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Abstract. We study the limiting behavior of maximal partial sums for arrays of rowwise ρ∗-mixing random variables
and obtain some new results that improve the corresponding theorem of Zhu [M.H. Zhu, Strong laws of large numbers
for arrays of rowwise ρ∗-mixing random variables, Discrete Dyn. Nat. Soc., 2007, Article ID 74296, 6 pp., 2007].
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1 INTRODUCTION

A triangular array of random variables {Xnk, 1 � k � n, n � 1} is said to be rowwise ρ∗-mixing if, for every
n � 1, {Xnk, 1 � k � n} is a ρ∗-mixing sequence of random variables. The concept of the coefficient ρ∗
was introduced by Moore [4], and Bradley [1] was the first who introduced the concept of ρ∗-mixing random
variables to limit theorems.

Throughout this paper, we assume that the array of {Xnk, 1 � k � n, n � 1} is rowwise ρ∗-mixing and
the following condition is satisfied: ρ∗n(h) � a < 1 for all arrays/rows with a fixed positive integer h.

Let {Zn, n � 1} be a sequence of random variables, and an > 0, bn > 0, q > 0. If

∞∑
n=1

anE
{
b−1n |Zn| − ε

}q

+
<∞ for all ε > 0,

then the above result was called the complete moment convergence by Chow [2].
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A sequence of random variables {Un, n � 1} is said to converge completely to a constant a if, for all ε > 0,

∞∑
n=1

P
(|Un − a| > ε

)
<∞.

In this case, we say that Un → a completely. This notion was given firstly by Hsu and Robbins [3].
Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables, {an, n � 1} be a

sequence of positive real numbers such that an ↑ ∞, and let {Ψ(t)} be a positive even function such that

Ψ(|t|)
|t|q ↑ and

Ψ(|t|)
|t|p ↓ as |t|↑ (1.1)

for some 1 � q < p. We introduce the following conditions:

EXnk = 0, 1 � k � n, n � 1, (1.2)
∞∑
n=1

n∑
k=1

EΨ(Xnk)

Ψ(an)
<∞, (1.3)

∞∑
n=1

(
n∑

k=1

E

(
Xnk

an

)2
)v/2

<∞, (1.4)

where v � p is a positive integer.

Remark 1. We can mention the following examples of function Ψ(t) that satisfies assumption (1.1): Ψ(t) = |t|β
for some q < β < p or Ψ(t) = |t|q log(1 + |t|p−q) for t ∈ (−∞,+∞). Note that these functions are
nonmonotone on t ∈ (−∞,+∞), while it is simple to show that, under condition (1.1), the function Ψ(t) is
an increasing function for t > 0. Otherwise, let 0 < t1 < t2 <∞ be such that Ψ(t1) � Ψ(t2). Then we have

Ψ(t1)

tq1
� Ψ(t2)

tq2
,

which contradicts with Ψ(|t|)
|t|q ↑ as |t|↑.

The following complete convergence result by Zhu [6] was the starting point for our investigation.

Theorem A. Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables, and
{an, n � 1} be a sequence of positive real numbers such that an ↑ ∞. Also, let Ψ(t) be a positive even
function satisfying (1.1) for q = 1 and some nonnegative integer p � 2. Then, under conditions (1.2)–(1.4),
we have

1

an
max
1�j�n

∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣→ 0 completely. (1.5)

In this work, we extend Theorem A to the complete moment convergence, which is a more general version
of the complete convergence. In addition, compared with Zhu [6], we study the Lq convergence for arrays of
rowwise ρ∗-mixing random variables, which was not considered in his paper.

In this paper, the symbol C always stands for a generic positive constant, which may vary from one place
to another.
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2 MAIN RESULTS

Now we present the main results of the paper. The proofs will be given in the next section.

Theorem 1. Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables, and let
{an, n � 1} be a sequence of positive real numbers such that an ↑ ∞. Also, let Ψ(t) be a positive even
function satisfying (1.1) for 1 � q < p � 2. Then, under conditions (1.2) and (1.3), we have

∞∑
n=1

a−qn E

{
max
1�j�n

∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣− εan

}q

+

<∞ ∀ε > 0. (2.1)

Theorem 2. Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables, and let
{an, n � 1} be a sequence of positive real numbers such that an ↑ ∞. Also, let Ψ(t) be a positive even
function satisfying (1.1) for 1 � q < p and p > 2. Then conditions (1.2)–(1.4) imply (2.1).

Theorem 3. Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables satisfying
conditions (1.2), and let {an, n � 1} be a sequence of positive real numbers such that an ↑ ∞. Also, let Ψ(t)
be a positive even function satisfying (1.1) for 1 � q < p.

(1) If 1 < p � 2 and
n∑

k=1

EΨ(Xnk)

Ψ(an)
→ 0 as n→∞, (2.2)

then

1

an
max
1�j�n

∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣ Lq−→ 0. (2.3)

(2) If p > 2, (2.2) is satisfied, and

a−2n

n∑
k=1

EX2
nk → 0 as n→∞, (2.4)

then (2.3) holds.

Remark 2. The proof of Theorem 3 immediately follows from the moment inequality applied to truncated
variables. Therefore, we will omit the details.

3 PROOFS

To prove the results of this paper, we need the following two lemmas.

Lemma 1. (See [5].) Let N be a positive integer, 0 � r < 1, and p � 2. Then there exists a positive constant
C = C(N, r, p) such that the following statement holds:

If {Xi, i � 1} is a sequence of random variables such that ρ∗N � r and such that EXi = 0 and
E|Xi|p <∞ for every i � 1, then, for all n � 1,

E max
1�j�n

∣∣∣∣∣
j∑

k=1

Xk

∣∣∣∣∣
p

� C

{
n∑

k=1

E|Xk|p +
(

n∑
k=1

EX2
k

)p/2}
. (3.1)
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Lemma 2. Let {Xnk, 1 � k � n, n � 1} be an array of rowwise ρ∗-mixing random variables, and let
{an, n � 1} be a sequence of positive real numbers such that an ↑ ∞. Also, let Ψ(t) be a positive even
function satisfying (1.1) for 1 � q < p. Then (1.3) implies the following statements:

(i) for r � 1, 0 < u � q,
∞∑
n=1

(
n∑

k=1

E|Xnk|uI(|Xnk| > an)

aun

)r

<∞;

(ii) for v � p,
∞∑
n=1

n∑
k=1

E|Xnk|vI(|Xnk| � an)

avn
<∞.

Proof. From (1.1) and (1.3) we get

∞∑
n=1

(
n∑

k=1

E|Xnk|uI(|Xnk| > an)

aun

)r

�
( ∞∑

n=1

n∑
k=1

EΨ(Xnk)

Ψ(an)

)r

<∞

and
∞∑
n=1

n∑
k=1

E|Xnk|vI(|Xnk| � an)

avn
�

∞∑
n=1

n∑
k=1

EΨ(Xnk)

Ψ(an)
<∞,

where r � 1, 0 < u � q, and v � p. The proof is complete. 	


Proof of Theorem 1. Let Mn(X) = max1�j�n |
∑j

k=1Xnk|. Then

∞∑
n=1

a−qn E
{
Mn(X)− εan

}q

+

=

∞∑
n=1

a−qn

∞∫
0

P
{
Mn(X)− εan > t1/q

}
dt

=

∞∑
n=1

a−qn

( aq
n∫

0

P
{
Mn(X) > εan + t1/q

}
dt+

∞∫
aq
n

P
{
Mn(X) > εan + t1/q

}
dt

)

�
∞∑
n=1

P
{
Mn(X) > εan

}
+

∞∑
n=1

a−qn

∞∫
aq
n

P
{
Mn(X) > t1/q

}
dt =̂ I1 + I2.

To prove (2.1), it suffices to prove that I1 <∞ and I2 <∞. By a similar argument as in the proof of Zhu [6]
we can prove that I1 <∞. We omit the details.

Let us prove that I2 < ∞. Let Ynk = XnkI(|Xnk| � t1/q), Znk = Xnk − Ynk, and Mn(Y ) =
max1�j�n |

∑j
k=1 Ynk|. Obviously,

P
{
Mn(X) > t1/q

}
�

n∑
k=1

P
{|Xnk| > t1/q

}
+P

{
Mn(Y ) > t1/q

}
.
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Hence,

I2 �
∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

P
{|Xnk| > t1/q

}
dt+

∞∑
n=1

a−qn

∞∫
aq
n

P
{
Mn(Y ) > t1/q

}
dt =̂ I3 + I4.

For I3, by Lemma 2 we have

I3 =

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

P
{|Xnk|I

(|Xnk| > an
)
> t1/q

}
dt

�
∞∑
n=1

n∑
k=1

a−qn

∞∫
0

P
{|Xnk|I

(|Xnk| > an
)
> t1/q

}
dt

=

∞∑
n=1

n∑
k=1

E|Xnk|qI(|Xnk| > an)

aqn
<∞.

Now let us prove that I4 <∞. By (1.2) and Lemma 2 we have

max
t�aq

n

max
1�j�n

t−1/q
∣∣∣∣∣

j∑
k=1

EYnk

∣∣∣∣∣
= max

t�aq
n

max
1�j�n

t−1/q
∣∣∣∣∣

j∑
k=1

EZnk

∣∣∣∣∣ � max
t�aq

n

t−1/q
n∑

k=1

E|Xnk|I
(|Xnk| > t1/q

)
�

n∑
k=1

E|Xnk|qI(|Xnk| > an)

aqn
→ 0. (3.2)

Therefore, for n sufficiently large,

max
1�j�n

∣∣∣∣∣
j∑

k=1

EYnk

∣∣∣∣∣ � t1/q

2

uniformly for t � aqn. Then

P
{
Mn(Y ) > t1/q

}
� P

{
max
1�j�n

∣∣∣∣∣
j∑

k=1

(Ynk −EYnk)

∣∣∣∣∣ > t1/q

2

}
. (3.3)

Let dn = [an] + 1. By (3.3), Lemma 1, and Cr-inequality we have

I4 � C

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

t−2/qEY 2
nk dt

= C

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

t−2/qEX2
nkI

(|Xnk| � dn
)
dt
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+ C

∞∑
n=1

n∑
k=1

a−qn

∞∫
dq
n

t−2/qEX2
nkI

(
dn < |Xnk| � t1/q

)
dt

=̂ I41 + I42.

For I41, since q < 2, we have

I41 = C

∞∑
n=1

n∑
k=1

a−qn EX2
nkI

(|Xnk| � dn
) ∞∫
aq
n

t−2/q dt � C

∞∑
n=1

n∑
k=1

EX2
nkI(|Xnk| � dn)

a2n

= C

∞∑
n=1

n∑
k=1

EX2
nkI(|Xnk| � an)

a2n
+ C

∞∑
n=1

n∑
k=1

EX2
nkI(an < |Xnk| � dn)

a2n

=̂ I ′41 + I ′′41.

Since p � 2, by Lemma 2 we get I ′41 <∞. Now we prove that I ′′41 <∞. Since q < 2 and (an + 1)/an → 1
as n→∞, by Lemma 2 we have

I ′′41 � C

∞∑
n=1

n∑
k=1

d2−qn

a2n
E|Xnk|qI

(
an < |Xnk| � dn

)
� C

∞∑
n=1

n∑
k=1

(
an + 1

an

)2−qE|Xnk|qI(|Xnk| > an)

aqn
<∞.

Let t = uq in I42. Note that, for q < 2,

∞∫
dn

uq−3EX2
nkI

(
dn < |Xnk| � u

)
du � CE|Xnk|qI

(|Xnk| > dn
)
.

Since dn > an, by Lemma 2 we have

I42 = C

∞∑
n=1

n∑
k=1

a−qn

∞∫
dn

uq−3EX2
nkI

(
dn < |Xnk| � u

)
du

� C

∞∑
n=1

n∑
k=1

a−qn E|Xnk|qI
(|Xnk| > an

)
<∞.

The proof is complete. 	


Proof of Theorem 2. Following the notation, by a similar argument as in the proof of Theorem 1 we can easily
prove that I1 <∞, I3 <∞, and that (3.2), and (3.3) hold. Therefore, we need only to prove that I4 <∞.

Let δ � p and dn = [an] + 1. By (3.3), the Markov inequality, Lemma 1, and the Cr-inequality we have

I4 � C

∞∑
n=1

a−qn

∞∫
aq
n

t−δ/qE max
1�j�n

∣∣∣∣∣
j∑

k=1

(Ynk −EYnk)

∣∣∣∣∣
δ

dt
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� C

∞∑
n=1

a−qn

∞∫
aq
n

t−δ/q
[

n∑
k=1

E|Ynk|δ +
(

n∑
k=1

EY 2
nk

)δ/2]
dt

� C

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

t−δ/qE|Ynk|δ dt+ C

∞∑
n=1

a−qn

∞∫
aq
n

t−δ/q
(

n∑
k=1

EY 2
nk

)δ/2

dt

=̂ I43 + I44.

For I43, we have

I43 = C

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

t−δ/qE|Xnk|δI
(|Xnk| � dn

)
dt

+ C

∞∑
n=1

n∑
k=1

a−qn

∞∫
aq
n

t−δ/qE|Xnk|δI
(
dn < |Xnk| � t1/q

)
dt

=̂ I ′43 + I ′′43.

By a similar argument as in the proof of I41 < ∞ and I42 < ∞ (replacing the exponent 2 by δ), we can get
I ′43 <∞ and I ′′43 <∞.

For I44, since δ > 2, we have

I44 = C

∞∑
n=1

a−qn

∞∫
aq
n

t−δ/q
(

n∑
k=1

EX2
nkI

(|Xnk| � an
)
+

n∑
k=1

EX2
nkI

(
an < |Xnk| � t1/q

))δ/2

dt

� C

∞∑
n=1

a−qn

∞∫
aq
n

t−δ/q
(

n∑
k=1

EX2
nkI

(|Xnk| � an
))δ/2

dt

+ C

∞∑
n=1

a−qn

∞∫
aq
n

(
t−2/q

n∑
k=1

EX2
nkI

(
an < |Xnk| � t1/q

))δ/2

dt

=̂ I ′44 + I ′′44.

Since δ � p > q, from (1.4) we have

I ′44 = C

∞∑
n=1

a−qn

(
n∑

k=1

EX2
nkI

(|Xnk| � an
))δ/2 ∞∫

aq
n

t−δ/q dt

� C

∞∑
n=1

(
n∑

k=1

EX2
nkI(|Xnk| � an)

a2n

)δ/2

� C

∞∑
n=1

(
n∑

k=1

EX2
nk

a2n

)δ/2

<∞.
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Now we prove that I ′′44 <∞. To start with, we consider the case 1 � q � 2. Since δ > 2, by Lemma 2 we
have

I ′′44 � C

∞∑
n=1

a−qn

∞∫
aq
n

(
t−1

n∑
k=1

E|Xnk|qI
(
an < |Xnk| � t1/q

))δ/2

dt

� C

∞∑
n=1

a−qn

∞∫
aq
n

(
t−1

n∑
k=1

E|Xnk|qI
(|Xnk| > an

))δ/2

dt

= C

∞∑
n=1

a−qn

(
n∑

k=1

E|Xnk|qI
(|Xnk| > an

))δ/2 ∞∫
aq
n

t−δ/2 dt

� C

∞∑
n=1

(
n∑

k=1

E|Xnk|qI(|Xnk| > an)

aqn

)δ/2

<∞.

Finally, we prove that I ′′44 <∞ in the case 2 < q < p. Since δ > q and δ > 2, by Lemma 2 we have

I ′′44 � C

∞∑
n=1

a−qn

∞∫
aq
n

(
t−2/q

n∑
k=1

EX2
nkI

(|Xnk| > an
))δ/2

dt

= C

∞∑
n=1

a−qn

(
n∑

k=1

EX2
nkI

(|Xnk| > an
))δ/2 ∞∫

aq
n

t−δ/q dt

� C

∞∑
n=1

(
n∑

k=1

EX2
nkI(|Xnk| > an)

a2n

)δ/2

<∞.

The proof is complete. 	
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