used in Theorem 1
for ψ(x) = xp,p � 1 and hence this additional assumption is satisfied.

The last lemma in this section is a simple generalization of Chow [5, Lemma 4]. The only difference is that instead
of Chow’s [5] Lemma 3 (estimation of the derivative of a trigonometric polynomial) we use Bernstein’s theorem (cf.,
for example, Zygmund [22, p. 11]). Chow [5] says that the Bernstein’s theorem can be used, but for his result the
simpler estimation was sufficient.

Lemma 6. Let {Xn, n � 1} and {Dn, n � 1} be two sequences of random variables. For a sequence of constants
{an, n � 1}, a positive integer N , and any t ∈ [0,2π] define Q(t) = ∑N

n=1 anXn cos(nt + Dn) and M = ‖Q‖∞ =
max0�t�2π |Q(t)|. Then for any K � 0,

{M � K} ⊂
�2πN�⋃
l=0

{∣∣Q(l/N)
∣∣ � K/2

}
.

Proof. Let M(ω) = |Q(t(ω),ω)|, then for any t ∈ [0,2π],∣∣Q(t) − Q
(
t (ω),ω

)∣∣ �
∣∣t − t (ω)

∣∣‖Q′‖∞ �
∣∣t − t (ω)

∣∣NM

since ‖Q′‖∞ � N‖Q‖∞ by Bernstein’s theorem (Zygmund [22, p. 11]).
Hence, for |t − t (ω)| � 1

2N
we have that |Q(t)| � M/2 � K/2 if M � K . The length of the interval |t − t (ω)| � 1

2N

is 1/N , and we have �2πN�+1 of these intervals in the segment [0,2π], namely t ∈ [ l
N

, l+1
N

], l = 0, . . . , �2πN�. �
3. Main results

We need some more notations. Let {ak, k � 1}, {αk, k � 1} be sequences of real numbers such that αk � 0 for all
k � 1. For p > 0 denote

A(p) =
∞∑

j=1

(
αj |aj |

)p
,

B(p) =
∞∑

k=1

(
km∑

j=(k−1)m+1

(
αj |aj |

)p

)1/p

.

Note that the series A(p) and B(p) converge simultaneously, and by the estimate (p. 1192)(
A(p)

)1/p � B(p) � (2m)1−1/p
(
A(p)

)1/p
.

The following proposition gives us a result concerning the convergence in probability.

Proposition 2. Let {Xn, n � 1} be a sequence of m-acceptable ϕ-subgaussian random variables and αn = τϕ(Xn).
Assume that the function ϕ belong to N(p,q) for some p ∈ [1,2] and q > 1. Let {an, n � 1} be a sequence of
constants such that A(p) < ∞. Then the series T = ∑∞

k=1 akXk converges in probability.
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Proof. Let A
(p)
nl and B

(p)
nl be as in Lemma 4. According to the same lemma, the ϕ-subgaussian standard of the random

variable Tnl = ∑n+l
j=n+1 ajXj is bounded by τϕ(Tnl) � B

(p)
nl .

By Lemmas 2 and 4 and by the estimate (p. 1192) of B
(p)
nl , we can state that for any ε > 0,

P
{|Tnl | > ε

}
� 2 exp

{
−ϕ∗

(
ε

τϕ(Tnl)

)}
� 2 exp

{
−ϕ∗

(
ε

B
(p)
nl

)}
� 2 exp

{
−ϕ∗

(
ε

(2m)1−1/p(A
(p)
nl )1/p

)}
.

Since the function ϕ belongs to N(p,q), there exists a positive constant C such that ϕ∗(x) � Cxq − 1 (even the
better estimate ϕ∗(x) � Cxq holds for |x| > 1).

Then for sufficiently small A
(p)
nl ,

P
{|Tnl | > ε

}
� 2 exp

{
− Cεq

(2m)q(1−1/p)(A
(p)
nl )q/p

}
.

According to the assumptions of the theorem, A
(p)
n,l → 0 as n → ∞. Hence P {|∑n+l

j=n+1 ajXj | > ε} → 0 for all
ε > 0 as n → ∞, that is, Sn = ∑n

k=1 akXk converges in probability to a random variable T = ∑∞
k=1 akXk . �

With these preliminaries accounted for, we can now state and prove the main results of the paper.

Theorem 1. Let {Xn, n � 1} be a sequence of m-acceptable ϕ-subgaussian random variables and αn = τϕ(Xn).
Assume that the function ϕ belongs to N(r, q) for some r, q ∈ [1,2]. Let p � min(r, q) and let {an, n � 1} be a
sequence of constants such that A(p) < ∞. Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τϕ(T ) � B(r) � (2m)1−1/r (A(p))1/p.

Proof. According to Proposition 2, Sn = ∑n
k=1 akXk converges in probability to a random variable T = ∑∞

k=1 akXk .
Then there exists a subsequence {nk, k � 1} such that Snk

converges to T almost surely. According to the assumptions

of the theorem A
(p)
nl → 0 as n → ∞ uniformly in l. Choose n so big that A

(p)
nl � 1 for all l � 1; then(

A
(r)
nl

)q/r �
(
A

(p)
nl

)q/p � A
(p)
nl

since q/p � 1. According to Lemma 1 we have that ϕ belongs to N(p,q), too.

Put Mk = maxnk�l<nk+1 |Tnl | and denote g(n, l) = (2m)q(1−1/p)

C
A

(p)
nl , then g(n,h) + g(n + h, l − h) � g(n, l) for all

n � 0, l � 1, and 1 � h < l. The following inequality was established in the proof of Proposition 2

P
{|Tnl | > ε

}
� 2 exp

{
− Cεq

(2m)q(1−1/p)(A
(p)
nl )q/p

}
.

According to the remarks and notations above we can rewrite it as

P
{|Tnl | > ε

}
� 2 exp

{
−

(
εq

g(n, l)

)}
.

By Lemma 5 with ψ(t) = tq we have that

P {Mk > ε} � C1 exp

{
− C2ε

q

g(nk, nk+1 − nk)

}
� C1

C2εq
g(nk, nk+1 − nk),

where we have used the relation e−x � 1/x which holds for all x > 0. Hence

∞∑
k=1

P
{|Mk| > ε

}
� C1

C2εq

∞∑
k=1

g(nk, nk+1 − nk) = CA(p) < ∞.
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By Borel–Cantelli lemma Mk → 0 as k → ∞ almost surely. Hence, for every n, with nk � n < nk+1, we have

|Sn − T | � |Sn − Snk+1 | + |Snk+1 − T | � Mk + |Snk+1 − T |,
so that, almost surely

lim
n→∞|Sn − T | = 0.

This shows that Sn = ∑n
k=1 akXk converges almost surely to a random variable T = ∑∞

k=1 akXk .
In order to prove that T is a ϕ-subgaussian and estimate its ϕ-subgaussian standard, we apply Lemma 4 with n = 0

and l → ∞. We obtain that τϕ(T ) � B(q). �
The next theorem generalizes Theorem 1 for the case of arrays. Let p > 0 and let {ank, k � 1, n � 1},

{αnk, k � 1, n � 1} be arrays of real numbers such that αnk � 0 for all k � 1 and n � 1. Denote

A
(p)
n =

∞∑
j=1

(
αnj |anj |

)p
,

B
(p)
n =

∞∑
k=1

(
km∑

j=(k−1)m+1

(
αnj |anj |

)p

)1/p

.

Theorem 2. Let {Xnk, k � 1, n � 1} be an array of rowwise m-acceptable ϕ-subgaussian random variables with
αnk = τϕ(Xnk). Assume that the function ϕ belongs to N(r, q) for some r, q ∈ [1,2]. Let p � min(r, q) and let

{ank, k � 1, n � 1} be an array of constants such that A
(p)
n < ∞ for all n � 1.

If for any ε > 0,

∞∑
n=1

exp

{
−ϕ∗

(
ε

B
(r)
n

)}
< ∞,

then the sequence of random variables Tn = ∑∞
k=1 ankXnk (which is well defined by Theorem 1) converges to zero a.s.

Proof. By Theorem 1 we have that τϕ(Tn) � B
(r)
n and by Lemma 2 for any ε > 0,

P
{|Tn| > ε

}
� 2 exp

{
−ϕ∗

(
ε

B
(r)
n

)}
.

By the hypothesis
∑∞

n=1 P {|Tn| > ε} < ∞, hence in view of Borel–Cantelli lemma Tn → 0 a.s. as n → ∞. �
4. Case of negatively dependent random variables

Recall that random variables X1, . . . ,Xn are said to be negatively dependent if

P

{
n⋂

j=1

[Xj � xj ]
}

�
n∏

j=1

P {Xj � xj }

and

P

{
n⋂

j=1

[Xj > xj ]
}

�
n∏

j=1

P {Xj > xj }

for any x1, . . . , xn ∈ R.
A sequence of random variables {Xn, n � 1} is said to be negatively dependent, if any finite subsequence of the

sequence forms negatively dependent random variables. The notion of negatively dependent random variables was
introduced by Lehmann [14] and developed in Joag-Dev and Proschan [10].
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The notion of m-dependent random variables is well known (cf. Section 5). The notion of m-negatively dependent
random variables seems to be new.

Let m > 1 be a fixed integer. A sequence of random variables {Xn, n � 1} is said to be m-negatively dependent if
for any n � 2 and any i1, . . . , in such that |ik − ij | � m for all 1 � k �= j � n, we have that Xi1, . . . ,Xin are negatively
dependent.

An array of random variables {Xnk, k � 1, n � 1} is rowwise m-negatively dependent if for any fixed n � 1 the
row {Xnk, k � 1} is a sequence of m-negatively dependent random variables.

Note that the m-negatively dependence assumption is stronger than the assumption of m-acceptability. This means
that Theorems 1 and 2 are true for a sequence of m-negatively dependent random variables, too. Now we consider the
case m = 1.

The following lemma can be found in Joag-Dev and Proschan [10]. The proof is obvious.

Lemma 7. Let X1, . . . ,Xn be negatively dependent random variables.

(a) If f1, . . . , fn is a sequence of measurable functions which are all monotone increasing (or all are monotone
decreasing), then f1(X1), . . . , fn(Xn) are negatively dependent random variables, too.

(b) E(X1 · · ·Xn) � E(X1) · · ·E(Xn), provided the expectations exist.

The next lemma allows us to estimate the ϕ-subgaussian standard of sums of random variables.

Lemma 8. Let X1, . . . ,Xn be negatively dependent ϕ-subgaussian random variables. If in addition the function
ϕ(|x|1/p) is convex for some p ∈ [1,2], then τ

p
ϕ (

∑n
k=1 Xk) �

∑n
k=1 τ

p
ϕ (Xk).

Proof. The lemma can be proved in the same way as Buldygin and Kozachenko [3, Theorem 5.2], with the only
difference that the validity of the estimation

E exp

{
λ

n∑
k=1

Xk

}
�

n∏
k=1

E exp{λXk}

(that is, negative dependent random variables are acceptable) can be justified by Lemma 7. First of all by Lemma 7(a)
with fk(t) = exp{λt} for all 1 � k � n we can state that exp{λX1}, . . . , exp{λXn} are negatively dependent, and after
apply Lemma 7(b). �

The next lemma is an analog of Lemma 4 for the case of negatively dependent random variables.

Lemma 9. Let {Xn, n � 1} be a sequence of negatively dependent ϕ-subgaussian random variables and αn = τϕ(Xn).
Assume that the function ϕ(|x|1/p) is convex for some p ∈ [1,2] and let {an, n � 1} be a sequence of constants. For
n � 0, l � 1 denote

Tnl =
n+l∑

j=n+1

ajXj .

Then Tnl is ϕ-subgaussian and τϕ(Tn,l) � B̂
(p)
nl , where

B̂
(p)
nl =

(
n+l∑

j=n+1

(
αj |aj |p

))1/p

.

The proof of Lemma 9 repeats the proof of Lemma 4 with m = 1 and hence is omitted.
The following two corollaries are more general than results of Amini et al. [2] since a wider class of ϕ-subgaussian

random variables is considered.
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Corollary 1. Let {Xn, n � 1} be a sequence of negatively dependent ϕ-subgaussian random variables and αn =
τϕ(Xn). Assume that the function ϕ belongs to N(r, q) for some r, q ∈ [1,2]. Let p � min(r, q) and let {an, n � 1} be
a sequence of constants such that

A(p) =
∞∑

j=1

α
p
j |aj |p < ∞.

Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τϕ(T ) � (A(p))1/p .

Corollary 2. Let {Xnk, k � 1, n � 1} be an array of rowwise negatively dependent ϕ-subgaussian random variables
with αnk = τϕ(Xnk). Assume that the function ϕ belongs to N(r, q) for some r, q ∈ [1,2]. Let p � min(r, q) and let
{ank, k � 1, n � 1} be an array of constants such that

A
(p)
n =

∞∑
j=1

α
p
nj |anj |p < ∞.

If for any ε > 0,

∞∑
n=1

exp

{
−ϕ∗

(
ε

(A
(p)
n )1/p

)}
< ∞,

then the sequence of random variables Tn = ∑∞
k=1 ankXnk converges to zero a.s.

The proofs of these corollaries repeat those of Theorems 1 and 2 with obvious changes and hence are omitted.
In order to compare Corollary 1 with the result of Amini et al. [1,2] we introduce the following notation. Classical

subgaussian random variables are the special case of ϕ-subgaussian random variables with ϕ(t) = t2/2. For a classical
subgaussian random variable X, we denote the subgaussian standard as τ(X) = τt2/2(X). Note that ϕ(t) = t2/2
belongs to N(2,2). The following corollary is a reformulation of Corollary 1 for the classical subgaussian case.

Corollary 3. Let {Xn, n � 1} be a sequence of negatively dependent classical subgaussian random variables and
αn = τ(Xn). Let {an, n � 1} be a sequence of constants such that

A(2) =
∞∑

j=1

α2
j |aj |2 < ∞.

Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τ(T ) �
√

A(2).

In order to compare Corollary 3 with existing results, we first remark that Theorem 1 of Amini et al. [2] is more
general than Theorem 5 of Amini et al. [1] (a special conditional expectation is not required to be zero). Theorem 1
from Amini et al. [2] can be slightly reformulated in the following way.

Proposition 3. Let {Xn, n � 1} be a sequence of negatively dependent classical subgaussian random variables such
that τ(Xn) � α for some α > 0 and all n � 1. If

∑∞
j=1 a2

j < ∞, then the series T = ∑∞
k=1 akXk converges a.s.

Corollary 3 is more general than Proposition 3 since the sequence of gaussian standards is not necessarily uniformly
bounded. Moreover, our result provides an estimation of the subgaussian standard.
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5. The case of m-dependent random variables and m-acceptable random variables

The first corollary in this section reformulates Theorem 1 for the case of classical subgaussian random variables.

Corollary 4. Let {Xn, n � 1} be a sequence of m-acceptable subgaussian random variables and αn = τ(Xn). Let
{an, n � 1} be a sequence of constants such that

A(2) =
∞∑

j=1

|αjaj |2 < ∞.

Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τ(T ) � B(2), where B(2) is the same as in Theorem 1.

Corollary 4 can be compared with Theorem 1 of Ouy [17] which deals with the case of m-dependent random
variables. The sequence of random variables {Xn, n � 1} is said to be m-dependent if Xp and Xq are independent
whenever |p − q| � m. But a careful analysis of the proof of Ouy’s [17] result shows that in such a proof a stronger
hypothesis is needed than usual m-dependence, namely, it must be assumed that for any n � 2 and any i1, . . . , in such
that |ik − ij | � m for all 1 � k �= j � n, the random variables Xi1, . . . ,Xin are independent. The difference is the same
as between pairwise independence and (global) independence.

Theorem 1 of Ouy [17] can be formulated in the following way.

Proposition 4. Let {Xn, n � 1} be a sequence of m-dependent classical subgaussian random variables and
τ(Xn) � α. Let {an, n � 1} be a sequence of constants such that

A(2) =
∞∑

k=1

a2
k < ∞.

Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τ(T ) � 2(m−1)/2α(A(2))1/2.

We can point out the following differences. The estimation of the subgaussian standard provided in Corollary 4 is
more accurate than the estimation in Proposition 4, the subgaussian standards are not necessarily uniformly bounded,
and Corollary 4 deals with m-acceptable random variables, which is a weaker assumption than m-dependence (in
Ouy’s [17] understanding).

6. Other corollaries

In the case p = 1 Theorems 1 and 2 are true without the assumption of m-acceptability dependence. That is, we
can formulate the following statements.

Corollary 5. Let {Xn, n � 1} be a sequence of ϕ-subgaussian random variables and αn = τϕ(Xn). Let {an, n � 1}
be a sequence of constants such that

A(1) =
∞∑

k=1

αk|ak| < ∞.

Then

(i) the series T = ∑∞
k=1 akXk converges a.s.;

(ii) τϕ(T ) � A(1).
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Corollary 6. Let {Xnk, k � 1, n � 1} be an array of ϕ-subgaussian random variables with αnk = τϕ(Xnk). Let
{ank, k � 1, n � 1} be an array of constants such that

B(1)
n =

∞∑
k=1

αnj |anj | < ∞.

If for any ε > 0,
∞∑

n=1

exp

{
−ϕ∗

(
ε

B
(1)
n

)}
< ∞,

then the sequence of random variables Tn = ∑∞
k=1 ankXnk (which is well defined by Theorem 1) converges to zero a.s.

The proofs of Corollaries 4 and 5 repeat those of Theorems 1 and 2 with the only difference that the estimation

τp
ϕ

(
L∑

k=1

Uk

)
�

L∑
k=1

τp
ϕ (Uk)

is true without m-acceptability assumption for p = 1 by Lemma 3(a).

Remark 2. In the conclusions of Theorem 2 and Corollaries 2 and 6 we not only obtain that Tn → 0 a.s., but also that
τϕ(Tn) → 0 as n → ∞.

The next corollary gives the Marcinkiewicz–Zygmund law of large numbers for ϕ-subgaussian random variables.

Corollary 7. Let ϕ(t) = |t |p/p, t ∈ R, 1 � p � 2 and {Xn, n � 1} be a sequence of ϕ-subgaussian m-acceptable
random variables with supn�1 τϕ(Xn) < ∞. Then

1

n1/r

n∑
k=1

Xk → 0 a.s. for any 0 < r < p.

Proof. Denote Xnk = Xk for all n � 1, k � 1 and let

ank =
{

1/n1/r if k � n,

0 if k > n.

By the assumption we have αn = τϕ(Xn) � supn�1 τϕ(Xn) = α < ∞. Let B
(p)
n be as in Theorem 2. Then

B
(p)
n � Cαm

1− 1
p n

1
p

− 1
r

and ϕ∗(t) = |t |q/q for all t , where 1
p

+ 1
q

= 1. For any ε > 0, we have

∞∑
n=1

exp

{
−ϕ∗

(
ε

B
(p)
n

)}
�

∞∑
n=1

exp

{
− εq

qCαqmq−q/p
n

q( 1
r
− 1

p
)

}
< ∞

since r < p. By Theorem 2

1

n1/r

n∑
k=1

Xk → 0 a.s. for any 0 < r < p. �

Remark 3. Corollary 7 gives much more than almost sure convergence. It gives the exponential rate of convergence
to zero for ϕ-subgaussian acceptable random variables

P

{∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣ > εn1/r

}
� exp

{−Cεqnq(1/r−1/p)
}
.

The interested reader could compare this result with those of Tomkins [21] and Taylor and Hu [20].
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7. Application to Fourier analysis

The following theorem is a generalization of the famous Salem and Zygmund theorem, cf. Salem and Zyg-
mund [19]. A closely related theorem for semigaussian random variables has been given by Kahane [11, p. 78],
and for classical subgaussian random variables by Chow [5, Theorem 4].

Theorem 3. Let {Xn, n � 1} and {Dn, n � 1} be two independent sequences of random variables such that for
each t , {Yn(t) = Xn cos(nt + Dn), n � 1} is a sequence of m-acceptable random variables. Let moreover Xn be ϕ-
subgaussian with τϕ(Xn) = αn. Assume that the function ϕ belong to N(r, q) for some r, q ∈ [1,2]. Let p � min(r, q)

and let {ak, k � 1} be a sequence of constants; {bk, k � 1} an increasing sequence of constants such that

C =
∞∑

k=1

(
km∑

j=(k−1)m+1

(
αj |aj |

)p
bk

)1/p

< ∞.

Let moreover {n(j), j � 1} be an increasing sequence of positive integers and {k(j), j � 1} be a sequence of positive
constants such that

∞∑
j=1

k(j) < ∞ and
∞∑

j=1

n(j + 1) exp

{
−ϕ∗

(
k(j)bn(j)

C

)}
< ∞.

Then for each t , the series
∑∞

n=1 anXn cos(nt + Dn) converges a.s. to a stochastic process f (t) that has a sample
continuous stochastic modification.

Proof. Note that for any λ,

E exp
{
λYn(t)

}
� E

(
E

(
exp

{
λXn cos(nt + Dn)

} ∣∣ D1, . . . ,Dn

))
� E

(
E

(
exp

{
ϕ
(
λαn cos(nt + Dn)

)} ∣∣ D1, . . . ,Dn

))
since Xn is ϕ-subgaussian

� exp
{
ϕ(λαn)

}
since ϕ is even and increasing.

Hence, Yn(t) is a ϕ-subgaussian with τϕ(Yn(t)) � αn for each t . Since bn ↑, we have that

B =
∞∑

k=1

( ∑
j∈Ik

(
αj |aj |

)p
)1/p

+
( ∑

j∈Jk

(
αj |aj |

)p
)1/p

< ∞,

where Ik and Jk are as in Lemma 4. Hence by Theorem 1
∑∞

n=1 anYn(t) → f (t) a.s. for every t .
In order to prove that the stochastic process f (t) has a sample continuous modification, we introduce the following

notations. For j � 1 let

Qj(t) =
2mn(j+1)∑

n=2mn(j)+1

anYn(t),

Mj = ‖Qj‖∞,

Bj =
n(j+1)∑

k=n(j)+1

( ∑
j∈Ik

(
αj |aj |

)p
)1/p

+
( ∑

j∈Jk

(
αj |aj |

)p
)1/p

,

Cj =
n(j+1)∑

k=n(j)+1

( ∑
j∈Ik

(
αj |aj |

)p
bk

)1/p

+
( ∑

j∈Jk

(
αj |aj |

)p
bk

)1/p

.

By Lemma 4 and monotonicity of the sequence {bn, n � 1}, we have that Qj(t) is ϕ-subgaussian with

τϕ

(
Qj(t)

)
� Bj � Cj

bn(j)

.
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By Lemma 2 for any t ,

P
{∣∣Qj(t)

∣∣ > k(j)
}

� 2 exp

{
−ϕ∗

(
k(j)

τϕ(Qj (t))

)}
� 2 exp

{
−ϕ∗

(
k(j)bn(j)

Cj

)}
.

By Lemma 6

P
{
Mj � 2k(j)

}
�

�2πm(j+1)�∑
l=0

P
{∣∣Qj

(
l/m(j + 1)

)∣∣ � k(j)
}

� 2
(
4πmn(j + 1) + 1

)
exp

{
−ϕ∗

(
k(j)bn(j)

Cj

)}
� 2

(
4πmn(j + 1) + 1

)
exp

{
−ϕ∗

(
k(j)bn(j)

C

)}
.

Hence
∑∞

j=1 P {Mj � 2k(j)} < ∞. By the Borel–Cantelli lemma for almost all ω there exists j0(ω) < ∞ such
that Mj(ω) � 2k(j) for j � j0(ω). Since

∑∞
j=1 k(j) < ∞, almost surely

∑∞
j=1 Mj < ∞ and

∑∞
j=1 Qj(t) converges

uniformly in t to a stochastic process g(t). Since for each fixed ω,Qj (t) are continuous in t, g(t) is sample continuous.
Finally, by the first part of the proof

∑∞
j=1 Qj(t) = f (t) a.s., hence P {f (t) = g(t)} = 1. �

Corollary 8. Let ϕ(t) = tp/p, 1 < p � 2 for all t ∈ R and let {Xn, n � 1} and {Dn, n � 1} be two sequences of
random variables such that for each t , {Yn(t) = Xn cos(nt +Dn), n � 1} is a sequence of m-acceptable random vari-
ables. Let moreover Xn be ϕ-subgaussian with supn�1 τϕ(Xn) = α < ∞. Let {ak, k � 1} be a sequence of constants
such that

∞∑
k=1

|ak|p log1+δ−1/p(k) < ∞

for some δ > 0.
Then for each t , the series

∑∞
n=1 anXn cos(nt + Dn) converges a.s. to a stochastic process f (t) that has a sample

continuous stochastic modification.

Proof. In this case ϕ∗(t) = tq/q for all t , where 1
p

+ 1
q

= 1. In Theorem 3 take bk = log1+δ−1/p(k) = logδ+1/q(k),

n(j) = 22j
and k(j) = j−2. All assumptions of Theorem 3 are satisfied, the only one that requires some work is the

convergence of the series
∑∞

j=1 n(j + 1) exp{−ϕ∗( k(j)bn(j)

C
)}, where

C =
( ∞∑

k=1

(
2km∑

j=(k−1)m+1

|aj |
)p

log1+δ−1/p(k)

)1/p

< ∞

by the assumption.
This can be done in the following way:

∞∑
j=1

n(j + 1) exp

{
−ϕ∗

(
k(j)bn(j)

C

)}
=

∞∑
j=1

22j+1
exp

{
−

(
j−2 logδ+1/q(22j

)

C

)q}

=
∞∑

j=1

exp

{
2j 2 log(2) − 2j (1+δq) log1+δq(2)

j2qCq

}

� C

∞∑
j=1

exp
{−2j (1+δq/2)

}
< ∞. �
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