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1 Introduction
Let {X, Xn, n ≥ } be a sequence of random variables and {ani,  ≤ i ≤ n, n ≥ } be an array
of constants. Because the weighted sums

∑n
i= aniXi play important roles in some useful

linear statistics, many authors studied the strong convergence for the weighted sums. We
refer the reader to Cuzick [], Wu [], Bai and Cheng [], Sung [], Chen and Gan [], Cai
[], Wu [], Zarei and Jabbari [], Sung [], Sung [], Shen [], Chen and Sung [].

The concept of the complete convergence was introduced by Hsu and Robbins [].
A sequence of random variables {Un, n ≥ } is said to converge completely to a constant θ

if

∞∑

n=

P
(|Un – θ | > ε

)
< ∞ for all ε > .

Chow [] presented the following more general concept of the complete moment con-
vergence. Let {Zn, n ≥ } be a sequence of random variables and an > , bn > , q > . If

∞∑

n=

anE
{

b–
n |Zn| – ε

}q
+ < ∞ for some or all ε > ,

then the above result was called the complete moment convergence.
The following concept was introduced by Joag-Dev and Proschan [].
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Definition . A finite family of random variables {Xk ,  ≤ k ≤ n} is said to be negatively
associated (abbreviated to NA) if for any disjoint subsets A and B of {, , . . . , n} and any
real coordinate-wise nondecreasing functions f on RA and g on RB,

Cov
(
f (Xi, i ∈ A), g(Yj, j ∈ B)

) ≤ 

whenever the covariance exists. An infinite family of random variables is NA if every finite
subfamily is NA.

Definition . Let m ≥  be a fixed integer. A sequence of random variables {Xn, n ≥ } is
said to be m-negatively associated (abbreviated to m-NA) if for any n ≥  and any i, . . . , in

such that |ik – ij| ≥ m for all  ≤ k �= j ≤ n, Xi , . . . , Xin are NA.

The concept of m-NA random variables was introduced by Hu et al. []. It is easily seen
that this concept is a natural extension from NA random variables (wherein m = ).

It is well known that the properties of NA random variables have been applied to the re-
liability theory, multivariate statistical analysis and percolation theory. Sequences of NA
random variables have been an attractive research topic in the recent literature. For exam-
ple, Matula [], Su et al. [], Shao [], Gan and Chen [], Fu and Zhang [], Baek et
al. [], Chen et al. [], Cai [], Xing [], Sung [], Qin and Li [], Wu []. Since NA
implies m-NA, it is very significant to study the convergence properties of this wider m-
NA class. However, to the best of our knowledge, besides Hu et al. [] and Hu et al. [],
few authors discuss the convergence properties for sequences of m-NA random variables.

Cai [] studied the complete convergence for weighted sums of identically distributed
NA random variables. He obtained the following theorem.

Theorem A Let {X, Xn, n ≥ } be a sequence of identically distributed NA random vari-
ables, and let {ani,  ≤ i ≤ n, n ≥ } be an array of constants satisfying

Aα = lim
n→∞ sup Aα,n < ∞, Aα

α,n =
n∑

i=

|ani|α/n (.)

for some  < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EX = 
when  < α ≤ . If E exp(h|X|γ ) < ∞ for some h > , then

∞∑

n=

n–P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> bnε

)

< ∞ for all ε > . (.)

Sung [] improved Theorem A by replacing some much weaker moment conditions.

Theorem B Let {X, Xn, n ≥ } be a sequence of identically distributed NA random vari-
ables, and let {ani,  ≤ i ≤ n, n ≥ } be an array of constants satisfying (.) for some
 < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EX =  when
 < α ≤ . Then the following statements hold:

(i) If α > γ , then E|X|α < ∞ implies (.).
(ii) If α = γ , then E|X|α log |X| < ∞ implies (.).

(iii) If α < γ , then E|X|γ < ∞ implies (.).
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The main purpose of this article is to discuss the complete convergence and the complete
moment convergence for weighted sums of m-NA random variables. We shall extend The-
orem B to m-NA random variables. In addition, we shall extend and improve Theorem B
by obtaining a much stronger conclusion under the same conditions (see Remark .).

It is worthy to point out that the open problem presented in Sung [], see Remark .,
can be solved by means of the method used in this article (see Remark .).

Throughout this paper, the symbol C represents positive constants whose values may
change from one place to another. For a finite set A the symbol �(A) denotes the number
of elements in the set A.

2 Preliminaries
We first recall the following concept of stochastic domination, which is a slight general-
ization of identical distribution. An sequence of random variables {Xn, n ≥ } is said to be
stochastically dominated by a random variable X (write {Xn} ≺ X) if there exists a constant
C >  such that

sup
n≥

P
(|Xn| > x

) ≤ CP
(|X| > x

)
, ∀x > .

The following exponential inequality for m-NA random variables can be proved by
means of Theorem  in Shao [] and the proof of Lemma  in Hu et al. []. Here we
omit the details.

Lemma . Let {Xn, n ≥ } be a sequence of m-NA random variables with zero means and
finite second moments. Let Sj =

∑j
k= Xk and Bn =

∑n
k= EX

k . Then for all n ≥ m, x >  and
a > ,

P
(

max
≤j≤n

|Sj| ≥ x
)

≤ mP
(

max
≤j≤n

|Xj| > a
)

+ m exp

{

–
x

mBn

}

+ m
{

mBn

(xa + mBn)

}x/(ma)

. (.)

Remark . Since e–x ≤ ( + x)– for x > , we get, for x >  and a > ,

exp

{

–
x

mBn

}

= exp

{

–
xa

mBn

}x/(ma)

≤
(

 +
xa

mBn

)–x/(ma)

.

Noting that

{
mBn

(xa + mBn)

}x/(ma)

=
(

 +
xa
mBn

)–x/(ma)

≤
(

 +
xa

mBn

)–x/(ma)

.

Therefore, it follows by (.) that

P
(

max
≤j≤n

|Sj| ≥ x
)

≤ m
n∑

k=

P
(|Xk| > a

)
+ m

(

 +
xa

mBn

)–x/(ma)

. (.)

Now we present a Rosenthal-type inequality for maximum partial sums of m-NA ran-
dom variables, which is the crucial tool in the proof of our main results.
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Lemma . Let {Xn, n ≥ } be a sequence of m-NA random variables with mean zero and
E|Xk|q < ∞ for every  ≤ k ≤ n. Let Sj =

∑j
k= Xk ,  ≤ j ≤ n. Then for q ≥ , there exists a

positive constant C depending only on q such that

E max
≤j≤n

|Sj|q ≤ C

{ n∑

k=

E|Xk|q +

( n∑

k=

EX
k

)q/}

. (.)

Proof Let Bn =
∑n

k= EX
k . Noting that

E|Y |q = q
∫ ∞


P
(|Y | ≥ x

)
xq– dx

(
E|Y |q < ∞)

. (.)

By taking a = x/(mq) in (.), we have

E max
≤j≤n

|Sj|q = q
∫ ∞


P
(

max
≤j≤n

|Sj| ≥ x
)

xq– dx

≤ mq
n∑

k=

∫ ∞


P
(|Xk| ≥ x/(mq)

)
xq– dx

+ mq
∫ ∞



(

 +
x

mqBn

)–q

xq– dx

=: A + B.

By (.), we have A = q+qmq+qq ∑n
k= E|Xk|q. Letting t = x/(mqBn), then

B = +q/m+qq+q/(Bn)q/
∫ ∞


( + t)–qtq/– dt

= +q/m+qq+q/B(q/, q/)

( n∑

k=

EX
k

)q/

,

where

B(α,β) =
∫ 


tα–( – t)β– dt =

∫ ∞


tα–( + t)–(α+β) dt.

Letting C = max{q+qmq+qq, +q/m+qq+q/B(q/, q/)}, we can get (.). The proof
is complete. �

Lemma . (Wang et al. []) Let {Xn, n ≥ } be a sequence of random variables with
{Xn} ≺ X. Then there exists a constant C such that, for all q >  and x > ,

(i) E|Xk|qI(|Xk| ≤ x) ≤ C{E|X|qI(|X| ≤ x) + xqP(|X| > x)},
(ii) E|Xk|qI(|Xk| > x) ≤ CE|X|qI(|X| > x).

The following lemma is very important in the proof of our result, which improves
Lemma . and Lemma . of Sung [].

Lemma . Let {ani,  ≤ i ≤ n, n ≥ } be an array of constants satisfying
∑n

i= |ani|α ≤ n for
some α > . Let bn = n/α(log n)/γ for some γ > . Then
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I =:
∞∑

n=

n–b–α
n

n∑

i=

E|aniX|αI
(|aniX| > bn

) ≤

⎧
⎪⎨

⎪⎩

CE|X|α for α > γ ,
CE|X|α log |X| for α = γ ,
CE|X|γ for α < γ .

Proof From
∑n

i= |ani|α ≤ n, we have

I =
∞∑

n=

n–(log n)–α/γ
n∑

i=

E|aniX|αI
(|X|α > n(log n)α/γ |ani|–α

)

≤
∞∑

n=

n–(log n)–α/γ
n∑

i=

E|aniX|αI

(

|X|α > n(log n)α/γ

( n∑

i=

|ani|α
)–)

≤
∞∑

n=

n–(log n)–α/γ
n∑

i=

E|aniX|αI
(|X| > (log n)/γ )

≤
∞∑

n=

n–(log n)–α/γ E|X|αI
(|X| > (log n)/γ )

=
∞∑

n=

n–(log n)–α/γ
∞∑

m=n
E|X|αI

(
log m < |X|γ ≤ log(m + )

)

=
∞∑

m=

E|X|αI
(
log m < |X|γ ≤ log(m + )

) m∑

n=

n–(log n)–α/γ .

Observing that

m∑

n=

n–(log n)–α/γ ≤

⎧
⎪⎨

⎪⎩

C for α > γ ,
C log log m for α = γ ,
C(log m)–α/γ for α < γ ,

we can get

I ≤

⎧
⎪⎨

⎪⎩

CE|X|α for α > γ ,
CE|X|α log |X| for α = γ ,
CE|X|γ for α < γ .

The proof of Lemma . is completed. �

Remark . Noting that

∞∑

n=

n–
n∑

i=

P
(|aniX| > bn

) ≤
∞∑

n=

n–b–α
n

n∑

i=

E|aniX|αI
(|aniX| > bn

)
,

we know that Lemma . improves Lemma . and Lemma . of Sung []. In addition,
the method used in this paper is novel and much simpler than that in Sung [].

3 Main result
In this section, we state our main results and their proofs.
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Theorem . Let {Xn, n ≥ } be a sequence of m-NA random variables with {Xn} ≺ X, and
let {ani,  ≤ i ≤ n, n ≥ } be an array of constants satisfying (.) for some  < α ≤ . Let
bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EXi =  when  < α ≤ . Then
the following statements hold:

(i) If α > γ , then E|X|α < ∞ implies (.).
(ii) If α = γ , then E|X|α log |X| < ∞ implies (.).

(iii) If α < γ , then E|X|γ < ∞ implies (.).

Remark . Since NA implies m-NA, Theorem . extends Theorem B. Compared with
Sung [], the proof of Theorem . is different from that of Theorem . in Sung [].

Corollary . Let {Xn, n ≥ } be a sequence of m-NA random variables with {Xn} ≺ X, and
let {ai,  ≤ i ≤ n} be a sequence of constants satisfying

Aα = lim
n→∞ sup Aα,n < ∞, Aα

α,n =
n∑

i=

|ai|α/n

for some  < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EXi = 
when  < α ≤ . Then

b–
n

n∑

i=

aiXi →  a.s.

By a similar argument as the proof of Corollary . in Cai [], we can prove this corollary.
Here we omit the details.

Theorem . Assume that the conditions of Theorem . hold, then the following state-
ments hold:

(i) If α > γ , then E|X|α < ∞ implies

∞∑

n=

n–E

{

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

– ε

}α

+

< ∞ for all ε > . (.)

(ii) If α = γ , then E|X|α log |X| < ∞ implies (.).
(iii) If α < γ , then E|X|γ < ∞ implies (.).

Remark . Noting that

∞∑

n=

n–E

{

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

– ε

}α

+

=
∞∑

n=

n–
∫ ∞


P

(

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> ε + t/α

)

dt

=
∫ ∞



∞∑

n=

n–P

(

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> ε + t/α

)

dt.

Therefore, Theorem . extends and improves Theorem B.
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Proof of Theorem . Without loss of generality, we may assume that ani ≥ . For fixed
n ≥ , let

Yni = –bnI(aniXi < –bn) + aniXiI
(
ani|Xi| ≤ bn

)
+ bnI(aniXi > bn),

Zni = (aniXi + bn)I(aniXi < –bn) + (aniXi – bn)I(aniXi > bn).

Then Yni + Zni = aniXi, and it follows by the definition of m-NA and Property  of Joag-Dev
and Proschan [] that {Yni, i ≥ , n ≥ } is sequence of m-NA random variables. Then

∞∑

n=

n–P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> bnε

)

≤  +
∞∑

n=

n–
n∑

i=

P
(
ani|Xi| > bn

)
+

∞∑

n=

n–P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

Yni

∣
∣
∣
∣
∣

> bnε

)

=:  + H + H.

By {Xn} ≺ X and Lemma ., we have

H ≤ C
∞∑

n=

n–
n∑

i=

P
(
ani|X| > bn

) ≤ C
∞∑

n=

n–b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)
< ∞.

Then we prove H < ∞. Noting that either E|X|α log |X| < ∞ for α = γ , or E|X|γ < ∞
for α < γ implies E|X|α < ∞. From (.), without loss of generality, we may assume that
∑n

i= aα
ni ≤ n. We first prove

L =: b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EYni

∣
∣
∣
∣
∣
→  as n → ∞. (.)

For  < α ≤ , by Lemma . and
∑n

i= aα
ni ≤ n, we have

L ≤ Cb–
n

n∑

i=

aniE|X|I(ani|X| ≤ bn
)

+ C
n∑

i=

P
(
ani|X| > bn

)

≤ Cb–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| ≤ bn

)
+ Cb–α

n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)

≤ C(log n)–α/γ E|X|α →  as n → ∞.

For  < α ≤ , by EXi = , |Zni| ≤ ani|Xi|I(ani|Xi| > bn), and Lemma ., we have

L = b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EZni

∣
∣
∣
∣
∣
≤ b–

n

n∑

i=

aniE|Xi|I
(
ani|Xi| > bn

)

≤ Cb–
n

n∑

i=

aniE|X|I(ani|X| > bn
) ≤ Cb–α

n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)

≤ C(log n)–α/γ E|X|α →  as n → ∞.
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Hence (.) holds for  < α ≤ . Then, while n is sufficiently large,

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EYni

∣
∣
∣
∣
∣
≤ bnε/. (.)

Let q > max{, γ /α}. Then by (.), the Markov inequality, and Lemma ., we have

H ≤
∞∑

n=

n–P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

(Yni – EYni)

∣
∣
∣
∣
∣

> bnε/

)

≤ C
∞∑

n=

n–b–q
n E max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

(Yni – EYni)

∣
∣
∣
∣
∣

q

≤ C
∞∑

n=

n–b–q
n

( n∑

i=

E|Yni|
)q/

+ C
∞∑

n=

n–b–q
n

n∑

i=

E|Yni|q

=: H + H.

Firstly, we prove H < ∞. By Lemma ., α ≤ ,
∑n

i= |ani|α ≤ n, and q > γ /α, we have

H ≤ C
∞∑

n=

n–

(

b–
n

n∑

i=

a
niE|X|I

(
ani|X| ≤ bn

)
+

n∑

i=

P
(
ani|X| > bn

)
)q/

≤ C
∞∑

n=

n–

(

b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| ≤ bn

)
+ b–α

n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)
)q/

≤ C
∞∑

n=

n–(log n)– αq
γ

(
E|X|α)q/ < ∞.

Next we consider H. By Lemma ., we have

H ≤ C
∞∑

n=

n–b–q
n

n∑

i=

aq
niE|X|qI

(
ani|X| ≤ bn

)
+ C

∞∑

n=

n–
n∑

i=

P
(
ani|X| > bn

)

=: H + H.

Similar to the proof of H < ∞, we get directly H < ∞. Then final work is to prove H < ∞.
For j ≥  and n ≥ , let

Inj =
{

 ≤ i ≤ n : n/α(j + )–/α < |ani| ≤ n/α j–/α}
.

Then {Inj, j ≥ } are disjoint,
⋃

j≥ Inj = N for all n ≥  from
∑n

i= |ani|α ≤ n, where N is the
set of positive integers. Noting that for all k ≥ , we have

n ≥
n∑

i=

|ani|α =
∞∑

j=

∑

i∈Inj

|ani|α ≥
∞∑

j=

�(Inj)n(j + )– ≥
∞∑

j=k

�(Inj)n(j + )–

=
∞∑

j=k

�(Inj)n(j + )–q/α(j + )q/α– ≥
∞∑

j=k

�(Inj)n(j + )–q/α(k + )q/α–.
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Hence for all k ≥ , we have

∞∑

j=k

�(Inj)j–q/α ≤ C(k + )–q/α . (.)

Then

H =
∞∑

n=

n––q/α(log n)–q/γ
n∑

i=

|ani|qE|X|qI
(|aniX| ≤ n/α(log n)/γ )

=
∞∑

n=

n––q/α(log n)–q/γ
∞∑

j=

∑

i∈Inj

|ani|qE|X|qI
(|aniX| ≤ n/α(log n)/γ )

≤
∞∑

n=

n––q/α(log n)–q/γ
∞∑

j=

�(Inj)nq/α j–q/αE|X|qI
(|X| ≤ (j + )/α(log n)/γ )

≤
∞∑

n=

n–(log n)–q/γ
∞∑

j=

�(Inj)j–q/αE|X|qI
(|X| ≤ (log n)/γ )

+
∞∑

n=

n–(log n)–q/γ
∞∑

j=

�(Inj)j–q/α

×
j∑

k=

E|X|qI
(
k/α(log n)/γ < |X| ≤ (k + )/α(log n)/γ )

=: H∗
 + H∗∗

 .

By (.) and q > γ /α ≥ γ , we have

H∗
 ≤ C

∞∑

n=

n–(log n)–q/γ E|X|qI
(|X|γ ≤ log n

)

= C
∞∑

n=

n–(log n)–q/γ
n∑

m=

E|X|qI
(
log(m – ) < |X|γ ≤ log m

)

= C
∞∑

m=

E|X|qI
(
log(m – ) < |X|γ ≤ log m

) ∞∑

n=m
n–(log n)–q/γ

≤ C
∞∑

m=

(log m)–q/γ E|X|qI
(
log(m – ) < |X|γ ≤ log m

)

≤ CE|X|γ < ∞.

By (.), we have

H∗∗
 =

∞∑

n=

n–(log n)–q/γ

×
∞∑

k=

E|X|qI
(
k/α(log n)/γ < |X| ≤ (k + )/α(log n)/γ ) ∞∑

j=k

�(Inj)j–q/α
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≤ C
∞∑

n=

n–(log n)–q/γ

×
∞∑

k=

(k + )–q/αE|X|qI
(
k/α(log n)/γ < |X| ≤ (k + )/α(log n)/γ )

≤ C
∞∑

n=

n–(log n)–α/γ
∞∑

k=

E|X|αI
(
k/α(log n)/γ < |X| ≤ (k + )/α(log n)/γ )

= C
∞∑

n=

n–(log n)–α/γ E|X|αI
(|X| > (log n)/γ )

.

Noting that we obtain the following result in the proof of Lemma .,

∞∑

n=

n–(log n)–α/γ E|X|αI
(|X| > (log n)/γ ) ≤

⎧
⎪⎨

⎪⎩

CE|X|α for α > γ ,
CE|X|α log |X| for α = γ ,
CE|X|γ for α < γ .

Hence we get H∗∗
 < ∞ combining the assumptions of Theorem .. The proof is com-

pleted. �

Remark . It is easily seen that the proof of H < ∞ complements Lemma . of Sung
[]. In fact, in that lemma Sung only proved H < ∞ for the case α = γ . It is worthy to
point out that ani =  or |ani| >  is required in Sung []. Here, we do not require the extra
conditions.

Remark . Sung [] proved Theorem . for the case α = γ when {Xn, n ≥ } is a se-
quence of ρ∗-mixing random variables. However, he posed an open problem, that is,
whether Theorem . (i.e. Theorem . in Sung []) remains true for ρ∗-mixing random
variables.

The crucial tool of the proof of Theorem . is the Rosenthal-type inequality for max-
imum partial sums of m-NA random variables. For ρ∗-mixing random variables, the
Rosenthal-type inequality for maximum partial sums also holds (see Utev and Peligrad
[]). Therefore, it is easy to solve the above open problem by following the method used
in the proof of Theorem ..

Proof of Theorem . For any given ε > , we have

∞∑

n=

n–E

{

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

– ε

}α

+

=
∞∑

n=

n–
∫ ∞


P

(

b–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> ε + t/α

)

dt

≤
∞∑

n=

n–P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> bnε

)

+
∞∑

n=

n–
∫ ∞


P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

aniXi

∣
∣
∣
∣
∣

> bnt/α

)

dt

=: I + I.
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Therefore, to prove (.), one needs only to prove that I < ∞ and I < ∞. By Theorem .,
we get directly I < ∞. For all t ≥ , we denote

Yni = –bnt/αI
(
aniXi < –bnt/α)

+ aniXiI
(
ani|Xi| ≤ bnt/α)

+ bnt/αI
(
aniXi > bnt/α)

,

Zni = aniXi – Yni.

Then

I ≤
∞∑

n=

n–
∫ ∞


P
(

max
≤i≤n

ani|Xi| > bnt/α
)

dt

+
∞∑

n=

n–
∫ ∞


P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

Yni

∣
∣
∣
∣
∣

> bnt/α

)

dt

=: I + I.

Noting that

∫ ∞


P
(
ani|X| > bnt/α)

dt ≤ b–α
n aα

niE|X|αI
(|aniX| > bn

)
,

by {Xi} ≺ X, Lemma ., and the assumptions of Theorem ., we have

I ≤
∞∑

n=

n–
n∑

i=

∫ ∞


P
(
ani|Xi| > bnt/α)

dt ≤
∞∑

n=

n–
n∑

i=

∫ ∞


P
(
ani|X| > bnt/α)

dt

≤
∞∑

n=

n–b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)
< ∞.

Next we prove that I < ∞. We first show

J = sup
t≥

t–/αb–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EYni

∣
∣
∣
∣
∣
→  as n → ∞. (.)

For  < α ≤ , by Lemma . and
∑n

i= aα
ni ≤ n, we have

J ≤ C sup
t≥

t–/αb–
n

n∑

i=

aniE|X|I(ani|X| ≤ bnt/α)
+ C sup

t≥

n∑

i=

P
(
ani|X| > bnt/α)

≤ C sup
t≥

t–b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| ≤ bnt/α)

+ Cb–α
n

n∑

i=

aα
niE|X|α

≤ C(log n)–α/γ E|X|α →  as n → ∞.

For  < α ≤ , by EXi = , |Zni| ≤ ani|Xi|I(ani|Xi| > bnt/α), and Lemma ., we have

J = sup
t≥

t–/αb–
n max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EZni

∣
∣
∣
∣
∣

≤ C sup
t≥

t–/αb–
n

n∑

i=

aniE|X|I(ani|X| > bnt/α)
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≤ C sup
t≥

t–b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| > bnt/α)

≤ C(log n)–α/γ E|X|α →  as n → ∞.

From (.), we know that, while n is sufficiently large,

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

EYni

∣
∣
∣
∣
∣
≤ bnt/α/ (.)

holds uniformly for t ≥ .
Let q > max{, γ /α}. Then by (.) and Lemma ., we have

I ≤
∞∑

n=

n–
∫ ∞


P

(

max
≤m≤n

∣
∣
∣
∣
∣

m∑

i=

(Yni – EYni)

∣
∣
∣
∣
∣

> bnt/α/

)

dt

≤ C
∞∑

n=

n–b–q
n

∫ ∞


t–q/αE max

≤m≤n

∣
∣
∣
∣
∣

m∑

i=

(Yni – EYni)

∣
∣
∣
∣
∣

q

dt

≤ C
∞∑

n=

n–b–q
n

∫ ∞


t–q/α

n∑

i=

E|Yni|q dt + C
∞∑

n=

n–b–q
n

∫ ∞


t–q/α

( n∑

i=

E|Yni|
)q/

dt

=: I + I.

By Lemma ., α ≤ , and q > γ /α, we have

I ≤ C
∞∑

n=

n–b–q
n

∫ ∞


t–q/α

( n∑

i=

a
niE|X|I

(
ani|X| ≤ bnt/α)

+ b
nt/α

n∑

i=

P
(
ani|X| > bnt/α)

)q/

dt

≤ C
∞∑

n=

n–
∫ ∞



(

b–α
n t–

n∑

i=

aα
niE|X|αI

(
ani|X| ≤ bnt/α)

+ b–α
n t–

n∑

i=

aα
niE|X|αI

(
ani|X| > bnt/α)

)q/

dt

≤ C
∞∑

n=

n–
∫ ∞


t–q/

(

b–α
n

n∑

i=

aα
niE|X|α

)q/

dt

≤ C
∞∑

n=

n–(log n)–αq/(γ )(E|X|α)q/ < ∞.

For I, we have

I ≤ C
∞∑

n=

n–b–q
n

n∑

i=

∫ ∞


t–q/αaq

niE|X|qI
(
ani|X| ≤ bnt/α)

dt

+ C
∞∑

n=

n–
n∑

i=

∫ ∞


P
(
ani|X| > bnt/α)

dt



Wu et al. Journal of Inequalities and Applications  (2015) 2015:200 Page 13 of 14

= C
∞∑

n=

n–b–q
n

n∑

i=

∫ ∞


t–q/αaq

niE|X|qI
(
ani|X| ≤ bn

)
dt

+ C
∞∑

n=

n–b–q
n

n∑

i=

∫ ∞


t–q/αaq

niE|X|qI
(
bn < ani|X| ≤ bnt/α)

dt

+ C
∞∑

n=

n–
n∑

i=

∫ ∞


P
(
ani|X| > bnt/α)

dt

=: I + I + I.

Similar to the proof of I < ∞, we get I < ∞. Similar to the proof of H < ∞, we get I < ∞.
By q >  ≥ α and the following standard arguments, we get

b–q
n

∫ ∞


t–q/αaq

niE|X|qI
(
bn < ani|X| ≤ bnt/α)

dt

≤ b–q
n

∞∑

m=

∫ m+

m
t–q/αaq

niE|X|qI
(
bn < ani|X| ≤ bnt/α)

dt

≤ b–q
n

∞∑

m=

m–q/αaq
niE|X|qI

(
bn < ani|X| ≤ bn(m + )/α)

≤ b–q
n

∞∑

m=

m–q/α
m∑

s=

aq
niE|X|qI

(
bns/α < ani|X| ≤ bn(s + )/α)

≤ b–q
n

∞∑

s=

aq
niE|X|qI

(
bns/α < ani|X| ≤ bn(s + )/α) ∞∑

m=s
m–q/α

≤ Cb–q
n

∞∑

s=

s–q/αaq
niE|X|qI

(
bns/α < ani|X| ≤ bn(s + )/α)

≤ Cb–α
n

∞∑

s=

aα
niE|X|αI

(
bns/α < ani|X| ≤ bn(s + )/α)

≤ Cb–α
n aα

niE|X|αI
(
ani|X| > bn

)
.

Hence by Lemma ., we have

I ≤ C
∞∑

n=

n–b–α
n

n∑

i=

aα
niE|X|αI

(
ani|X| > bn

)
< ∞.

The proof is completed. �
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