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1. Introduction. The topic of this paper concerns the classical problem
of establishing properties of estimators for the correlation function of a sta-
tionary Gaussian process. Stationary Gaussian processes are the main object
and bases for a large variety of probability and statistical models (see, for
example, [1] and [2]). It is a well-known fact that a stationary Gaussian pro-
cess is characterized by its autocorrelation function (see definitions in what
follows). This is the reason why an estimation of the autocorrelation function
from the observations of some realisation of the stationary Gaussian process
plays a crucial role in the construction of an appropriate model for data.
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To be more precise, consider a real-valued standard stationary Gaussian
process Z = {Z(t), t ⩾ 0} such that EZ(t) = 0 and VarZ(t) = 1 for all
t ⩾ 0. This process is characterized by its autocorrelation function

ρ(h) =
E[(Z(t)−EZ(t))(Z(t + h)−EZ(t + h))]√

VarZ(t) Var Z(t + h)
, h ⩾ 0, t ⩾ 0.

Note that in our case ρ(h) = EZ(t)Z(t + h), h ⩾ 0, t ⩾ 0.
Note that in the time series analysis, a discrete time i ⩾ 0 is considered

(see, for example, [2]) and the following estimator of ρ(h) is usually applied:

ρ̂(h) = n−1
n−h∑
i=0

ZiZi+h, h = 0, 1, 2, . . . . (1.1)

In [3] a continuous time estimator of ρ(h) is introduced. More precisely, let
T > 0 be the time horizon, then the estimator studied in [3] is the following
autocorrelation process R = {R(h), h ∈ [0, T ]}:

R(h) =
1
T

∫ T

0
ZsZs+h ds. (1.2)

We refer to [3] for properties of the autocorrelation process and some sharp
exponential bounds for its deviation probabilities.

In this paper we do not consider an autocorrelation function. Instead,
we consider the relay correlation function (defined in what follows), which is
a modification of the autocorrelation function. It has been introduced mainly
for computational advantages. The relay correlation function is mostly used
in engineering application (see, for example, [4]).

Now we define the relay correlogram function. This is a process similar in
some sense to the autocorrelation process (1.2).

Definition 1.1. The relay correlation function of a standard stationary
Gaussian process {Z(t), t ⩾ 0} is the function

ρr(h) = E[Z(0) signZ(h)],

where sign Z(h) is defined as

sign Z(h) = 1{Z(h)>0} − 1{Z(h)⩽0}

and 1A denotes the indicator function of the event A.
Clearly, ρr(h) = E[Z(s) signZ(s + h)] for any s ⩾ 0, since the process Z

is stationary.
Notice that ρr(h) takes in account only the sign, not the whole value of the

second random variable. This is the main advantage of the relay correlation
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function over usual autocorrelation function. For instance, consider a sta-
tistical problem of plug-in estimation of the autocorrelation function based
on (1.1) having a dataset of the process realizations {zi, 1 ⩽ i ⩽ n} in hand.
Obviously, the calculation of

∑n−h
i zizi+h involves a product for each term

of the sum and the sum itself. But the calculation for the relay correlation
function, that is,

∑n−h
i zi sign zi+h involves only a control of the sign for each

term and the sum. From the computational point of view a product is more
expensive than a sign control, therefore the second calculation is cheaper
than the first one.

Also, we do not loose any information if we consider the relay correlation
function over the autocorrelation function. Namely, the following identity is
true:

ρr(h) = E[Z(0) signZ(h)] = E
[
sign Z(h)E[Z(0) |Z(h)]

]
= E[ρ(h)Z(h) signZ(h)] = ρ(h)E|Z(h)| =

√
2
π

ρ(h).

Here we used the fact that the random variables Z(0) and Z(h) are standard
normal variables and jointly normally distributed, hence E[Z(0) |Z(h)] =
ρ(h)Z(h).

In order to estimate the relay correlation function in a similar way as (1.2)
estimates the autocorrelation function, we introduce the following definition.

Definition 1.2. The process {R̂r(h), h ⩾ 0} is called an r-correlogram pro-
cess (or a sample relay correlation process) of (Z(t)) if

R̂r(h) =
1
T

∫ T

0
Z(t) signZ(t + h) dt, h > 0, (1.3)

and the integral is interpreted as a mean square Riemann integral.
Since for every h we have ER̂r(h) = ρr(h), the r-correlogram process is

an unbiased estimator for the relay correlation function.
In the following we consider the centered r-correlogram process

Û r(h) = R̂r(h)−ER̂r(h) = R̂r(h)− ρr(h), h ⩾ 0.

The main result of this paper shows that the centered relay correlation
process is a sub-Gaussian random process.

Now we review the notion of a sub-gaussianity. Up to our knowledge,
the notion of sub-Gaussian random variable was introduced by Kahane [5]
as sous-gaussienne variables aléatoires. A detailed discussion and proofs of
all results we present in what follows may be found in [3, Section 1.1]. We
collect only the most important definitions and results here.

Let (Ω,F ,P) be a probability space on which all random variables we
consider are defined. A random variable X is called sub-Gaussian if its
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moment generating function (Laplace transform) EetX is defined for all t
and there exists a positive constant a such that for every t

EetX ⩽ ea2t2/2.

The smallest a that satisfies the previous inequality is called the sub-Gaussian
standard of the random variable X and is denoted by τ(X), that is,

τ(X) = inf{a > 0: EetX ⩽ ea2t2/2 for all t}.

The space of sub-Gaussian random variables is denoted by Sub(Ω). It
can be proved that Sub(Ω) is a Banach space with norm τ( · ). Moreover, if
{Xn, n ⩾ 1} is a sequence of random variables in Sub(Ω), which converges in
probability to a random variable X and such that supn⩾1 τ(Xn) < ∞, then
X is a sub-Gaussian random variable and τ(X) ⩽ supn⩾1 τ(Xn).

Sub-Gaussian random variables are interesting because they possess the
following exponential upper bound for the tail of the distribution. If X is
a sub-Gaussian random variable, then

P(|X| ⩾ x) ⩽ 2e−x2/(2τ2(X)). (1.4)

The problem of finding sub-Gaussian standard for an r-correlogram pro-
cess was first considered in PhD thesis (unpublished, but available online) by
A. Castellucci [6], a former PhD student of Dr. R. Giuliano, the co-author
of this paper. In [6] the following result has been proved.

Theorem 1.1. Let {Û r(h), h ⩾ 0} be a centered r-correlogram process.
For any h ⩾ 0 the random variable Û r(h) is sub-Gaussian with the sub-
Gaussian standard

τ(Û r(h)) ⩽ 4
√

3.1
(

3 +
ρ2(h)

π

)
. (1.5)

The calculations of the sub-Gaussian standard for the centered r-correlo-
gram process Û r(h) presented in [6] are quite cumbersome and not straight-
forward. In this paper we were able to obtain much more precise estimation
of the sub-Gaussian standard using a much simpler technique.

2. Main result. In order to formulate our main results, we introduce
the following notation. Let X and Y be two standard normal random vari-
ables with correlation coefficient ρ. That is, X ∼ N(0, 1), Y ∼ N(0, 1),
cor(X,Y ) = ρ. Further, we consider the random variables Ũ = X1{Y >0} and
U = Ũ −EŨ . It appears that the main “technical” question we need to solve
in order to estimate the sub-Gaussian standard of the centered r-correlogram
process Û r(h) is in the finding of the sub-Gaussian standard τ of the random
variable U . Namely, the following result can be presented.
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Proposition 2.1. Let {Û r(h), h ⩾ 0} be a centered r-correlogram pro-
cess. For any h ⩾ 0, the random variable Û r(h) is sub-Gaussian with the
sub-Gaussian standard

τ(Û r(h)) ⩽ 2τ(U). (2.1)

Proof. Fix any h > 0. We consider the left Riemann sums of the integral
in (1.3).

Let 0 = t0 < t1 < · · · < tn = T be a partition of the interval [0, T ] and
∆tk = tk − tk−1, 1 ⩽ k ⩽ n. Further, let

S =
n∑

k=1

Z(tk) signZ(tk + h)∆tk

be a left Reimann sum of the integral in (1.3), and consider the centered
variable

S −ES =
n∑

k=1

{Z(tk) signZ(tk + h)−E[Z(tk) signZ(tk + h)]}∆tk.

The random variable Z(tk) signZ(tk + h) can be written in the form

Z(tk)(1{Z(tk+h)>0} − 1{Z(tk+h)<0}),

and hence

Z(tk) signZ(tk + h)−E[Z(tk) signZ(tk + h)]
=

(
Z(tk)1{Z(tk+h)>0} −E[Z(tk)1{Z(tk+h)>0}]

)
−

(
Z(tk)1{Z(tk+h)⩽0} −E[Z(tk)1{Z(tk+h)⩽0}]

)
.

Consider two sequences of random variables

A+
k (h) = Z(tk)1{Z(tk+h)>0} −E[Z(tk)1{Z(tk+h)>0}]

and
A−k (h) = −Z(tk)1{Z(tk+h)<0} −E[Z(tk)1{Z(tk+h)<0}].

Then

S =
n∑

k=1

(
A+

k (h) + A−k (h)
)
∆tk.

The underlying process {Z(t), t ⩾ 0} is stationary and hence the random
variables A+

k (h), k ⩾ 1, have the same distribution as U = Z(0)1{Z(h)>0} −
E[Z(0)1{Z(h)>0}]. Similarly, the random variables A−k (h), k ⩾ 1, have the
same distribution as V = −(Z(0)1{Z(h)<0} −E[Z(0)1{Z(h)>0}]).

Moreover, using symmetry arguments we prove in the next section, Propo-
sition 3.1, that the random variables U and V are identically distributed.
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In Proposition 4.1 in what follows, we shall prove that the random vari-
able U is sub-Gaussian. Hence, since

∑n
k=1 ∆tk = T and τ is a norm, we

have

τ

(
1
T

(S −ES)
)

=
1
T

τ

( n∑
k=1

(
A+

k (h) + A−k (h)
)
∆tk

)

⩽
1
T

n∑
k=1

∆tk
(
τ(A+

k (h)) + τ(A−k (h))
)

=
1
T

n∑
k=1

∆tk2τ(U) = 2τ(U).

Now as a Reimann integral, Û r(h) = limmax∆tk→0(1/T )(S−ES) in mean
squares and hence in probability. Since the space Sub(Ω) is closed under
convergence in probability (see above), we have

τ(Û r(h)) ⩽ 2τ(U).

Proposition 2.1 is proved.
Moreover, in Proposition 4.1 it is shown that τ(U) = 1. Hence, the fol-

lowing result is true.
Theorem 2.1. Let {Û r(h), h ⩾ 0} be a centered r-correlogram process.

For any h ⩾ 0 the random variable Û r(h) is sub-Gaussian with the sub-
Gaussian standard

τ(Û r(h)) ⩽ 2. (2.2)

A simple comparison shows that estimate (2.2) is much sharper than (1.5).
Theorem 2.1 allows us to construct a pointwise confidence interval

for R̂r(h).
Corollary 2.1. For every h and for every positive x we have the inequal-

ity
P

(
|R̂r(h)− ρr(h)| > x

)
⩽ 2e−π2x2/8.

Proof. By (1.4) and since |ρ(h)| ⩽ 1, we easily get

P
(
|R̂r(h)− ρr(h)| > x

)
⩽ 2e−x2/(2τ2(U)) ⩽ 2e−π2x2/8.

Corollary 2.1 is proved.
3. Technicalities. Let X and Y be two standard normal random vari-

ables with the correlation coefficient ρ. That is, X ∼ N(0, 1), Y ∼ N(0, 1),
cor(X,Y ) = ρ. It is simple to write the joint density function of X and Y :

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

{
−x2 − 2ρxy + y2

2(1− ρ2)

}
, −∞ < x, y < ∞.

Consider the random variable Ũ = X1{Y >0}. Note that the random variable
X is continuous and the random variable 1{Y >0} is discrete.
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Observe that the random variable U = Z(0)1{Zh>0} − E[Z(0)1{Z(h)>0}]
from the proof of Proposition 2.1 is of the form

U = X1{Y >0} −E[X1{Y >0}] and V = −X1{Y ⩽0},

where clearly we have put X = Z(0), Y = Z(h), ρ = ρ(h), |ρ| ⩽ 1.
In what follows, in Proposition 3.1 we show that the random variables U

and V are identically distributed and hence it is enough to consider only the
random variable U .

We can derive the distribution function of the random variable Ũ . The
random variable Ũ takes value zero with probability 1/2 and the remain-
ing 1/2 is spread over by the normal distribution:

F
Ũ
(t) = P(Ũ < t) =


∫ t

−∞
dx

∫ +∞

0
fX,Y (x, y) dy, for t ⩽ 0,

1
2

+
∫ t

−∞
dx

∫ +∞

0
fX,Y (x, y) dy, for t > 0.

Therefore, the distribution function of Ũ has a gap 1/2 at t = 0. For example,
for ρ = 0 the distribution function F

Ũ
(0−) = 1/4 and F

Ũ
(0+) = 3/4.

First we prove that random variables U = X1{Y ⩾0} and V = −X1{Y ⩽0}
are identically distributed. For this we need the following lemma.

Lemma 3.1. Let (X, Y ) be a bivariate random vector having a density f
such that f(x, y) = f(−x,−y). Let ϕ(x, y) be a measurable function and
denote U = ϕ(X, Y ) and V = ϕ(−X,−Y ). Then U and V have the same
distribution.

The proof of this lemma is straightforward and omitted.
Applying the preceding lemma to a bivariate Gaussian law with mean 0

and to the function ϕ(x, y) = x1[0,+∞)(y), we get the following statement.
Proposition 3.1. Let (X, Y ) be a bivariate random vector having Gaus-

sian law with mean 0. Then the two random variables U = X1{Y ⩾0} ;
V = −X1{Y ⩽0} have the same distribution.

Proof. Since

{Y ̸= 0} ⊆ {−X1{Y ⩽0} = −X1{Y <0}},

we have
1 = P(Y ̸= 0) ⩽ P(−X1{Y ⩽0} = −X1{Y <0}) ⩽ 1.

Hence
P(−X1{Y ⩽0} = −X1{Y <0}) = 1.

This implies that U and V = −X1{Y <0} have the same distribution. Propo-
sition 3.1 is proved.



10 Giuliano R., Ordóñez Cabrera M., Volodin A.

In order to prove the sub-Gaussianity of the random variable U we need
the knowledge of the moment generating function (Laplace transforms) of Ũ
and U .

Proposition 3.2. The moment generating function of Ũ is given by the
formula

M̃(t) = et2/2Φ(ρt) +
1
2
, (3.1)

where Φ(t) = (2π)−1/2
∫ t
−∞ ex2/2 dx denotes the distribution function of the

standard Gaussian law N(0, 1).
Proof. The moment generating function of the random variable Ũ can be

evaluated by the following way:

EetŨ =
∫ +∞

−∞
etx dx

∫ +∞

0
fX,Y (x, y) dy +

∫ +∞

−∞
dx

∫ 0

−∞
fX,Y (x, y) dy

=
∫ +∞

−∞
etx dx

∫ +∞

0
fX,Y (x, y) dy +

1
2
,

however the following approach is probably more elegant.
Since

etŨ = etX1{Y >0} + 1{Y ⩽0},

we can write

EetŨ = P(Y ⩽ 0) + E[etX1{Y >0}] =
1
2

+ E
[
1{Y >0}E[etX |Y ]

]
.

Now X, conditioned to Y , has the normal distribution with mean ρY and
variance 1− ρ2. Hence

E[etX |Y ] = exp
{

tρY + (1− ρ2)
t2

2

}
.

From this we obtain

E
[
1{Y >0}E[etX |Y ]

]
=

∫ ∞

0

1√
2π

exp
{
−y2

2
+ tρy + (1− ρ2)

t2

2

}
dy

= et2/2

∫ +∞

0

1√
2π

exp
{
−(y − tρ)2

2

}
dy = et2/2Φ(ρt).

Proposition 3.2 is proved.
Proposition 3.3. The moment generating function of U is given by the

formula

M(t) = e−tρ/
√

2π

(
et2/2Φ(ρt) +

1
2

)
. (3.2)
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Proof. We can write the direct formula for expectation of the random
variable Ũ :

EŨ =
∫ ∞

−∞
x dx

∫ ∞

0
fX,Y (x, y) dy,

however, probably it is simpler to differentiate at zero the moment generating
function.

As an immediate consequence of formula (3.1), we get

EŨ = M̃′(0) =
ρ√
2π

.

Hence the moment generating function M of U = Ũ−EŨ is e−ρt/(
√

2π)M̃(t).
Proposition 3.3 is proved.

Remark 3.1. Knowing the moment generating function M̃(t) and taking
second derivative at zero, we obtain that EŨ2 = 1/2. Hence the variance of
the random variable U is

VarU =
1
2

(
1− ρ2

π

)
. (3.3)

Note that from here we can state that the sub-Gaussian standard τ(U) ⩾
(1 − ρ2/π)/2. It follows from the fact that for any sub-Gaussian random
variable X, the sub-Gaussian standard τ(X) ⩾ VarX (see [3, Lemma 1.2]).

4. Proof of the main result.
Proposition 4.1. The random variable U is sub-Gaussian and τ(U) = 1.
Proof. First we show that τ(U) ⩽ 1 . By the definition of the sub-Gaussian

standard, in order to show that τ(U) ⩽ 1 we need to prove that the Laplace
transform (moment generating function) of the random variable U satisfies
the inequality EetU ⩽ et2/2. According to the formula (3.2), this is equivalent
to the statement

e−ρt/
√

2π

(
et2/2Φ(ρt) +

1
2

)
⩽ et2/2, (4.1)

for all −∞ < t < ∞ and all −1 ⩽ ρ ⩽ 1.
Simple calculations show that (4.1) is equivalent to the statement f(ρ, t)⩾0,

where

f(ρ, t) = exp
{

t2

2
+

ρ√
2π

t

}
− exp

{
t2

2

}
Φ(ρt)− 0.5

and −∞ < t < ∞ and −1 ⩽ ρ ⩽ 1.
Note that the function f(ρ, t) is “even”, that is, f(ρ, t) = f(−ρ,−t) and

hence it is enough to consider only nonnegative values of t. So in the following
we assume that t ⩾ 0.

Now we investigate the behavior of the function f(ρ, t) in the region −1 ⩽
ρ ⩽ 1, t ⩾ 0 and show that it is always nonnegative.
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The derivation of the function f(ρ, t) by t is quite cumbersome, so we take
derivative by ρ:

∂f(ρ, t)
∂ρ

=
et2/2t√

2π

(
eρt/

√
2π − e−ρ2t2/2

)
.

Letting ∂f(ρ, t)/∂ρ = 0, we obtain the following three solutions.
1. The first solution is t = 0. It is boundary point (we consider only t ⩾ 0)

and gives the global minimum. Note that f(ρ, 0) = 0 for all ρ.
2. The second solution is ρ = 0. This is a local minimum because the

second derivative:

∂2f(ρ, t)
∂ρ2

=
et2/2t2√

2π

(
1√
2π

eρt/
√

2π + ρte−ρ2t2/2

)
and

∂2f(0, t)
∂ρ2

=
et2/2t2

2π

is positive at this point (the case t = 0 is considered above).
Note that f(0, t) = (1/2)(et2/2 − 1) ⩾ 0 for all t.
3. The third solution is ρ = −

√
2/π(1/t). This is a local maximum because

the second derivative

∂2f(−
√

2/π(1/t), t)
∂ρ2

= −et2/2t2

2π
e−1/π,

is negative (again, the case t = 0 is considered above).
The typical behavior of the function f(ρ, t) when t is fixed is presented in

Fig. 1.
From our investigation of the derivative and Fig. 1 we see that the function

f(p, t) is positive at the point of the local minimum ρ = 0. In the interval
ρ ∈ (0, 1] the function is increasing, so it is nonnegative.

Further, the function f(p, t) is decreasing between the local maximum
ρ = −

√
2/π(1/t) and local minimum ρ = 0 and because it is positive at

the point of the local minimum ρ = 0, it is nonnegative in the interval
ρ ∈ [−

√
2/π(1/t), 0] too.

The function is increasing in the interval ρ ∈ [−1,−
√

2/π(1/t)] and hence
it is left to show that at the point ρ = −1 the value is nonnegative.

Notice that

f(−1, t) = exp
{

t2

2
− t√

2π

}
− exp

{
t2

2

}
Φ(−t)− 0.5

= exp
{

t2

2

}(
Φ(t) + exp

{
− t√

2π

}
− 1

2
exp

{
− t2

2

}
− 1

)
(4.2)

where t > 0.
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Fig. 1. Graph of the function f(ρ, t),−1 ⩽ ρ ⩽ 1, when t is fixed.

Fig. 2. Graph of the function f(−1, t), 1 ⩽ t ⩽ 2.

Fig. 2 shows the behavior of the function f(−1, t), 0 ⩽ t ⩽ 2.
Our goal is to show that f(−1, t) ⩾ 0 for t > 0. In the expression (4.2),

cancelling out exp{t2/2}, it is needed to show that

G(t) = Φ(t) + exp
{
− t√

2π

}
− 1

2
exp

{
− t2

2

}
− 1 ⩾ 0. (4.3)
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Fig. 3 shows the behavior of the function G(t), 0 ⩽ t ⩽ 6.

Fig. 3. Graph of the function G(t), 0 ⩽ t ⩽ 6.

First notice that

lim
t→+∞

G(t) = 1 + 0− 0− 1 = 0.

Taking the derivative we get

G′(t) =
1√
2π

exp
{
− t2

2

}
− 1√

2π
exp

{
− t√

2π

}
+

t

2
exp

{
− t2

2

}
=

1√
2π

exp
{
− t2

2

}[
1− exp

{
t2

2
− t√

2π

}
+

√
π

2
t

]
.

Hence G′(t) ⩾ 0 if and only if

1− exp
{

t2

2
− t√

2π

}
+

√
π

2
t ⩾ 0,

which is equivalent to

exp
{

t2

2
− t√

2π

}
⩽ 1 +

√
π

2
t

and, in turn, to
t2

2
− t√

2π
− ln

(
1 +

√
π

2
t

)
⩽ 0.

We study the function

h(t) =
t2

2
− t√

2π
− ln

(
1 +

√
π

2
t

)
.
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Fig. 4. Graph of the function h(t), 0 ⩽ t ⩽ 2.5.

Fig. 4 shows the behavior of the function h(t), 0 ⩽ t ⩽ 2.5.
We have h(0) = 0 and h is negative in the neighborhood of 0 since, as

t → 0+, the principal part of h is

− t√
2π

−
√

π

2
t ⩽ 0.

On the other hand,
lim

t→+∞
h(t) = +∞.

Hence there exists t0 such that h(t0) = 0. We prove that t0 is unique.
We have

h′(t) =

√
π/2 t2 + t/2− (1/

√
2π +

√
π/2)

1 +
√

π/2 t
.

Letting h′(t) = 0, we find two solutions

t1,2 =
−1/2±

√
9/4 + 2π√

2π
.

One of these solutions is negative, so we consider only the positive solution

t∗ =
−1/2 +

√
9/4 + 2π√

2π
≈ 0.965903745.

Obviously, h′(t) > 0 for t > t∗ and h′(t) < 0 for t < t∗. Hence t∗ is the
only minimum point for h in the region t ⩾ 0 and this implies that t0 is
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unique. Therefore, G′(t) > 0 for t < t0 and G′(t) < 0 for t > t0, i.e., t0 is
a unique maximum point for G(t), t ⩾ 0.

Rough evaluation of t0 can be done numerically. We found that t0 ≈
2.0414.

Finally, we show that τ(U) ⩾ 1. From Proposition 3.3 we know that the
moment generating function of U is given by formula (3.2), that is

EetU = e−tρ/
√

2π

(
et2/2Φ(ρt) +

1
2

)
.

Obviously, if we drop 1/2 in (3.2), we obtain the inequality

EetU ⩾ e−tρ/
√

2πet2/2Φ(ρt).

Let t be such that ρt ⩾ 0, then Φ(ρt) ⩾ 1/2 and

EetU ⩾
1
2
e−tρ/

√
2πet2/2 =

1
2

exp
{

t2

2
− t

ρ√
2π

}
.

Now, for any ε > 0, choose t such that ρt ⩾ 0 and

ε

2
t2 − ρ√

2π
− ln 2 ⩾ 0.

Then

EetU ⩾
1
2

exp
{

t2

2
− t

ρ√
2π

}
⩾ exp

{
(1− ε)

t2

2

}
.

By the definition of the sub-Gaussian standard and be arbitrariness of ε > 0
we obtain that τ(U) ⩾ 1. Proposition 4.1 is proved.

Acknowledgements. The authors are grateful to the reviewer not for not
for carefully reading the manuscript and for offering substantial comments
and suggestions which enabled them to improve the presentation, but also
for an exceptionally elegant proof of the fact that τ(U) ⩾ 1 that we were
happy to add to the formulation and proof of Proposition 4.1. Without it,
our presentation was not complete.

REFERENCES

1. S. M. Ross, Introduction to probability models, 11th ed., Elsevier/Academic
Press, Amsterdam, 2014, xvi+767 pp.

2. P. J. Brockwell, R. A. Davis, Time series: theory and methods, Reprint of the
2nd ed., Springer Ser. Statist., Springer, New York, 2013, xvi+577 pp.

https://zbmath.org/?q=an:1284.60002
https://zbmath.org/?q=an:1284.60002
https://doi.org/10.1007/978-1-4419-0320-4
https://doi.org/10.1007/978-1-4419-0320-4


On the sub-Gaussianity of the r-correlograms 17

3. В. В. Булдыгин, Ю. В. Козаченко, Метрические характеристики слу-
чайных величин и процессов, ТВiМС, К., 1998, 290 с.; англ. пер.:
V. V. Buldygin, Yu. V. Kozachenko, Metric characterization of random
variables and random processes, Transl. Math. Monogr., 188, Amer. Math. Soc.,
Providence, RI, 2000, xii+257 pp.

4. A. M. Yaglom, Correlation theory of stationary and related random functions,
v. 1, 2, Springer Ser. Statist., Springer-Verlag, New York, 1987, xiv+526 pp.,
x+258 pp.

5. J. P. Kahane, “Propriétés locales des fonctions à séries de Fourier aléatoires”,
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