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Вводится понятие m-отрицательно ортант зависимых (сокращен-
но m-NOD) случайных величин и для них устанавливаются момент-
ные неравенства, такие как неравенство Марцинкевича–Зигмунда и
Розенталя. Как одно из применений моментных неравенств изуча-
ются Lr- и почти наверное сходимости для m-NOD случайных вели-
чин при определенных условиях на равномерную интегрируемость.
С другой стороны, устанавливается асимптотическое разложение об-
ратных моментов для неотрицательных m-NOD случайных величин
с конечными начальными моментами. Результаты статьи обобщают
или улучшают некоторые известные результаты для независимых и
некоторых классов зависимых последовательностей.
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1. Introduction. It is well known that the Marcinkiewicz–Zygmund
type inequality and Rosenthal type inequality play important role in prob-
ability limit theory and mathematical statistics, especially in establishing
strong convergence, complete convergence, weak convergence, consistency
and asymptotic normality in many stochastic models. There are many se-
quences of random variables satisfying the Marcinkiewicz–Zygmund type in-
equality or Rosenthal type inequality under some suitable conditions, such
as independent sequence, ϕ-mixing sequence with the mixing coefficients sat-
isfying certain conditions (see [36]), ρ-mixing sequence with the mixing co-
efficients satisfying certain conditions (see [20]), ρ̃-mixing sequence (see [32]
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or [40]), negatively associated sequence (NA, in short, see [21]), negatively
orthant dependent sequence (NOD, in short, see [2]), extended negatively
dependent sequence (END, in short, see [22]), negatively superadditive de-
pendent sequence (NSD, in short, see [11] or [39]), asymptotically almost
negatively associated sequence with the mixing coefficients satisfying certain
conditions (AANA, in short, see [49]), ρ−-mixing sequence with the mixing
coefficients satisfying certain conditions (see [34]), and so on.

The main purpose of the paper is to introduce a new concept of depen-
dent structure — m-negatively orthant dependence (m-NOD, in short) and
establish the Marcinkiewicz–Zygmund type inequality and Rosenthal type
inequality for m-NOD random variables. In addition, we will give some
applications of Marcinkiewicz–Zygmund type inequality and Rosenthal type
inequality to Lr convergence, strong law of large numbers and the asymptotic
approximation of inverse moments for nonnegative m-NOD random variables
with finite first moments.

Firstly, let us recall the definition of negatively orthant dependent random
variables which was introduced by Joav-Dev and Proschan [14] as follows.

Definition 1.1. A finite collection of random variables X1, . . . , Xn is said
to be negatively orthant dependent (NOD, in short) if both

P(X1 > x1, . . . , Xn > xn) 6
n∏

i=1

P(Xi > xi)

and

P(X1 6 x1, . . . , Xn 6 xn) 6
n∏

i=1

P(Xi 6 xi)

hold for each n > 1 and all real numbers x1, . . . , xn. An infinite sequence
{Xn, n > 1} is said to be NOD if every finite subcollection is NOD.

An array {Xni, i > 1, n > 1} of random variables is said to be rowwise
NOD if for every n > 1, {Xni, i > 1} is a sequence of NOD random variables.

The class of NOD random variables is a very general dependent structure,
which includes independent random variables and NA random variables as
special cases. For more details about the probability inequalities, moment
inequalities, or probability limit theory and applications, one can refer to
[14], [4], [33], [31], [16], [2], [41], [37], [38], [42], [50], [19], [25], [45], and etc.

Inspired by the definition of NOD random variables, we introduce the
concept of m-negatively orthant dependent random variables as follows.

Definition 1.2. Let m > 1 be a fixed integer. A sequence {Xn, n > 1}
of random variables is said to be m-negatively orthant dependent (m-NOD,
in short) if for any n > 2 and any i1, . . . , in such that |ik − ij | > m for all
1 6 k ̸= j 6 n, we have that Xi1 , . . . , Xin are negatively orthant dependent.
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An array {Xni, i > 1, n > 1} of random variables is said to be rowwise
m-NOD if for every n > 1, {Xni, i > 1} is a sequence of m-NOD random
variables.

When n = 2, m-NOD reduces to m-pairwise NOD which was introduced
by Anh in [1], and carefully studied by Wu and Rosalsky in [46]. When
m = 1, the concept m-NOD random variables reduces to the so-called NOD
random variables. Hence, the concept of m-NOD random variables is a nat-
ural extension from NOD random variables. Joav-Dev and Proschan in [14]
pointed out that NA implies NOD, but NOD does not implies NA. Hu and
Yang [12] or Hu [13] pointed out that NSD implies NOD. Hence, the class of
m-NOD random variables includes independent random variables, NA ran-
dom variables, NSD random variables, NOD random variables, and m-NA
random variables (see [10]) as special cases. Studying the probability inequal-
ities, moment inequalities, limiting behavior of m-NOD random variables and
their applications in many stochastic models are of great interest.

The following lemmas for NOD random variables will be used in estab-
lishing the Marcinkiewicz–Zygmund type inequality and Rosenthal type in-
equality for m-NOD random variables.

Lemma 1.1 (cf. [4]). Let random variables X1, . . . , Xn be NOD, f1, . . . , fn
be all nondecreasing (or all nonincreasing) functions, then random variables
f1(X1), . . . , fn(Xn) are NOD.

Lemma 1.2 (cf. [2]). Let {Xn, n > 1} be a sequence of NOD random
variables with EXn = 0 and E|Xn|p < ∞ for some p > 1 and every n > 1.
Then there exist positive constants Cp and Dp depending only on p such that
for every n > 1,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p 6 Cp

n∑
i=1

E|Xi|p for 1 6 p 6 2 (1.1)

and

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p 6 Dp

{ n∑
i=1

E|Xi|p +
( n∑

i=1

EX2
i

)p/2}
for p > 2. (1.2)

Throughout the paper, let C denote a positive constant not depending
on n, which may be different in various places; an = O(bn) stands for an 6
Cbn, where {an, n > 1} and {bn, n > 1} are sequences of nonnegative real
numbers. Denote log x = lnmax(x, e), x+ = xI(x > 0), x− = −xI(x < 0).

This work is organized as follows: the Marcinkiewicz–Zygmund type in-
equality and Rosenthal type inequality for m-NOD random variables are pro-
vided in Section 2. Some results on Lr convergence and strong law of large
numbers for arrays of rowwise m-NOD random variables are established in
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Section 3. The asymptotic approximation of inverse moments for nonneg-
ative m-NOD random variables with finite first moments is investigated in
Section 4.

2. Marcinkiewicz–Zygmund type inequality and Rosenthal
type inequality for m-NOD random variables. In this section,
we will establish the Marcinkiewicz–Zygmund type inequality and Rosenthal
type inequality for m-NOD random variables, which can be applied to prove
the strong convergence, Lr convergence, weak convergence, complete conver-
gence, consistency and asymptotic normality in many stochastic models, and
so on. To prove the main results, we need the following lemma, which will
be used frequently throughout the paper.

Lemma 2.1. Let {Xn, n > 1} be a sequence of m-NOD random variables.
If {fn( · ), n > 1} are all nondecreasing (or nonincreasing) functions, then
random variables {fn(Xn), n > 1} are m-NOD.

This lemma can be obtained easily by the definition of m-NOD random
variables and Lemma 1.1. So the details are omitted.

With Lemma 1.2 and Lemma 2.1 accounted for, we can establish the
Marcinkiewicz–Zygmund type inequality and Rosenthal type inequality for
m-NOD random variables as follows.

Theorem 2.1. Let {Xn, n > 1} be a sequence of m-NOD random vari-
ables with EXn = 0 and E|Xn|p < ∞ for some p > 1 and every n > 1.
Then there exist positive constants Cm,p and Dm,p depending only on m and
p such that for every n > m,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p6

Cm,p

n∑
i=1

E|Xi|p, for 1 6 p 6 2,

Dm,p

[ n∑
i=1

E|Xi|p+
( n∑

i=1

EX2
i

)p/2]
, for p > 2,

(2.1)

and

E

(
max
16j6n

∣∣∣∣ j∑
i=1

Xi

∣∣∣∣p)6



Cm,p ln
p n

n∑
i=1

E|Xi|p, for 1 6 p 6 2,

Dm,p ln
p n

[ n∑
i=1

E|Xi|p+
( n∑

i=1

EX2
i

)p/2]
,

for p > 2.

(2.2)

Proof. From (2.1), we can see that (2.2) can be obtained immediately by
a similar way of the process of Theorem 2.3.1 in [28]. So we only need to
prove (2.1).
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For fixed n > m, let r = ⌈n/m⌉. Define

Yi =

{
Xi, 1 6 i 6 n,

0, i > n.

Denote S′
mr+j =

∑r
i=0 Ymi+j for j = 1, . . . ,m. Noting that

∑n
i=1Xi =∑m

j=1 S
′
mr+j , we have by Cr-inequality that

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p = E

∣∣∣∣ m∑
j=1

S′
mr+j

∣∣∣∣p 6 mp−1
m∑
j=1

E|S′
mr+j |p. (2.3)

By definition of m-NOD random variables, we see that Yj , Ym+j , . . . , Ymr+j

are NOD random variables for each j = 1, . . . ,m.
For 1 6 p 6 2, we have by (1.1) and (2.3) that for any n > m,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p 6 mp−1Cp

m∑
j=1

r∑
i=0

E|Ymi+j |p

6 mpCp

n∑
i=1

E|Xi|p
.
= Cm,p

n∑
i=1

E|Xi|p. (2.4)

For p > 2, we have by (1.2) and (2.3) that for any n > m,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p 6 mp−1Dp

m∑
j=1

[ r∑
i=0

E|Ymi+j |p +
( r∑

i=0

EY 2
mi+j

)p/2]

6 mpDp

[ n∑
i=1

E|Xi|p +
( n∑

i=1

EX2
i

)p/2]
.
= Dm,p

[ n∑
i=1

E|Xi|p +
( n∑

i=1

EX2
i

)p/2]
. (2.5)

The desired result (2.1) follows by (2.4) and (2.5) immediately. This com-
pletes the proof of the theorem.

Remark 2.1. Assume that (2.1) holds for any n > m and
∑∞

i=1Xi con-
verges almost surely. Then

E

∣∣∣∣ ∞∑
i=1

Xi

∣∣∣∣p 6

Cm,p

∞∑
i=1

E|Xi|p, for 1 6 p 6 2,

Dm,p

[ ∞∑
i=1

E|Xi|p +
( ∞∑

i=1

EX2
i

)p/2]
, for p > 2.

(2.6)
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In fact, it follows by Fatou’s lemma that

E

∣∣∣∣ ∞∑
i=1

Xi

∣∣∣∣p = E

∣∣∣∣lim inf
n→∞

n∑
i=1

Xi

∣∣∣∣p 6 E

(
lim inf
n→∞

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p)

6 lim inf
n→∞

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p 6 lim sup
n→∞

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p, (2.7)

which together with (2.1) yields (2.6).
Remark 2.2. Let {an, n > 1} be a sequence of real numbers. Under the

conditions of Theorem 2.1, we have for n > m that

E

∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣p6


2p−1Cm,p

n∑
i=1

E|aiXi|p, for 1 6 p 6 2,

2pDm,p

[ n∑
i=1

E|aiXi|p+
( n∑

i=1

Ea2iX
2
i

)p/2]
,

for p > 2.

(2.8)

Assume further that
∑∞

i=1 aiXi converges almost surely, we have for n > m

that

E

∣∣∣∣ ∞∑
i=1

aiXi

∣∣∣∣p6


2p−1Cm,p

∞∑
i=1

E|aiXi|p, for 1 6 p 6 2,

2pDm,p

[ ∞∑
i=1

E|aiXi|p+
( ∞∑

i=1

Ea2iX
2
i

)p/2]
,

for p > 2.

(2.9)

Actually, for fixed n > m, {a+i Xi, 1 6 i 6 n} and {a−i Xi, 1 6 i 6 n} are
both m-NOD random variables from Lemma 2.1. Noting that ani = a+ni−a−ni,
we have by Cr-inequality that

E

∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣p 6 2p−1E

∣∣∣∣ n∑
i=1

a+i Xi

∣∣∣∣p + 2p−1E

∣∣∣∣ n∑
i=1

a−i Xi

∣∣∣∣p. (2.10)

Note that |ai|p = (a+i )
p + (a−i )

p, the desired result (2.8) follows by (2.1)
and (2.10) immediately.

Similar to the proof of (2.7), we can get (2.9) by (2.8) immediately.
3. Lr convergence and strong convergence for m-NOD ran-

dom variables. In the previous section, we established the Marcinkiewicz–
Zygmund type inequality and Rosenthal type inequality for m-NOD random
variables. As one application of the moment inequalities for m-NOD ran-
dom variables, we will study the Lr convergence and strong convergence for
m-NOD random variables under some uniformly integrable conditions.
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In what follows, let {un, n > 1} and {vn, n > 1} be two sequences of
integers (not necessary positive or finite) such that vn > un for all n > 1 and
vn − un → ∞ as n → ∞. Let {kn, n > 1} be a sequence of positive numbers
such that kn → ∞ as n → ∞ and {h(n), n > 1} be an increasing sequence
of positive constants with h(n) ↑ ∞ as n ↑ ∞.

3.1. Lr convergence and weak law of large numbers. The notion
of h-integrability for an array of random variables concerning an array of
constant weights was introduced by Cabrera and Volodin [17] as follows.

Definition 3.1. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and let {ani, un 6 i 6 vn, n > 1} be an array of constants with∑vn

i=un
|ani| 6 C for all n ∈ N and some constant C > 0. The array

{Xni, un 6 i 6 vn, n > 1} is said to be h-integrable with respect to the
array of constants {ani} if

sup
n>1

vn∑
i=un

|ani|E|Xni| < ∞ and lim
n→∞

vn∑
i=un

|ani|E|Xni|I(|Xni| > h(n)) = 0.

The main idea of the notion of h-integrability with respect to the array
of constants {ani} is to deal with weighted sums of random variables. Sung
et al. [29] introduced a new concept of integrability which deals with usual
normed sums of random variables as follows.

Definition 3.2. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and r > 0. The array {Xni, un 6 i 6 vn, n > 1} is said to be
h-integrable with exponent r if

sup
n>1

1

kn

vn∑
i=un

E|Xni|r < ∞ and lim
n→∞

1

kn

vn∑
i=un

E|Xni|rI(|Xni|r > h(n)) = 0.

Under the conditions of h-integrability with exponent r and h-integrability
with respect to the array of constants {ani}, Sung et al. [29] obtained the
following Theorem A and Theorem B for arrays of rowwise NA random vari-
ables, respectively.

Theorem A. Let 1 6 r < 2. Suppose that {Xni, un 6 i 6 vn, n > 1} is
an array of rowwise NA random variables. Let {ani, un 6 i 6 vn, n > 1} be
an array of constants. Assume that the following conditions hold:

(i) {|Xni|r} is h-integrable concerning the array {|ani|r}, i.e.,

sup
n>1

vn∑
i=un

|ani|rE|Xni|r < ∞

and

lim
n→∞

vn∑
i=un

|ani|rE|Xni|rI(|Xni|r > h(n)) = 0;
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(ii) h(n) supun6i6vn |ani| → 0 as n → ∞.
Then

vn∑
i=un

ani(Xni −EXni) → 0

in Lr and, hence, in probability as n → ∞.
Theorem B. Suppose that {Xni, un 6 i 6 vn, n > 1} is an array of

rowwise NA h-integrable with exponent 1 6 r < 2 random variables, kn → ∞,
h(n) ↑ ∞, and h(n)/kn → 0 as n → ∞. Then∑vn

i=un
(Xni −EXni)

k
1/r
n

→ 0

in Lr and, hence, in probability as n → ∞.
Inspired by the concept of h-integrability with exponent r, Wang and

Hu [35] introduced a new and weaker concept of uniform integrability as
follows.

Definition 3.3. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and r > 0. The array {Xni, un 6 i 6 vn, n > 1} is said to be
residually h-integrable (R-h-integrable, in short) with exponent r if

sup
n>1

1

kn

vn∑
i=un

E|Xni|r < ∞

and

lim
n→∞

1

kn

vn∑
i=un

E
(
|Xni| − h1/r(n)

)r
I(|Xni|r > h(n)) = 0.

Under the assumption of R-h-integrability with exponent r, Wang and
Hu [35] established some weak laws of large numbers for arrays of dependent
random variables. Note that(

|Xni| − h1/r(n)
)r
I(|Xni|r > h(n)) 6 |Xni|rI(|Xni|r > h(n)),

hence, the concept of R-h-integrability with exponent r is weaker than h-inte-
grability with exponent r.

Just as h-integrability with exponent r, the main idea of the notion of
R-h-integrability with exponent r is used to deal with usual normed sums of
random variables. We now introduce a new and weaker concept of integra-
bility which deals with weighted sums of random variables.

Definition 3.4. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and let {ani, un 6 i 6 vn, n > 1} be an array of constants. Let
r > 0. The array {Xni, un 6 i 6 vn, n > 1} is said to be R-h-integrable with
exponent r concerning the array {ani, un 6 i 6 vn, n > 1} if

sup
n>1

vn∑
i=un

|ani|rE|Xni|r < ∞



Moment inequalities for m-NOD random variables and their applications 595

and

lim
n→∞

vn∑
i=un

|ani|rE
(
|Xni| − h1/r(n)

)r
I(|Xni|r > h(n)) = 0.

When r = 1, the notion of R-h-integrability with exponent r concern-
ing the array of constants {ani} reduces to the so-called R-h-integrability
concerning the array of constants {ani}. For more details about the Lr con-
vergence for weighted sums of random variables based on R-h-integrability,
one can refer to [48], [25], and so on.

The main purpose of this section is to generalize and improve the results of
Theorem A and Theorem B for arrays of rowwise NA random variables to the
case of arrays of rowwise m-NOD random variables under some weaker con-
ditions. In addition, we will study the Lr convergence and weak law of large
numbers for a class of random variables under the condition of h-integrability
with exponent 1 6 r < 2, which generalize the corresponding ones of [44] and
[30], and improve the corresponding one of [6]. The key techniques used here
are the Marcinkiewicz–Zygmund type inequality and the truncated method.

Our main results on Lr convergence and weak law of large numbers for
arrays of rowwise m-NOD are as follows. The first one is based on the
condition of R-h-integrability with exponent 1 6 r < 2 concerning the array
of constants {ani}.

Theorem 3.1. Let 1 6 r < 2. Let {Xni, un 6 i 6 vn, n > 1} be an array
of rowwise m-NOD random variables and let {ani, un 6 i 6 vn, n > 1} be
an array of constants. Assume that the following conditions hold:

(i) {Xni, un 6 i 6 vn, n > 1} is R-h-integrable with exponent r concerning
the array of constants {ani}, i.e.,

sup
n>1

vn∑
i=un

|ani|rE|Xni|r < ∞

and

lim
n→∞

vn∑
i=un

|ani|rE
(
|Xni| − h1/r(n)

)r
I(|Xni|r > h(n)) = 0;

(ii) h(n) supun6i6vn |ani|
r → 0 as n → ∞.

Then
vn∑

i=un

ani(Xni −EXni) → 0

in Lr and, hence, in probability as n → ∞.
Proof. Since ani = a+ni − a−ni, without loss of generality, we assume that

ani > 0. For fixed n > 1, denote for un 6 i 6 vn that

Yni = −h1/r(n)I
(
Xni < −h1/r(n)

)
+XniI

(
|Xni| 6 h1/r(n)

)
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+ h1/r(n)I
(
Xni > h1/r(n)

)
,

Zni = Xni − Yni =
(
Xni + h1/r(n)

)
I
(
Xni < −h1/r(n)

)
+
(
Xni − h1/r(n)

)
I
(
Xni > h1/r(n)

)
,

Sn =

vn∑
i=un

ani(Yni −EYni), Tn =

vn∑
i=un

ani(Zni −EZni).

Note that
vn∑

i=un

ani(Xni −EXni) = Sn + Tn, n > 1,

we have by Cr-inequality that

E

∣∣∣∣ vn∑
i=un

ani(Xni −EXni)

∣∣∣∣r 6 CE|Sn|r + CE|Tn|r.

To prove
∑vn

i=un
ani(Xni−EXni) → 0 in Lr, we only need to show E|Sn|r → 0

and E|Tn|r → 0 as n → ∞, where 1 6 r < 2.
Firstly, we will show that E|Sn|r → 0 as n → ∞. Note that 1 6 r < 2, it

suffices to show ES2
n → 0 as n → ∞.

For fixed n> 1, it follows by Lemma 2.1 that {ani(Yni−EYni), un6 i6 vn}
are m-NOD random variables. Note that |Yni| = min{|Xni|, h1/r(n)}, we
have by Theorem 2.1 and Remark 2.1 that

ES2
n = E

∣∣∣∣ vn∑
i=un

ani(Yni −EYni)

∣∣∣∣2 6 C

vn∑
i=un

a2niEY 2
ni

6 Ch(2−r)/r(n) sup
n>1

|ani|2−r
vn∑

i=un

|ani|rE|Yni|r

6 C
[
h(n) sup

un6i6vn

|ani|r
](2−r)/r

vn∑
i=un

|ani|rE|Xni|r → 0 as n → ∞,

which implies that ES2
n → 0 as n → ∞ and, thus, E|Sn|r → 0 as n → ∞.

Further, we will show that E|Tn|r → 0 as n → ∞.
For fixed n > 1, it follows by Lemma 2.1 again that {ani(Zni−EZni), un 6

i 6 vn} are m-NOD random variables. Note that

|Zni| =
(
|Xni| − h1/r(n)

)
I
(
|Xni| > h1/r(n)

)
,

we have by Theorem 2.1 and Remark 2.1 again that

E|Tn|r = E

∣∣∣∣ vn∑
i=un

ani(Zni −EZni)

∣∣∣∣r 6 C

vn∑
i=un

|ani|rE|Zni|r

= C

vn∑
i=un

|ani|rE
(
|Xni| − h1/r(n)

)r
I
(
|Xni|r > h(n)

)
→ 0 as n → ∞,
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which implies that E|Tn|r → 0 as n → ∞. This completes the proof of the
theorem.

If we take ani = k
−1/r
n for un 6 i 6 vn and n > 1, then we can get

the following result on Lr convergence and weak law of large numbers for
arrays of rowwise m-NOD R-h-integrable with exponent 1 6 r < 2 random
variables.

Corollary 3.1. Let {Xni, un 6 i 6 vn, n > 1} be an array of rowwise
m-NOD R-h-integrable random variables with exponent 1 6 r < 2, kn → ∞,
h(n) ↑ ∞, and h(n)/kn → 0 as n → ∞. Then

1

k
1/r
n

vn∑
i=un

(Xni −EXni) → 0

in Lr and, hence, in probability as n → ∞.
Remark 3.1. Note that(

|Xni| − h1/r(n)
)r
I(|Xni|r > h(n)) 6 |Xni|rI(|Xni|r > h(n)),

and h(n) supun6i6vn |ani| → 0 implies h(n) supun6i6vn |ani|
r → 0 (here, 1 6

r < 2 and h(n) ↑ ∞ as n → ∞), which imply that the conditions of Theo-
rem 3.1 are weaker than those of Theorem A. Hence, the result of Theorem 3.1
generalizes and improves the corresponding one of Theorem A.

Remark 3.2. Since the concept of R-h-integrability with exponent r is
weaker than h-integrability with exponent r and m-NOD is weaker than
NA, the result of Corollary 3.1 generalizes and improves the corresponding
one of Theorem B.

Further, we will establish the Lr-convergence and weak law of large num-
bers for a class of random variables satisfying the Marcinkiewicz–Zygmund
inequality with exponent 2, which includes m-NOD as a special case. The
main ideas are inspired by [6] and [30].

We say that a sequence {Xn, n > 1} of random variables satisfies the
Marcinkiewicz–Zygmund inequality with exponent 2, if for all n > 1,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣2 6 C

n∑
i=1

E|Xi|2,

where C is a positive constant not depending on n.
We say that an array {Xni, un 6 i 6 vn, n > 1} of random variables

satisfies the Marcinkiewicz–Zygmund inequality with exponent 2, if for all
n > 1,

E

∣∣∣∣ vn∑
i=un

Xni

∣∣∣∣2 6 C

vn∑
i=un

E|Xni|2,

where C is a positive constant not depending on n.
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Remark 3.3. There are many sequences of mean zero random variables sat-
isfying the Marcinkiewicz–Zygmund inequality with exponent 2, such as in-
dependent sequence, martingale difference sequence, ϕ-mixing sequence with
the mixing coefficients satisfying certain conditions (see [36]), ρ-mixing se-
quence with the mixing coefficients satisfying certain conditions (see [20]),
ρ̃-mixing sequence (see [32]), NA sequence (see [21]), NOD sequence (see [2]),
END sequence (see [22]), NSD sequence (see [11] or [39]), AANA sequence
with the mixing coefficients satisfying certain conditions (see [49]), ρ−-mixing
sequence with the mixing coefficients satisfying certain conditions (see [34]),
pairwise negatively quadrant dependent sequence (PNQD, in short, see [17]),
m-NOD sequence (see Theorem 2.1 in the paper), linearly negative quadrant
dependent sequence (LNQD, in short, [51]), and so on.

Our main result on Lr convergence and weak law of large numbers for a
class of random variables satisfying the Marcinkiewicz–Zygmund inequality
with exponent 2 is as follows.

Theorem 3.2. Let 1 6 r < 2. Let {Xni, un 6 i 6 vn, n > 1} be an
array of random variables and let {ani, un 6 i 6 vn, n > 1} be an array of
constants. Assume that the following conditions hold:

(i) supn>1

∑vn
i=un

|ani|rE|Xni|r < ∞,
(ii) for any ε > 0,

lim
n→∞

vn∑
i=un

|ani|rE|Xni|rI(|Xni|r > ε) = 0,

(iii) for any t > 0, the array {Yni −EYni, un 6 i 6 vn, n > 1} satisfies the
Marcinkiewicz–Zygmund inequality with exponent 2, where

Yni = aniXniI
(
|aniXni| 6 t1/r

)
or

Yni = −t1/rI
(
aniXni < −t1/r

)
+ aniXniI

(
|aniXni| 6 t1/r

)
+ t1/rI

(
aniXni > t1/r

)
.

Then
vn∑

i=un

ani(Xni −EXni) → 0

in Lr and, hence, in probability as n → ∞.
Proof. The proof is similar to that of [30]. So the details are omitted.
With Theorem 3.2 in hand and similar to the proof of Corollary 2.1 in [30],

we can get the following corollary.
Corollary 3.2. Let {ani, un 6 i 6 vn, n > 1} be an array of constants

satisfying kn
.
= 1/ supun6i6vn |ani|

r → ∞, 0 < h(n) ↑ ∞, and h(n)/kn → 0
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as n → ∞. Let {Xni, un 6 i 6 vn, n > 1} be an array of h-integrable random
variables with exponent 1 6 r < 2. Assume further that the condition (iii)
in Theorem 3.2 holds. Then

vn∑
i=un

ani(Xni −EXni) → 0

in Lr and, hence, in probability as n → ∞.
Taking ani = k

−1/r
n for un 6 i 6 vn and n > 1 in Corollary 3.2, we can

get the following corollary immediately.
Corollary 3.3. Let {Xni, un 6 i 6 vn, n > 1} be an array of h-integrable

with exponent 1 6 r < 2 random variables, kn → ∞, 0 < h(n) ↑ ∞,
and h(n)/kn → 0 as n → ∞. Assume further that the condition (iii) in
Theorem 3.2 holds, where ani = k

−1/r
n for un 6 i 6 vn and n > 1. Then∑vn

i=un
(Xni −EXni)

k
1/r
n

→ 0

in Lr and, hence, in probability as n → ∞.
Remark 3.4. We have pointed out that PNQD sequence satisfies the

Marcinkiewicz–Zygmund inequality with exponent 2 in Remark 3.3. Hence,
the results of Theorem 3.2 and Corollaries 3.2 and 3.3 in the paper generalize
the corresponding ones of Theorem 2.1 and Corollaries 2.1 and 2.2 for PNQD
random variables in [30], respectively. In addition, note that LNQD implies
PNQD (see [30]), hence, our results of Corollary 3.2 and Corollary 3.3 gen-
eralize the corresponding ones of Theorem 3.1 and Corollary 3.1 for LNQD
random variables in [44], respectively.

Remark 3.5. Under the conditions of Corollary 3.2, Chen et al. in [6]
established the L1 convergence and weak law of large numbers for arrays
of rowwise h-integrable with exponent r = 1 random variables satisfying
the Marcinkiewicz–Zygmund inequality with exponent 2. Here, we estab-
lished the Lr convergence and weak law of large numbers for arrays of
rowwise h-integrable with exponent 1 6 r < 2 random variables satis-
fying the Marcinkiewicz–Zygmund inequality with exponent 2. In addi-
tion, the condition «kn

.
= 1/ supun6i6vn |ani|

r → ∞, 0 < h(n) ↑ ∞ and
h(n)/kn → 0 as n → ∞» in Corollary 3.2 in the paper is weaker than
«kn

.
= 1/ supun6i6vn |ani| → ∞, 0 < h(n) ↑ ∞ and h(n)/kn → 0 as n → ∞»

in Theorem 1 in [6]. Hence, our results of Theorem 3.2 and Corollary 3.2
generalize and improve the corresponding one of Theorem 1 in [6].

3.2. Strong convergence. In Section 3.1, we studied the Lr conver-
gence and weak law of large numbers for arrays of rowwise m-NOD random
variables under some uniformly integrable conditions. In order to establish
the strong version of Theorem 3.1, we introduce the concept of strongly resid-
ual h-integrability with exponent r concerning the array of constants {ani}
as follows.
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Definition 3.5. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and let {ani, un 6 i 6 vn, n > 1} be an array of constants. Let
r > 0. The array {Xni, un 6 i 6 vn, n > 1} is said to be strongly residu-
ally h-integrable (SR-h-integrable, for short) with exponent r concerning the
array {ani, un 6 i 6 vn, n > 1} if

sup
n>1

vn∑
i=un

|ani|rE|Xni|r < ∞

and
∞∑
n=1

vn∑
i=un

|ani|rE
(
|Xni| − h1/r(n)

)r
I
(
|Xni|r > h(n)

)
< ∞.

When r = 1, the preceding definition reduces to the concept of SR-h-inte-
grability concerning the array {ani, un 6 i 6 vn, n > 1}, which was intro-
duced by Ordóñez Cabrera et al. [18].

The main idea of the notion of SR-h-integrability with exponent r con-
cerning the array {ani, un 6 i 6 vn, n > 1} is to deal with weighted sums of
random variables. We introduce a new concept of integrability which deals
with usual normed sums of random variables as follows.

Definition 3.6. Let {Xni, un 6 i 6 vn, n > 1} be an array of random
variables and r > 0. The array {Xni, un 6 i 6 vn, n > 1} is said to be
SR-h-integrable with exponent r if

sup
n>1

1

kn

vn∑
i=un

E|Xni|r < ∞

and
∞∑
n=1

1

kn

vn∑
i=un

E
(
|Xni| − h1/r(n)

)r
I
(
|Xni|r > h(n)

)
< ∞.

Remark 3.6. It is easily seen that the concept of SR-h-integrability with
exponent r is stronger than the concept of R-h-integrability with exponent r.

Our main result on strong convergence for weighted sums of arrays of row-
wise m-NOD random variables under some uniformly integrable conditions
is as follows.

Theorem 3.3. Let 1 6 r < 2. Let {Xni, un 6 i 6 vn, n > 1} be an array
of rowwise m-NOD random variables and let {ani, un 6 i 6 vn, n > 1} be
an array of constants. Assume that the following conditions hold:

(i) {Xni, un 6 i 6 vn, n > 1} is SR-h-integrable with exponent r concern-
ing the array {ani, un 6 i 6 vn, n > 1};

(ii)
∞∑
n=1

(
h(n) sup

un6i6vn

|ani|r
)(2−r)/r

< ∞.
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Then
∑vn

i=un
ani(Xni −EXni) → 0 a.s. as n → ∞.

Proof. We use the same notation as those in Theorem 3.1. To prove∑vn
i=un

ani(Xni −EXni) → 0 a.s. as n → ∞, it suffices to show that

Sn
.
=

vn∑
i=un

ani(Yni −EYni) → 0 a.s. as n → ∞ (3.1)

and

Tn
.
=

vn∑
i=un

ani(Zni −EZni) → 0 a.s. as n → ∞. (3.2)

Firstly, we will prove (3.1). Note that |Yni| = min{|Xni|, h1/r(n)}, we have
by Markov’s inequality, Theorem 2.1 (or Remark 2.1), Jensen’s inequality,
and conditions (i), (ii) that for any ε > 0,

∞∑
n=1

P(|Sn| > ε) 6
1

ε2

∞∑
n=1

E

∣∣∣∣ vn∑
i=un

ani(Yni −EYni)

∣∣∣∣2 6 C
∞∑
n=1

vn∑
i=un

a2niEY 2
ni

6 C
∞∑
n=1

h(2−r)/r(n) sup
un6i6vn

|ani|2−r
vn∑

i=un

|ani|rE|Yni|r

6 C

∞∑
n=1

[
h(n) sup

un6i6vn

|ani|r
](2−r)/r

(
sup
n>1

vn∑
i=un

|ani|rE|Xni|r
)

< ∞,

which implies (3.1) by Borel–Cantelli lemma.
In the following, we will prove (3.2). Note that

|Zni| = (|Xni| − h1/r(n))I
(
|Xni|r > h(n)

)
,

we have by Markov’s inequality, Theorem 2.1 (or Remark 2.1), Jensen’s in-
equality and condition (i) that for any ε > 0,

∞∑
n=1

P(|Tn| > ε) 6
1

εr

∞∑
n=1

E

∣∣∣∣ vn∑
i=un

ani(Zni −EZni)

∣∣∣∣r 6C
∞∑
n=1

vn∑
i=un

|ani|rE|Zni|r

= C
∞∑
n=1

vn∑
i=un

|ani|rE
(
|Xni| − h1/r(n)

)r
I
(
|Xni|r > h(n)

)
< ∞,

which implies (3.2) by Borel–Cantelli lemma. This completes the proof of
the theorem.

If we take ani = k
−1/r
n for un 6 i 6 vn and n > 1 in Theorem 3.3, then

we can get the following result on strong convergence for arrays of rowwise
m-NOD SR-h-integrable with exponent 1 6 r < 2 random variables.
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Corollary 3.4. Let {Xni, un 6 i 6 vn, n > 1} be an array of row-
wise m-NOD SR-h-integrable random variables with exponent 1 6 r < 2,
kn → ∞, h(n) ↑ ∞, and

∞∑
n=1

(
h(n)

kn

)(2−r)/r

< ∞.

Then
1

k
1/r
n

vn∑
i=un

(Xni −EXni) → 0 a.s.

as n → ∞.

4. On the asymptotic approximation of inverse moment for
nonnegative m-NOD random variables. As one application of the
moment inequalities for m-NOD random variables, Section 3 deals with the
Lr convergence and strong convergence for m-NOD random variables under
some uniformly integrable conditions. As another application of the moment
inequalities for m-NOD random variables, we will study the asymptotic ap-
proximation of inverse moments for nonnegative m-NOD random variables
with finite first moments in this section.

Let Z1, Z2, . . . be a sequence of nonnegative random variables with finite
second moments. Denote

Xn =
1

Bn

n∑
i=1

Zi, B2
n =

n∑
i=1

D(Zi). (4.1)

Under some suitable conditions, the inverse moment can be approximated
by the inverse of the moment in the following way:

E(a+Xn)
−α ∼ (a+EXn)

−α, (4.2)

where a > 0 and α > 0 are arbitrary real numbers. Here and in what follows,
for two positive sequences {cn, n > 1} and {dn, n > 1}, we write cn ∼ dn
and cn = o(dn) if limn→∞ cnd

−1
n = 1, limn→∞ cnd

−1
n = 0. The left-hand side

of (4.2) is the inverse moment and the right-hand side is the inverse of the
moment. Usually, the inverse of the moment is much easier to compute than
the inverse moment. So in many practical applications, such as evaluating
risks of estimators and powers of tests, reliability, life testing, insurance,
and financial mathematics, complex systems, and so on, we often take the
inverse of the moment instead of the inverse moment. Up to now, many
authors studied the asymptotic approximation of inverse moment and found
many interesting results. For the details about the inverse moment, one can
refer to [5], [7], [8], [15], [43], [37], [26], [24], [47] [9], [27], and etc.
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For n > 1, denote

X̃n =
n∑

i=1

Zi, µ̃n = EX̃n (4.3)

and

µn,s =
n∑

i=1

EZiI(Zi 6 µs
n/

√
n) for some 0 < s < 1.

Based on notation above, Shi et al. [26] obtained the following Theorem C
and Theorem D.

Theorem C. Let {Zn, n > 1} be a sequence of independent, nonnegative,
and nondegenerated random variables. Assume that the following conditions
hold:

(H1) µ̃n → ∞ as n → ∞;
(H2) µ̃n ∼ µn,s for some 0 < s < 1.
Then

E(a+ X̃n)
−α ∼ (a+EX̃n)

−α (4.4)

holds for all real constants a > 0 and α > 0.
Theorem D. Let the conditions of Theorem C hold. In addition, suppose

that there exists a function f(x), x > 0, satisfying the following conditions:
(H3) there exists a c1 > 0 such that f(x) > c1 for x > 0;
(H4) there exist k > 0 and c2 > 0 such that f(x)/xk → c2 as x → ∞;
(H5) 1/f(x) is a convex function for x > 0.
Then

E[f(X̃n)]
−1 ∼ [f(EX̃n)]

−1. (4.5)

Denote

µ̃n,s =

n∑
i=1

EZiI(Zi 6 µs
n) for some 0 < s < 1.

Consider the following assumption:
(H6) µn ∼ µ̃n,s for some 0 < s < 1.
Yang et al. [47] pointed out that condition (H6) is weaker than (H2) and

extended Theorem C for independent random variables to the case of non-
negative random variables under conditions (H1) and (H6).

Recently, Shen [24] generalized the result of Theorem C to a general case
and obtained the following result.

Theorem E. Let {Zn, n > 1} be a sequence of nonnegative random vari-
ables with EZn < ∞ for all n > 1 and 0 < s < 1. Let {Mn, n > 1} and
{an, n > 1} be sequences of positive constants such that an > C for all n suf-
ficiently large, where C is a positive constant. Denote Xn = M−1

n

∑n
k=1 Zk

and µn = EXn and Dn = ηMnµ
s
n/an , where η is a positive constant. Sup-

pose that the following conditions hold:
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(i) For any p > 2, there exist positive constants η and C (depending only
on p) such that

E

∣∣∣∣ n∑
k=1

(Z ′
nk −EZ ′

nk)

∣∣∣∣p 6 C

[ n∑
k=1

E|Z ′
nk −EZ ′

nk|p +
( n∑

k=1

Var(Z ′
nk)

)p/2]
,

where Z ′
nk = ZkI(Zk 6 Dn) +DnI(Zk > Dn), or Z ′

nk = ZkI(Zk 6 Dn);
(ii) µn → ∞ as n → ∞;
(iii) ∑n

k=1EZkI(Zk > Dn)∑n
k=1EZk

→ 0 as n → ∞,

where η > 0 is the same as that in (i).
Then (4.2) holds for all real constants a > 0 and α > 0.
Inspired by the literatures above, we will establish the asymptotic approx-

imation of inverse moment as follows.
Theorem 4.1. Let the conditions of Theorem E and (H3)–(H5) hold. In

addition, assume that there exists a positive constant γ such that f(x) is a
nondecreasing function for x > γ . Then

E[f(Xn)]
−1 ∼ [f(EXn)]

−1. (4.6)

Proof. Applying Jensen’s inequality to the convex function 1/f(x), we
have

E[f(Xn)]
−1 > [f(EXn)]

−1,

which implies that

lim inf
n→∞

f(EXn)E[f(Xn)]
−1 > 1. (4.7)

To prove (4.6), we only need to show

lim sup
n→∞

f(EXn)E[f(Xn)]
−1 6 1. (4.8)

For any 0 < δ < 1, let

Un = M−1
n

n∑
k=1

[
ZkI(Zk 6 Dn) + ηMnµ

s
n/anI(Zk > Dn)

] .
= M−1

n

n∑
k=1

Z ′
nk

and

E[f(Xn)]
−1 = E[f(Xn)]

−1I(Un>µn − δµn) +E[f(Xn)]
−1I(Un<µn − δµn)

.
= Q1 +Q2. (4.9)
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Note that Xn > Un and f(x) is a nondecreasing function for x > γ, we have
by (H4) that

lim sup
n→∞

f(EXn)Q1 6 lim sup
n→∞

f(µn)E[f(Un)]
−1I(Un > µn − δµn)

6 lim sup
n→∞

[
f(µn)

µk
n

· µk
n

(µn − δµn)k
· (µn − δµn)

k

f(µn − δµn)

]
= (1− δ)−k → 1 as δ ↓ 0. (4.10)

In the following, we will prove that

lim
n→∞

f(EXn)Q2 = 0. (4.11)

For 0 < δ < 1 given above, it follows by (iii) in Theorem E that there exists
positive integer n(δ) > 0 such that

n∑
k=1

EZkI(Zk > Dn) 6
δ

4

n∑
k=1

EZk, n > n(δ), (4.12)

which implies that for n > n(δ),

|µn −EUn| =
∣∣∣∣M−1

n

n∑
k=1

EZkI(Zk > Dn)−M−1
n

n∑
k=1

DnEI(Zk > Dn)

∣∣∣∣
6 M−1

n

n∑
k=1

EZkI(Zk > Dn) +M−1
n

n∑
k=1

DnEI(Zk > Dn)

6 M−1
n

n∑
k=1

EZkI(Zk > Dn) +M−1
n

n∑
k=1

EZkI(Zk > Dn)

= 2M−1
n

n∑
k=1

EZkI(Zk > Dn) 6
δµn

2
. (4.13)

By condition (H3), (4.13), Markov’s inequality, condition (i) in Theorem E,
and Cr-inequality, we have for any p > 2 and all n > n(δ) that

Q2 6 CP

(
|Un −EUn| >

δµn

2

)
6 Cµ−p

n M−p
n E

∣∣∣∣ n∑
k=1

(Z ′
nk −EZ ′

nk)

∣∣∣∣p
6 Cµ−p

n

(
M−2

n

n∑
k=1

EZ2
kI(Zk 6 Dn) +M−2

n

n∑
k=1

D2
nEI(Zk > Dn)

)p/2

+ Cµ−p
n

[
M−p

n

n∑
k=1

EZp
kI(Zk 6 Dn) +M−p

n

n∑
k=1

Dp
nEI(Zk > Dn)

]
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6 Cµ−p
n

(
M−1

n

µs
n

an

n∑
k=1

EZkI(Zk 6Dn)+M−1
n

µs
n

an

n∑
k=1

EZkI(Zk >Dn)

)p/2

+ Cµ−p
n M−1

n

µ
s(p−1)
n

ap−1
n

n∑
k=1

EZkI(Zk 6 Dn)

+ Cµ−p
n M−1

n

µ
s(p−1)
n

ap−1
n

n∑
k=1

EZkI(Zk > Dn)

= C

[
µ
−(1−s)p/2
n

a
p/2
n

+
µ
−(1−s)(p−1)
n

ap−1
n

]
6 Cµ−(1−s)p/2

n +Cµ−(1−s)(p−1)
n . (4.14)

Note that p > 2, and thus p − 1 > p/2. Taking p > max{2, 2k/(1 − s)},
we have by (4.14) that Q2 = o(µ−k

n ), which together with (H4) yield (4.11).
Hence, (4.8) follows by (4.9)–(4.11) immediately.

Following similar arguments, we can get (4.6) easily for

Un = M−1
n

n∑
k=1

ZkI(Zk 6 Dn)
.
= M−1

n

n∑
k=1

Z ′
nk.

This completes the proof of the theorem.
Remark 4.1. Since the Rosenthal type inequality (i.e., condition (i) in The-

orem E) is satisfied for m-NOD random variables, the result of Theorem 4.1
holds for nonnegative m-NOD random variables and other random variables,
such as ρ-mixing random variables, ϕ-mixing random variables, ρ̃-mixing
random variables, NA random variables, NSD random variables, NOD ran-
dom variables, END random variables, AANA random variables, ρ−-mixing
random variables, and so on.

Remark 4.2. Take f(x) = (a + x)α, x > 0, a > 0, and α > 0. It is easy
to check that f(x) is a nondecreasing function for x > 0, and conditions
(H3)–(H5) hold. Hence, Theorem E can be obtained by Theorem 4.1 easily.
That is to say, Theorem E is a special case of Theorem 4.1. In addition, if we
take Mn ≡ 1 and an = η

√
n, then we can get Theorem D immediately; if we

take Mn ≡ 1 and an = η, then we can get Theorem 2.3 of [47] immediately; if
we take an = usn, then we can get Theorem 2.2 of [9] immediately. Therefore,
our result of Theorem 4.1 generalize the corresponding one of [26], [24], [47],
and [9].
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