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Abstract

This thesis considers at least four independent statistical problems in various statis-

tical models, perhaps an unusual feature of a thesis in this field. Statistical problems

considered here consist of classical and robust point estimation, confidence sets and

bootstrapping.

Chapter 2 discovers the asymptotic expansion of the coverage probability of a

confidence set centered at the James – Stein estimator and its positive part modifi-

cation. The result obtained here is based on a multivariate normal population. More

importantly, these results can be extended to various models, for example to multiple

regression models.

Point estimation based on a new parameterization of the Birnbaum - Saunders

lifetime distribution is investigated in Chapter 3. The maximum likelihood estimator

and new estimators based on the method of moments and regression - quantile (least

squares) method are developed. Asymptotic statistical properties of the proposed

estimators are also developed. A Monte Carlo simulation study is conducted to

appraise the performance of the proposed strategies for given sample sizes.

In Chapter 4, the method of weighted likelihood is applied to problems of robust

estimation of parameters. The large-sample properties of the proposed estimator,

along with simulation results, are provided and discussed for an exponential model.

Chapter 5 obtains convergence rates in the form of a Baum – Katz/ Hsu – Rob-

bins/ Spitzer type result for the bootstrapped means from a sequence of random
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elements and random variables that are not necessarily independent or identically

distributed.

An improvement and generalization of the classical Kolmogorov exponential in-

equality in the case of negative dependent random variables is presented in Chapter 6.

The final chapter offers some conclusions and interesting open problems for further

research.
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Chapter 1

Introduction

This dissertation has the following main themes: Asymptotic expansion of confi-

dence sets of James – Stein estimators (Chapter 2), estimation of Birnbaum – Saun-

ders distribution parameters (Chapter 3), the weighted likelihood procedure and ro-

bust estimation of parameters (Chapter 4), the bootstrap of mean (Chapter 5) and

the Kolmogorov exponential inequality (Chapter 6).

Our goal in Chapter 2 is to find the asymptotic expansion of the coverage prob-

ability of a confidence set centered at the James – Stein estimator and its positive

part modification.

The goal of Chapter 3 is to present maximum likelihood estimators for the new

parameterization of Birnbaum – Saunders distribution and to find new estimators

based on the moment method and the least squares (regression - quantile) method.

Asymptotic mean square error of maximum likelihood estimators and moment method

estimators are found. True values of the mean square error of all three estimators

are calculated by the method of statistical simulations. Tables are produced, where

biases, mean square errors and asymptotic mean square errors for maximum likelihood

estimators and moment method estimators are presented. A conclusion about the

characteristic changes in mean square error values is given for different values of

parameters of the distribution.
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In Chapter 4 we suggest applying the method of weighted likelihood for robust

estimation of parameters by assigning zero weights to observations with small like-

lihood. For the example of an exponential distribution we establish that, with the

help of controls on the size of rejected observations, the weighted likelihood method

gives α-trimmed mean type estimators. We investigate robustness properties of the

weighted likelihood estimator in comparison with the usual maximum likelihood es-

timator.

The main focus of Chapter 5 is to obtain the convergence rates in the form of Baum

– Katz/ Hsu – Robbins/ Spitzer type result for bootstrapped means from a sequence

of random elements and random variables which are not necessarily independent or

identically distributed. It is important to note that the strong laws of large numbers

are of practical use in establishing the strong asymptotic validity of the bootstrapped

mean for random variables. The consistency of bootstrap estimators has received a

lot of attention in recent years due to a growing demand for the procedure, both

theoretically and practically.

We start Chapter 5 with a result on the equivalence between the convergence to

zero in L1, completely, almost surely and in probability, of a weighted sum of rowwise

independent Banach space valued random elements. Next we apply this result to

the field of bootstrapped means for random elements and random variables. More

specifically, we obtain strong consistency for the bootstrapped mean, assuming the

corresponding weak consistency (concerning the array). We impose neither conditions

about the marginal or joint distributions of the random elements forming the sample

nor geometric conditions on the Banach space where the random elements take values.

In Chapter 6 we present an improvement and generalization of the classical Kol-

mogorov exponential inequality in the case of negative dependent random variables.

Now we provide some preliminary discussion and a more detailed overview of the
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dissertation including brief introductions to each of the (next five) chapters.

Chapter 2. This chapter is the main strength of the thesis and showcases the asymp-

totic expansion of the coverage probability of a confidence sets centered at James-

Stein estimators and its positive-part modification. Parametric estimation theory has

been eminently developed for the last four decades in two main subjects: The large

sample properties of the maximum likelihood estimator (MLE) and the shrinkage

estimation problem, now referred to as the Stein-rule problem for the inadmissibility

of the MLE in a small sample. As such, we are primarily interested in the estima-

tion of a parameter when there may be some uncertainty about the constraints to

modify usual estimators such as maximum likelihood or unbiased estimators for in-

creasing their efficiencies. The research led by the remarkable observation of Stein

(1956), and following Stein’s result, James and Stein (1961) exhibited an estimator

that under squared error loss dominates the usual estimator and thus demonstrates

its inadmissibility. This result means that the unbiased rule may have an inferior

risk when compared to other biased estimators. This area has received considerable

attention since then and a remarkably large number of theoretical results has been

produced. Indeed, Stein-rule estimation has been evaluated as an effective procedure

in small samples from a practical point of view while the theoretical research has pro-

gressed in an exemplary fashion. Useful discussions on some of the implications of the

pretest and shrinkage estimators in parametric theory are provided by Ahmed (2001),

Kubokawa (1998) and Stigler (1990) among others. It may be worth mentioning that

this is one of the two areas Professor Efron predicted for continuing research for the

early 21st century in RSS News of January 1995.

More specifically, the problem of improving upon the usual point estimator of a

multivariate normal mean has received enormous attention in the literature during

the past 40 years. Without any embellishment, one can safely say that the finding
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of Stein is one of the most important and most discussed results in statistical deci-

sion theory. Later, many statisticians proposed other classes of improved estimators.

Some of the proposed point estimators dominate the James-Stein estimator. The

celebrated result of James-Stein has added a new dimension to research work in sta-

tistical inference during the past four decades. Improved estimators were derived for

many distributions, many loss functions, and many point estimation problems (cf.,

for example Ahmed (1998a, 1998b, 1999a) and etc.). Nonetheless, the companion

problem, that of the confidence set, has received comparatively little attention. This

is partially due to the increased difficulty of mathematical acquiescence, and also be-

cause many of the techniques developed for point estimation do not readily carry over

to the confidence set problem. In this chapter, we present the asymptotic expansion

of the coverage probability of confidence sets centered at the James-Stein estima-

tor and its positive part modification. We analytically demonstrate that substantial

improvement in coverage probability over that of MLE is possible.

Statement of the Problem

If X is one observation from a p-variate normal distribution with mean vector θ

and an identity covariance matrix, the confidence set

CS0
X = {θ : ‖θ −X‖ ≤ C},

is a sphere centered at X and it has probability 1 − α of covering the true value

of θ if C2 satisfies Kp(C
2) = P{χ2

p ≤ C2} = 1 − α. The set CS0
X enjoys many

optimal properties; for example, it is unbiased and translation invariant. It is also

minimax, that is, among all procedures with coverage probability at least 1− α, the

set CS0
X minimizes the maximum expected volume (cf., for example Cramér (1946)

or Lehmann (1983)).

A natural question that arises is whether CS0
X is a unique minimax set estimator,

or do other rules exist? Then since the coverage probability of CS0
X is constant for
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all θ, there would be room to increase coverage probability without increasing the

volume of the set. This question was first posed by Stein (1962), who developed

heuristic arguments that showed that an improved set can be developed. However, it

was Joshi (1967) who proved that the set

CSδJ = {θ : ‖θ − δJ(X)‖ ≤ C},

where δJ(X) = (1 − a/(b + X ′X))X, has higher coverage probability than CS0
X ,

subject to a and b being sufficiently small and large, respectively, and p ≥ 3. This

result indicated that large gains in coverage probability are possible. Hwang and

Casella (1982) extended the method of Joshi and derived exact formulas for confidence

sets centered at the James-Stein or its positive-part estimator. They established

numerically that for p ≥ 4,

CSδ+ = {θ : ‖θ − δ+(X)‖ ≤ C},

where δ+(X) = (1−a/(b+X ′X))+X, and + denotes positive part, has higher coverage

probability than that of CS0
X , for a specified range of values of a. Since the volume

of CSδ+ is the same as that of CS0
X , it follows that CSδ+ is a minimax set estimator

of θ. To this end, Hwang and Casella (1982) did not produce asymptotic results.

Consequently, in Chapter 2 we attempt to prove the high coverage probability

based Stein-rule confidence sets asymptotically, rather than analytically.

Chapter 3. A continuous random variableX has a Birnbaum – Sounders distribution

(BS-distribution) if X has the cumulative distribution function

Fα,β(x) = 1− Φ

α
√β

x
−
√
x

β

 , x > 0, α > 0, β > 0,
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where Φ(·) is the cumulative distribution function of the standard normal distribution,

and α and β are regarded as the location and scale parameter of the distribution,

respectively.

This distribution is named B-S because of the pioneering papers by Birnbaum and

Saunders (1969a) and (1969b). Birnbaum and Saunders (1969a) presented this new

two-parameter family of life length distributions which is derived from a model for

fatigue. The BS-distribution is widely used as a lifetime distribution in the various

models of reliability theory in the case when a failure of the object under consid-

eration appears to be due to the development of fatigue cracks (Desmond (1986),

Ahmad (1988)). This derivation follows from considerations of renewal theory for

the number of cycles needed to force a fatigue crack extension to exceed a critical

value. Some closure properties of this family are given and some comparisons made

with other families, such as lognormal, which have been previously used in fatigue

studies. Further, Birnbaum and Saunders (1969b) presented a comprehensive review,

both theoretical and practical, of the fitting of this family of distributions to the so-

lution of the problem of crack development. In this paper the maximum likelihood

estimation for the scale parameter β is expressed as the solution of the correspond-

ing maximum likelihood equations, and the maximum likelihood estimation of the

parameter α is expressed in terms of the estimation of β. Two iterative methods are

given for solving the maximum likelihood equation, and conditions are laid out under

which the iterations will converge. A strong argument is stressed for the use of the

geometric mean of the harmonic and arithmetic means, as a replacement for the max-

imum likelihood estimation of β or at least as the initial estimate for the iterations.

Birnbaum and Saunders (1969b) provided an extensive set of numerical computations

consisting of 21 sets of constructed data for various n, α and β. Furthermore, three

real data sets relating to actual fatigue testing were also given and analyzed in their

paper.
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Recently substantial research effort was devoted to estimations of the parameters

of this distribution. Desmond (1986) considered estimation of the parameters for cen-

sored data. Ahmad (1988) proposed the modernization of Birnbaum and Saunders

(1969b) estimation of the scale parameter β (which overestimates the median life) by

the jackknife method to eliminate first-order bias. This estimate has the same lim-

iting behavior as that of Birnbaum and Saunders (1969b). Further, Ahmad (1988)

reported about an extensive simulation study. Rieck (1995) derived asymptotically

optimal linear estimations for symmetrically type II censored samples. We refer to

the monograph by Bogdanoff and Kozin (1985) for motivating examples of proba-

bilistic models of cumulative damage. A more recent view on the problem of fatigue

crack damages based on stochastic differential equations is suggested by Singpurwalla

(1985).

Birnbaum and Saunders (1969a) considered a probability model of a fatigue crack

development under cyclic loading in framework of renewal theory. However, a more

general model of such phenomena can be described by recurrence equations that

have a similar form to ones that produce the lognormal distribution. We refer to

Cramér (1946), Parzen (1967) and Desmond (1986) for a description of the recurrence

equations method in connection with the lognormal distribution. Indeed, the latter

approach gives a richer picture of the physical phenomena of fatigue cracks and,

moreover, the distribution of the size of a crack by a fixed moment of time can be

arbitrary, while in the BS-model it has to be normal.

In Chapter 3 we derive maximum likelihood estimators for the new parameteriza-

tion and find new estimators based on the method of moments and the least squares

approach. Asymptotic mean square errors of maximum likelihood estimators and

method of moments estimation are derived and compared computationally. In addi-

tion, numerical values of the mean square errors of all three estimators are calculated

by the Monte Carlo simulations. The bias and mean square error of the proposed
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estimators with respect to one another have been appraised on the simulated data.

Chapter 4. In this chapter we propose the method of weighted likelihood for robust

estimation of exponential distribution parameters. We establish that the suggested

weighted likelihood method provides α−trimmed mean type estimators. Further, we

investigate the robustness properties of the weighted likelihood estimator (WLE) in

comparison with the usual maximum likelihood estimator (MLE). We present an ap-

plication of the classical likelihood that was introduced by Hu (1994, 1997) as the

relevance weighted likelihood to problems of robust estimation of parameters. The

weighted likelihood method was introduced as a generalization of the local likeli-

hood method. For further discussion of the local likelihood method in the context

of nonparametric regression, see Tibshirani and Hastie (1987), Staniswalis (1989),

Fan, Heckman and Wand (1995) and others. In contrast to the local likelihood, the

weighted likelihood method can be global, as demonstrated by one of the applications

in Hu and Zidek (2001) where the James-Stein estimator is found to be a maximum

weighted likelihood estimator with weights estimated from the data.

The theory of weighted likelihood enables a bias-precision trade off to be made

without relying on a Bayesian approach. The latter permits the bias-variance trade

off to be made in a conceptually straightforward manner. However, the reliance on

empirical Bayes methods softens the demands for realistic prior modeling in complex

problems. The weighted likelihood theory offers a simple alternative to the empirical

Bayesian approach for many complex problems. At the same time, it links within a

single formal framework, a diverse collection of statistical domains, such as weighted

least squares, nonparametric regression, meta-analysis and shrinkage estimation. All

the while the weighted likelihood principle comes with an underlying general theory

that extends Wald’s theory for maximum likelihood estimators, as it is shown in Hu

and Zidek (2001).
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We propose applying the method of weighted likelihood to the problem of the

robust estimation of the parameter of an exponential distribution by assigning zero

weights to observations with small likelihood. Interestingly, the weighted likelihood

method yields α-trimmed mean type estimators of the parameter of interest. The

statistical asymptotic properties of the WLE is developed and a simulation study is

conducted to appraise the behavior of the proposed estimators for moderate samples.

Further, a comparative study with the usual maximum likelihood estimator is also

provided.

Chapter 5. As was mentioned before, we start Chapter 5 with a result on the

equivalence between the convergence to zero in L1, completely, almost surely and in

probability, for a weighted sum of rowwise independent Banach space valued random

elements. Hsu and Robbins (1947) introduced the concept of complete convergence

of a sequence {Xn, n ≥ 1} of random variables. {Xn, n ≥ 1} is said to converge

completely to a constant c if, for each ε > 0,

∞∑
n=1

P [|Xn − c| > ε] <∞.

This concept is extended to a sequence {Xn, n ≥ 1} of random elements tak-

ing values in a real separable Banach space (B, ||.||). We say that {Xn} converges

completely to zero if, for each ε > 0,

∞∑
n=1

P [||Xn|| > ε] <∞.

Chung’s (1947) classical strong law of large numbers (SLLN) states that if {Xn, n ≥

1} is a sequence of independent random variables with EXn = 0 for all n ≥ 1 and
∞∑
n=1

Eψ(|Xn|)
ψ(n)

<∞ when ψ is a positive, even and continuous function such that

ψ(|t|)
|t|

↑ and
ψ(|t|)
|t|2

↓ as |t| ↑,
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then
1

n

n∑
i=1

Xi −→ 0 almost surely.

Hu and Taylor (1997) proved a Chung type SLLN for an array of rowwise indepen-

dent random variables {Xni, 1 ≤ i ≤ n, n ≥ 1} weighted by a sequence {an, n ≥ 1}

of real numbers with 0 < an ↑ ∞. One of the conditions required by the authors to

prove that
1

an

n∑
i=1

Xni −→ 0 almost surely, is that

∞∑
n=1

n∑
i=1

Eψ(|Xni|)
ψ(an)

<∞,

when ψ is a positive, even and continuous function such that

ψ(|t|)
|t|p

↑ and
ψ(|t|)
|t|p+1

↓ as |t| ↑

for some integer p ≥ 2.

Many classical theorems hold for B-valued random elements under the assumption

that the weak law of large numbers (WLLN) holds (see Kuelbs and Zinn (1979),

de Acosta (1981), Choi and Sung (1988) and (1989), Wang, Rao and Yang (1993),

Kuczmaszewska and Szynal (1994) and Sung (1997)).

Sung (2000) obtained a Hu and Taylor’s (1997) result in a general Banach space

under the assumption that WLLN holds, using a positive and even function ψ veri-

fying the following condition, which is weaker than used in Hu and Taylor (1997):

ψ(|t|)
|t|

↑ and
ψ(|t|)
|t|p

↓ as |t| ↑

for some p ≥ 1.

Ordóñez Cabrera and Sung (2002) extend Sung’s (1997) result for a weighted sum

Sn =
kn∑
i=1

aniXni of rowwise independent B-valued random elements, where {kn, n ≥ 1}

is a sequence of positive integers, and {ani, 1 ≤ i ≤ kn, n ≥ 1} is an array of real

constants. They use a function ψ : (0,+∞) −→ (0,+∞) such that, for some p ≥ 1,

there exist constants C,D > 0 such that

u ≥ v =⇒ C
u

v
≤ ψ(u)

ψ(v)
≤ D

up

vp
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This condition is weaker than the one used in Sung (1997).

Next, we apply the results on complete convergence of weighted sums of random

elements and random variables to the problem of consistency of the bootstrap pro-

cedure. For expository purposes, we first wish to give a brief description of results

related to independent identically distributed (i.i.d.) random variables. Assume that

{X,Xn; n ≥ 1} is a sequence of i.i.d. random variables, such that X is nondegen-

erate, E(X2) < ∞ and defined on some complete probability space (Ω,F , P ). We

now outline the bootstrap procedure for random variables. For ω ∈ Ω and n ≥ 1, let

Pn(ω) =
1

n

n∑
i=1

δXi(ω) denote the empirical measure. For n ≥ 1, let {X̂ω
n,j; 1 ≤ j ≤ kn}

be i.i.d. random variables with law Pn(ω), where kn is a positive integer. Let X̄n(ω)

denote the sample mean of {Xi(ω); 1 ≤ i ≤ n}, n ≥ 1, that is, X̄n(ω) =
1

n

n∑
i=1

Xi(ω)

.

Bickel and Freedman (1981) and Singh (1981) showed the following weak conver-

gence of distributions for m(n) = n, n ≥ 1 and almost every ω ∈ Ω :,

L
(
n1/2(n−1Ŝωn − X̄n(ω))

)
→w N(0, σ2). (1.1)

Here Ŝωn =
n∑
j=1

X̂ω
n,j, n ≥ 1 and σ2 = E(X − E(X))2. Note that by the Glivenko-

Cantelli Theorem, Pn(ω) is close to L(X) and, by the Lévy central limit theorem,

L
(
n1/2(n−1Sn − E(X))

)
→w N(0, σ2).

It follows that if E(X2) < ∞, then the statistic n1/2(n−1Sn − E(X)) is close in dis-

tribution to the bootstrap statistic n1/2(n−1Ŝωn − X̄n(ω)) for large n ω-almost surely

(a.s.). This is, very roughly, the idea of the bootstrap. See Efron (1979), where

this nice idea is made explicit and where it is substantiated with several important

examples. Giné and Zinn (1989) proved that the existence of the second moment

is necessary for there to exist positive scalars an ↑ ∞, centering cn(ω), and a ran-

dom probability measure ν(ω) nondegenerate with positive probability, such that
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L(a−1
n Ŝωn − cn(ω))→w ν(ω) for almost every ω ∈ Ω. The limit law (1.1) tells us just

the right rate at which to magnify the difference n−1Ŝωn − X̄n(ω), which is tending

a.s. to zero, in order to obtain convergence in distribution to a nondegenerate law

ω-a.s. We note from (1 .1) that, for almost every ω ∈ Ω,

n1/2

xn
(n−1Ŝωn − X̄n(ω))→ 0 in probability as n→∞

for any sequence of constants {xn} with xn ↑ ∞. On the other hand, strong laws of

large numbers were proved by Athreya (1983) and Csörgő (1992) for the bootstrap

mean. Arenal-Gutiérrez, Matran and Cuesta-Albertos (1996) analyzed the results of

Athreya (1983) and Csörgő (1992). Then, by taking into account the different growth

rates for the resampling size m(n), they gave new and simple proofs of those results.

They also provided examples that show that the sizes of resampling required by their

results to ensure a.s. convergence are not far from optimal.

In the results of Chapter 5 we do not make any assumptions regarding the marginal

or joint distributions of the random elements or variables taken from the sample. In

this case, the main result of Hu and Taylor (1997) can be seen as a special case of

the result given in Theorem 5.1. The results of Section 5.4 are published in Ahmed

and Volodin (2001).

Chapter 6. In the paper Bosorgnia, Patterson and Taylor (1996) it is mentioned that

in many stochastic models, the assumption that random variables are independent

is not plausible. Increases in some random variables are often related to decreases

in other random variables so an assumption of negative dependence is more appro-

priate than an assumption of independence. Lehmann (1966) investigated various

conceptions of positive and negative dependence in the bivariate case.

Some interesting exponential bounds were established in Tomkins (1978). Te-

icher (1979) was working on similar problems to improve the Kolmogorov exponential

12



bounds at about the same time. However, these papers are dealing with independent

random variables, not negatively dependent ones.

One of the most interesting and useful examples of negative dependent random

variables arises in the situation of a sample from a finite population without replace-

ment. Hence we can apply our result for the so-called dependent bootstrap, that is the

sample drawn without replacement from the collection of items made up of copies of

sample observations. Smith and Taylor (2000) obtained consistency of the bootstrap

mean. With the help of the present paper we can prove a law of iterated logarithm

type results for dependent bootstrap analogous to the results of Ahmed, Li, Rosalsky

and Volodin (2001) for the independent bootstrap.

We think that the dependent bootstrap is only one, of course very interesting,

application of the notion of negative dependence. Another one is to apply it to

limit theorems. In Chapter 5 we present an improvement and generalization of the

classical Kolmogorov exponential inequality in the case of negative dependent random

variables. The results of Chapter 5 are accepted for publication in Volodin (2002) in

the Pakistan Journal of Statistics (Special issue in honor of Professor S.E. Ahmed).

To facilitate the presentation, we introduce the following notation. For two func-

tions u(τ) and v(τ) the notation u(τ) � v(τ) as τ →∞ means

0 < lim inf
τ→∞

u(τ)

v(τ)
≤ lim sup

τ→∞

u(τ)

v(τ)
<∞

and the notation u(τ) ∼ v(τ) as τ →∞ means

lim
τ→∞

u(τ)

v(τ)
= 1.

Moreover, we use the usual notation u ≈ v in the case that u is approximately equal

to v.

13



Chapter 2

Asymptotic Expansion of the Coverage

Probability of Stein-rule Estimators

2.1 Introduction

Consider a p-variate vector (X1, . . . , Xp) having p-variate normal distribution with

identity covariance matrix and consider the problem of estimating the mean vector

θ = (θ1, . . . , θp)
′ by an estimator δ. A natural estimator of θ is the sample mean

vector X̄ and it is a maximum likelihood estimator. Recall that X̄ is uniformly a

minimum variance unbiased and minimax estimator (cf., for example, Cramér (1946)

or Lehmann (1983)). For the admissibility of X̄, Stein (1956) presented the result

that X̄ is inadmissible for p > 2, while for p = 1 and 2 it is admissible. James and

Stein (1961) unearthed an explicit form of an estimator

δj(X̄) =

(
1− a

n
∑p
i=1 X̄i

2

)
X̄j, a = p− 2 ≥ 1.

Useful discussions on some of the implications of Stein-rule estimation are given

in Ahmed (2001a), Kubokawa (1998) and Stigler (1990) among others. Ahmed and

his co-investigators (2002, 2001b, 2000a, 2000b, 1999a, 1999b, 1999c, 1999d, 1998a,

1998b) have demonstrated the superiority of shrinkage estimators over the usual es-

timator X̄ for a wide class of statistical models. For a Bayesian perspective we refer
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to Efron and Morris (1972) and Robbins (1983).

Note that when n
∑p
i=1 X̄i

2
< a, the James-Stein estimator yields an over-shrinkage

and changes the sign of each X̄i. Consequently, we consider a superior alternative

δ+
j (X̄) to this estimator by considering its positive part only. The positive-part esti-

mator not only mitigates the over-shrinking problem but is also superior to δj(X̄) in

the entire parameter space. The estimator under consideration prevents a changing

of the sign of the maximum likelihood estimator. Hence

δ+
j (X̄) =

(
1− a

n
∑p
i=1 X̄i

2

)+

X̄j.

In passing, we remark that Hwang and Casella (1982) considered the case of n = 1.

2.2 Preliminaries and Coverage Probability

In this section, we describe a simple method of calculating the coverage probability

based on Monte-Carlo simulations. Consider standard normal random variables Zj =
√
n(X̄j − θj), 1 ≤ j ≤ p and let

τ =
√
n(

p∑
j=1

θ2
j )

1/2, Y =
p∑
j=1

Z2
j , X = (

p∑
j=1

θ2
j )
−1/2

p∑
j=1

θjZj.

Introduce the events

B = {n
p∑
j=1

(δj(X̄)− θj)2 < C2}

= {Y (Y + 2Xτ + τ 2)− 2aX + a2 − 2aY < C2(Y + 2Xτ + τ 2)}

where C2 satisfies Kp(C
2) = P{χ2

p ≤ C2} = 1− α. Define

A = {n
p∑
j=1

X̄j
2
> a} = {Y + 2τX + τ 2 > a}.

We are interested in the coverage probability

Qp(τ) = P{n
p∑
j=1

(δ+
j (X̄)− θj)2 < C2} = P (Ac)I(τ < C) + P (A

⋂
B).
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The probabilities of events A and B are defined by the joint distribution of the

random variables X and Y.

Proposition 2.1. The joint distribution of the X and Y is equal to the distribution

of the random variables Z and W +Z2, where Z has the standard normal distribution

and Z is independent of W which has χ2
p−1-distribution.That is, the joint density

function of X and Y equals

f(x, y) =
1√
2π

1

2
p−1

2 Γ(p−1
2

)
(y − x2)

p−1
2
−1 exp

{
−y

2

}
,

if y − x2 > 0,and f(x, y) = 0 otherwise.

Proof. Put σ =
(∑p

j=1 θ
2
j

)1/2
. We would like to find the joint Fourier transform of

X and Y . We have

ϕ(t1, t2) = E exp

it1

p∑
j=1

θjZj/σ + it2

p∑
j=1

Z2
j

 =

1

(2π)p/2

∞∫
−∞

. . .

∞∫
−∞

exp

−1

2

p∑
j=1

(x2
j − 2it1θjxj/σ − it2x

2
j)

 .
The quadratic form under the exponent can be simplified as

−1

2
(1− 2it2)

p∑
j=1

(
xj −

it1θj
σ(1− 2it2)

)2

− t21
2(1− 2it2)

.

Since we are integrating an analytic function of a complex variable, we can consider

i as a parameter and directly use the value of the Laplace - Poisson integral because

the p-variate integral can be represented as a product of such integrals. As a result

we obtain the following Fourier transform:

ϕ(t1, t2) = exp

{
− t21

2(1− 2it2)

}
(1− 2it2)−p/2.
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Now consider the inverse Fourier transform. We note that, as a function of

t1, ϕ(t1, t2) is the Fourier transform of N(0, 1− 2it2). Hence the transformation with

respect to the variable t1 gives

(1− 2it2)1/2

√
2π

exp

{
−x

2(1− 2it2)

2

}
(1− 2it2)−p/2

=
1√
2π

exp

{
−x

2

2

}
exp{it2x2}(1− 2it2)−(p−1)/2.

For the transformation with respect to the variable t2 note that

1√
2π

exp

{
−x

2

2

}
exp{it2x2}(1− 2it2)−(p−1)/2

is the characteristic function of the random variable χ2
p−1 + x2. The joint inverse

Fourier transform of this multiple gives

1

2(p−1)/2Γ(p−1
2

)
(y − x2)

p−1
2
−1 exp

{
−y − x

2

2

}

if y − x2 > 0.

Interestingly, Proposition 2.1 provides a simple method of calculating the cover-

age probability based on Monte-Carlo simulations. We will conduct a Monte-Carlo

simulation study of this coverage probability in the following section.

2.3 Monte-Carlo Simulations

For the simulation study we have generated N = 105 Monte-Carlo simulations

of sets of p independent standard normally distributed random numbers. The sum

of their squares is Y and the first normal number is X. For the estimation of the

coverage probability we take the sum of the relative frequencies of events Ac and

A
⋂
B.

For the significance level .9 for the confidence set centered at X̄ we produced

Table 2.1 below. In this table, for each p = 3, 5, 11, in the first column we have
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the simulated coverage probability produced by our method, and the second column

reports the values from Hwang and Casella (1982 Table 2, p.875).

Table 2.1: Coverage probability for positive-part James-Stein estimator.

p
3 5 11

τ
0 .9567 .9565 .9875 .9879 .9995 .9994
2 .9442 .9458 .9798 .9809 .9988 .9989
4 .9078 .9062 .9354 .9343 .9945 .9949
6 .9029 .9026 .9167 .9162 .9663 .9661
8 .9011 .9014 .9092 .9093 .9435 .9443
10 .9016 .9009 .9048 .9060 .9294 .9307
15 .9002 .9004 .9026 .9027 .9123 .9147
20 .8988 .9002 .8994 .9015 .9079 .9085
25 .9003 .9001 .8999 .9010 .9046 .9055
50 .8982 .9000 .8995 .9002 .9007 .9014
100 .9008 .9000 .8997 .9001 .8996 .9004
500 .9002 .9000 .8993 .9000 .8978 .9000
1000 .8990 .9000 .8995 .9000 .8980 .9000
∞ .8980 .9000 .8992 .9000 .8976 .9000

By inspecting the coverage probabilities in the above table we find these probabilities

are very close to each other for various configurations of p and τ. We note that the

standard ”two sigma” error in the estimation of the probability of success r in N

Bernoulli trials is ∆ = 2
√

r(1−r)
N

. In our case N = 105, r > .9 so the standard error in

estimation of the coverage probability Qp, obtained by the Monte-Carlo method will

be ∆ ≤ .002. Hence, the difference between the control and our numbers in the table

cannot be not more than ∆. However, in practice this may not always be precise.
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2.4 Asymptotic Coverage Probability

This section showcases our main results on the asymptotic coverage probability

and numerical computations. We consider the two cases, that is τ →∞ and τ → 0,

for the coverage probability.

Proposition 2.2. If τ → ∞, then the probability of the event Ac tends to 0 with

exponential rate, that is, P (Ac) � τ exp{−τ−2}.

Proof. In terms of random variables Z ∼ N(0, 1) and W ∼ χ2
p−1 the event

Ac = {W + Z2 + 2τZ + τ 2 < a},

takes the form

{(1 + εZ)2 + ε2W < ε2a}

as ε = τ−1 → 0.

Introduce a normal random variable U with N(1, ε)-distribution and a random

variable V having gamma distribution with location parameter (p− 1)/2 and a scale

parameter 2ε2. Then the event Ac takes the form U2 + V < ε2a, with probability

P (Ac)

=
[√

2π2
p−1

2 εp−1Γ
(
p− 1

2

)]−1 εa∫
−εa

exp

{
−(u− 1)2

2ε2

}
du

ε2a−u2∫
0

v
p−1

2
−1e−

v
2ε2 dv.

Substitute v/ε2 = y. Then P (Ac)

=
[√

2πε2
p−1

2 Γ
(
p− 1

2

) ]−1 εa∫
−εa

exp

{
−(u− 1)2

2ε2

}
du

a−u2/ε2∫
0

y
p−1

2
−1e−

y
2 dy.

If in the upper limit of the second integral we put u = 0, then we will obtain the

upper bound, that is

P (Ac) ≤ Kp−1(a)
[

Φ(
√
a− ε−1)− Φ(−

√
a− ε−1)

]
.
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Now it is sufficient to use the well-known asymptotic formula

1− Φ(x) ∼ 1

x
√

2π
exp

{
−x

2

2

}
.

to obtain the desired result.

Proposition 2.3. If τ → 0, then P (Ac) = Kp(a) +O(τ 2).

Proof. Since Ac = {(X, Y ) : X < (a− Y − τ 2)/2τ}, and the density f(x, y) is not

zero only in the region y > x2, we have

QA(τ) = P (Ac) =

τ+
√
a∫

τ−
√
a

dx

a−τ2−2τx∫
x2

f(x, y)dy.

The main term of the asymptotic expansion of QA(τ) near τ → 0 is

QA(0) =

√
a∫

−
√
a

dx

a∫
x2

f(x, y)dy = Kp(a).

In order to calculate the coefficient of the first degree of τ, we evaluate the derivative

Q′A(τ). Note

Q′A(τ) =

a−τ2−2τ(τ+
√
a)∫

(τ+
√
a)2

f(τ +
√
a, y)dy

−
a−τ2−2τ(τ−

√
a)∫

(τ−
√
a)2

f(τ −
√
a, y)dy − 2

τ+
√
a∫

τ−
√
a

f(x, a− τ 2 − 2τx)dx.

Hence

Q′A(0) = 2cp exp {−a/2}

√
a∫

−
√
a

x(a− x2)
p−1

2
−1dx = 0.

Now we study the asymptotic value of the probability of the event B. Indeed, these

asymptotic studies are interesting by themselves. For the case τ → 0, they define the

behavior of the coverage probability of the confidence set centered by the usual James
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– Stein estimator but not the one centered by the positive part modification. On the

other hand, by Proposition 2.2 the asymptotic value of P (B) as τ → ∞ gives the

asymptotic value of the coverage probability in both cases, for centering by the usual

James – Stein estimator as well as for centering by its positive part modification.

We begin with a few general formulas. The probability of the event B is

QB =

a+C2∫
0

dy

√
y∫

A1

f(x, y)dx+

∞∫
a+C2

dy

A2∫
−√y

f(x, y)dx, (2.1)

where

A1 = A1(y) = min {max {−√y, h(y)} , √y} ,

A2 = A2(y) = max {min {√y, h(y)} , −√y} , and

h(y) =
(y − a)2 − C2τ 2 + y(τ 2 − C2)

2τ(C2 + a− y)
.

A1 and A2 are defined by solutions of the equation h(y) = ±√y, and thus we need

the asymptotic behavior in τ here.

Theorem 2.1. If τ →∞, then Qp(τ) = P (B)+O(τ−3) = Kp(C
2)+O(τ−3) if p > 3,

and, for p = 3,

Q3(τ) = K3(C2) +
C(2C2 − 1)

τ 2
√

2π
e−

C2

2 +O(τ−3) (2.2)

Proof. Let ε = τ−1 → 0 and represent the equation h(y) = ±√y in the following

more convenient form for the asymptotic analysis:

h(y) = ε
C2 + a− y

2
+
a(ε−1 − εC2)

2(C2 + a− y)
− 1

2ε
− εC2

2
= ±√y.

We can introduce the variable z2 = y. Then we will have the following fourth degree

algebraic equation

z4 +
2

ε
az3 + (ε−2 − C2 − 2a)z2 − 2

ε
(C + a)z + (a2 − C2

ε2
) = 0.
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We emphasize that one can solve this equation directly and find all its roots. More

interestingly, the following procedure seems to be simpler.

We plot both sides of the original equation in the coordinate system (y, h). The

equation has three roots, as we can see on the plot. To show that we have exactly three

roots we suggest the following procedure. Preclude terms with ε, which correspond to

the second order asymptotic. This will not strongly influence the plot, and coordinates

of roots will be nearly the same. The hyperbola

h =
a

2(C2 + a− y)ε
− 1

2ε

has asymptotes y = C2 + a and h = −1/(2ε) and expands with respect to these

asymptotes in the left upper and right lower corners. In the upper corner it first

intercepts the parabola h = −√y giving the first root y1 of our equation. After it

intercepts the parabola h =
√
y, giving the second root y2. The lower branch of the

hyperbola intersects the parabola h = −√y giving the third and last root y3.

By the same plot we can see how to find the limits in (2.1):

QB =

y1∫
0

dy

√
y∫

−√y

f(x, y)dx+

y2∫
y1

dy

√
y∫

h(y)

f(x, y)dx

+

∞∫
y3

dy

h(y)∫
−√y

f(x, y)dx+O(ε3) (2.3)

Here the intervals (y2, C
2 +a) and (C2 +a, y3) correspond to the limits of integration

(
√
y,
√
y) and (−√y, −√y). These give the value zero for the integrals.

Now we will produce an asymptotic analysis of the roots. Note that this solution

is not simple to find. First we find the zero approximations, and after this, guess

the asymptotic expansion (especially for the root y3). After this we need to calculate

coefficients for powers of ε by substituting the suggested expansion in our equation.
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That is, in the expanded equation we collect the coefficients of the same powers of ε.

For the sake of brevity, we give the answer, since it is simple to check by substitution

of these expansions of the roots into the equation. The roots are

y1 = C2 − εg + ε2b+O
(
ε3
)
, y2 = C2 + εg + ε2b+O

(
ε3
)
, y3 =

1

4ε2
+ 2a+O(ε),

where g = 2Ca, b = 2a(a− 2C2)

The last integral in (2.3) decreases faster than any positive power of ε, since it is

less than

∞∫
y3

dy

√
y∫

−√y

f(x, y)dx = 1−Kp(y3) ∼ 1−K(1/(4ε2)) � ε−p exp{−1/(8ε2)}.

Hence,

QB =

y1(ε)∫
0

dy

√
y∫

−√y

f(x, y)dx+

y2(ε)∫
y1(ε)

dy

√
y∫

h(y, ε)

f(x, y)dx+O(ε3),

where the function

h(y, ε) =
ε

2

(C2 + a− y)2 + a(ε−2 − C2)− (ε−2 + C2)(C2 + a− y)

C2 + a− y
.

For ε → 0 we have the expansion QB(ε) = QB(0) + Q ′B(0)ε + Q ′′B(0)ε2 + O(ε3).

We now evaluate the derivatives of the function QB(ε). For the sake of brevity, we do

not write an argument ε for the functions y1(ε), y2(ε) and their derivatives. We have

Q′B(ε) = y′1

√
y1∫

−√y1

f(x, y1)dx+ y′2

√
y2∫

h(y2(ε), ε)

f(x, y2)dx− y′1

√
y1∫

h(y1(ε), ε)

f(x, y1)dx,

Q′′B(ε) = y′′1

√
y1∫

−√y1

f(x, y1)dx

+y′1

 y′1
2
√
y1

f(
√
y1, y1) +

y′1
2
√
y1

f(−√y1, y1) + y′1

√
y1∫

−√y1

f ′y(x, y1)dx


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+y′′2

√
y2∫

h(y2, ε)

f(x, y2)dx

+y′2

 y′2
2
√
y2

f(
√
y2, y2)− h′ε(y2, ε)f(h(y2, ε), y2) + y′2

√
y2∫

h(y2,ε)

f ′y(x, y2)dx



−y′′1

√
y1∫

h(y1, ε)

f(x, y1)dx

−y′1

 y′1
2
√
y1

f(
√
y1, y1)− h′ε(y1, ε)f(h(y1, ε), y1) + y′1

√
y1∫

h(y1,ε)

f ′y(x, y1)dx

 .
Now we evaluate the values of the functions and their derivatives at ε = 0.

y1(0) = y2(0) = C2, y′1(0) = −d, y′2(0) = a, y′′1(0) = y′′2(0) = 2b.

Further,

h(y1,2, ε) =
εa2 − 2C2aε± g + bε+O(ε2)

2(a± gε− bε2)
,

h′ε(y1,2, ε) =
a2 − 2C2a+ ba+ g2 +O(ε)

2a2
.

Hence h(y1,2(0), 0) = ∓C, and h′ε(y1,2(0), 0) = (3a− 2C2)/2.

Further, recall that

f(x, y) = cp(y − x2)
p−1

2
−1 exp{−y

2
}, y − x2 > 0.

Hence for all x we have f(±x, x2) = 0 for p > 3, and

f(±x, x2) =
1

2
√

2π
e−

x2

2

for p = 3.

Substituting the obtained expressions into Q′B(0) and Q′′B(0), we obtain

Q′B(0) = −g
∫ C

−C
f(x, C2)dx+ g

∫ C

C
f(x, C2)dx+ g

∫ C

−C
f(x, C2)dx = 0,
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and if p > 3, then

Q′′B(0) = 2b
∫ C

−C
f(x, C2)dx− g

[−g
2C

f(C,C2) +
−g
2C

f(−C, C2)

−g
∫ C

−C
f ′y(x,C

2)dx

]

+2b
∫ C

C
f(x, C2)dx+ g

[
g

2C
f(C,C2)− 3a− 2C2

2
f(C,C2)

+g
∫ C

C
f ′y(x,C

2)dx

]

−2b
∫ C

−C
f(x,C2)dx+ g

[
−g
2C

f(C,C2)− 3a− 2C2

2
f(−C,C2)

−g
∫ C

−C
f ′y(x,C

2)dx

]

= 2b
∫ C

−C
f(x,C2)dx+ g2

∫ C

−C
f ′y(x,C

2)dx− 2b
∫ C

−C
f(x,C2)dx

−g2
∫ C

−C
f ′y(x,C

2)dx = 0.

But if p = 3, then f(±C, C2) 6= 0, and

Q′′B(0) =

[
g2

C
− g(3a− 2C2)

]
1√
2π

e−
C2

2 =
Ca(2C2 − a)√

2π
e−

C2

2 .

Finally, we note that Q′′B(0) is positive for C2 = K−1
p (1− α) with α < 0.5.

In the following theorem we consider the second order asymptotic as τ → 0 for

the probability of the event B. We will prove that the coefficient for τ to the power

one equals zero.

Theorem 2.2. If τ → 0, then

QB(τ) = Kp

a+
C2

2
+

√
aC2 +

C4

4

−Kp

a+
C2

2
−
√
aC2 +

C4

4


+O(τ 2) (2.4)
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Proof. In the limits of the integrals (2.1) we don’t consider terms near τ 2. Hence

h(y) =
(y − a)2 − C2y

2τ(C2 + a− y)
.

In order to find the limits of integration it is necessary to solve the equation h(y) =

±√y.

This equation has four roots and again, to show this we should look at the plot

of the functions h(y) and ±√y focusing only on the region y > 0. This is seen as

follows. In the region 0 < y < C2 + a the curve h(y) starts from a positive point

h(0) = a2/(2τ(C2 +a)) on the h-axis. Then it decreases monotonically and intersects

the parabola h = ±√y in two points y1 and y2 (the roots of the equation that we are

interested in). The straight line h = C2 +a is an asymptote of h(y) as y → C2 +a−0.

In the region y > C2 + a, if y → C2 + a(+0), the curve h(y) tends to +∞ becoming

closer to this line. Further, when y increases, the curve h(y) goes down to −∞

monotonically and intersects the parabola h = ±√y in two points y3 and y4.

Consequently, we have four roots and P (B) can be written as

QB = P (B) =

y2∫
y1

dy

√
y∫

h(y)

f(x, y)dx +

y3∫
y2

dy

√
y∫

−√y

f(x, y)dx

+

y4∫
y3

dy

h(y)∫
−√y

f(x, y)dx (2.5)

Now we will find asymptotic values of all four roots of the equation (y−a)2−C2 =

±2τ
√
y(C2 + a − y). Noting that all roots have the same form yi = y0 + aτ, and if

in the original equation we keep the terms with τ 2, then in general we can find the

coefficients of τ 2, τ 3 so to speak. The zero approximation is common for the first two

roots and for the last two roots:

y∓0 = a+
C2

2
∓
√
C2a+

C4

4
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The roots differ only by the addition or subtraction of one constant

g∓ =
2
√
y∓0 (C2 + a)

2(y∓0 − a− C2)
,

multiplied by τ. For that reason, with the accuracy O(τ−2) we have the following

asymptotic approximation:

y1 = y−0 − g−τ, y2 = y−0 + g−τ, y3 = y+
0 − g+τ, y4 = y+

0 + g+τ

After the substitution of these roots into the limits of integration with Taylor’s

expansion about the points y±0 we obtain (2.5).

2.5 Final Result

Now we can formulate and prove our final result.

Theorem 2.3. If τ → 0, then

Qp(τ) = Kp

a+
C2

2
+

√
C4

4
+ C2a

+O(τ 2) (2.6)

Proof. The coverage probability (the confidence coefficient) is equal to Qp = QA+Q2,

where QA = P (Ac) = P (Y + 2τX + τ 2 < a)), Q2 = P (A
⋂
B). The event A

⋂
B is

defined by the region of integration (2.4) from which we have to delete the part

corresponding to the event Ac. That is, for the calculation of Q2(τ), we need to delete

from the region defined by the limits in the integral (2.4) the part defined by the

inequality x < (a − y)/2τ . We do not consider the term with τ 2 here. We are

interested only in the linear term in the expansion.

Again we consider a plot. The line h = (a− y)/2τ in the region y ≥ 0 starts from

the point a/2τ when y = 0. After this it goes down and, most importantly, does not
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intersect the curve

h(y, τ) =
(y − a)2 − C2y

2τ(C2 + a− y)
.

As a matter of fact, it goes between the branches of this curve that lie in the regions

y < C2 + a and y > C2 + a.

However, the line intersects the parabola h =
√
y at the point y = a− 2τ

√
a, and the

parabola h = −√y at the point y = a+ 2τ
√
a.

Further, if we define

y0 = a+
C2

2
+

√
C4

4
+ C2a, g =

2
√
y0(y0 − a− C2)

C2 + 2(y0 − a− C2)
,

then the limits of integration will be:

Q2 =

a+bτ∫
a−bτ

dy

√
y∫

(a−y)/2τ

f(x, y)dx

+

y0−gτ∫
a+bτ

dy

√
y∫

−√y

f(x, y)dx+

y0+gτ∫
y0−aτ

dy

h(y, τ)∫
−√y

f(x, y)dx+O(τ 2),

where b = 2
√
a.

Hence, the region of iteration contains only the roots y3 and y4.

In the first integral consider the substitution (y − a)/τ = v and in the third

(y − y0)/τ = v. As a result we will have

Q2 = τ

b∫
−b

dv

√
vτ+a∫
−v/2

f(x, vτ + a)dx

+

y0−gτ∫
a+bτ

dy

√
y∫

−√y

f(x, y)dx+ τ

g∫
−g

dv

h(vτ+y0, τ)∫
−
√
vτ+y0

f(x, vτ + y0)dx+O(τ 2).

Direct computations show that h(vτ + y0, τ) = −v/2. Since near the first and third

integral, we have factors of τ, then in the integrals we need to put τ = 0 and all other
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terms will be O(τ 2). Hence Q2

= τ

b∫
−b

dv

√
a∫

−v/2

f(x, a)dx+

y0−gτ∫
a+bτ

dy

√
y∫

−√y

f(x, y)dx+

τ

g∫
−g

dv

−v/2∫
−√y0

f(x, y0)dx+O(τ 2)

= τ

b∫
−b

dv

√
a∫

−v/2

f(x, a)dx+

y0∫
a

dy

√
y∫

−√y

f(x, y)dx− τg

√
y0∫

−√y0

f(x, y0)dx

−bτ

√
a∫

−
√
a

f(x, a)dx+ τ

g∫
−g

dv

−v/2∫
−√y0

f(x, y0)dx+O(τ 2)

= Kp(y0)−Kp(a) + τ [

b∫
−b

dv

√
a∫

−v/2

f(x, a)dx− g

√
y0∫

−√y0

f(x, y0)dx

−b

√
a∫

−
√
a

f(x, a)dx+

g∫
−g

dv

−v/2∫
−√y0

f(x, y0)dx] +O(τ 2).

Now calculate the integral in the square brackets. Start with the integral

∫ √c
−
√
c
f(x, c)dx = cpe

−c/2
∫ √c
−
√
c
(c− x2)

p−1
2
−1dx

= cpe
−c/2c

p
2
−1
∫ 1

0
(1− τ)

p−1
2
−1τ

1
2
−1dx

=
e−

c
2 c

p
2
−1

√
2π2

p−1
2 Γ(p−1

2
)
B
(
p− 1

2
,

1

2

)
=

e−
c
2 c

p
2
−1

2
p
2 Γ(p

2
)
.

The double integrals in the square brackets can be evaluated by changing the

order of integration. The first double integral (recall b = 2
√
a) equals:

b∫
−b

dv

√
a∫

−v/2

f(x, a)dx =

√
a∫

−
√
a

f(x, a)dx

2
√
a∫

−2x

dv
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= 2cpe
−a/2

√
a∫

−
√
a

(x+
√
a)(a− x2)

p−1
2
−1dx

= 2cpe
−a/2a

p−1
2 B

(
p− 1

2
,

1

2

)
=

a
p−1

2 e−
a
2

2
p
2
−1Γ

(
p
2

) .
Finally, we still have to evaluate the last integral:

g∫
−g

dv

−v/2∫
−√y0

f(x, y0)dx =

−g/2∫
−√y0

f(x, y0)dx

−g∫
−g

dv +

g/2∫
−g/2

f(x, y0)dx

−2x∫
−g

dv

= 2a

−g/2∫
−√y0

f(x, y0)dx+

−g/2∫
−g/2

(g − 2x)f(x, y0)dx

= cpe
− y0

2 y
p−1

2
−1

0

 2g

−g/2∫
−√y0

1−
(

x
√
y0

)2


p−1
2
−1

dx

+

g/2∫
−g/2

(g − 2x)

1−
(

x
√
y0

)2


p−1
2
−1

dx



= cpe
− y0

2 y
p−1

2
−1

0

 2g

−g/2∫
−√y0

1−
(

x
√
y0

)2


p−1
2
−1

dx

+2g

0∫
−g/2

1−
(

x
√
y0

)2


p−1
2
−1

dx



= cpe
− y0

2 y
p−1

2
−1

0 2g

√
y0∫

0

1−
(

x
√
y0

)2


p−1
2
−1

dx

= 2gcpe
− y0

2 y
p−1

2
−1

0

1∫
0

t−
1
2 (1− t)

p−1
2
−1dx = g

e−
y0
2 y

p−1
2
−1

0

2
p
2 Γ
(
p
2

) .

In the following section, numerical work is carried out to appraise our asymptotic

work for various values of τ and p.

30



2.6 A Numerical Study

Some numerical results based on formulas ( 2.2) from Theorem 2.1 give us the

following Table 2.2. The significance level is .9

Table 2.2 reports the coverage probability for given p and large values of τ. In the

first column we have the coverage probability based on formula (2.2) from Theorem

2.1 and the second reads the values from Table 2, p.875 Hwang and Casella (1982)

for the different values of τ.

Table 2.2: The coverage probability for large values of τ

p
3 5 11

τ
15 .9510 .9004 .9000 .9027 .9000 .9147
20 .9287 .9002 .9000 .9015 .9000 .9085
25 .9183 .9001 .9000 .9010 .9000 .9055
50 .9046 .9000 .9000 .9002 .9000 .9014
100 .9011 .9000 .9000 .9001 .9000 .9004
500 .9000 .9000 .9000 .9000 .9000 .9000
1000 .9000 .9000 .9000 .9000 .9000 .9000

For a given p, the difference between the values of two columns is not significant,

particularly for p > 3 and large values of τ.

However, the most interesting case is when τ is small. The numerical computations

of the formula (2.6) from Theorem 2.3 are given in the Table 2.3. Here we do not

have values from Hwang and Casella (1982) for comparison. Therefore, we conducted

a simulation study to obtain these. The significance level is .9, and for given p, in

the first column we provide the simulated coverage probability. The second column
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represents the asymptotic coverage probability obtained by the formula (2.6) from

Theorem 2.3.

Table 2.3: The coverage probability for small values of τ

p
3 5 11

τ
0 .8966 .9000 .8991 .9000 .8988 .9000
.1 .8995 .9000 .9007 .9000 .8976 .9000
.2 .8988 .9000 .8993 .9000 .8986 .9000
.3 .8980 .9000 .8986 .9000 .8966 .9000
.4 .8981 .9000 .8975 .9000 .8936 .9000
.5 .8968 .9000 .8947 .9000 .8910 .9000
.6 .8965 .9000 .8914 .9000 .8862 .9000
.7 .8942 .9000 .8916 .9000 .8847 .9000
.8 .8942 .9000 .8859 .9000 .8802 .9000
.9 .8936 .9000 .8832 .9000 .8754 .9000

The numerical result of the above table very well supports our analytical find-

ings.
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Chapter 3

Point Estimation of Birnbaum – Saunders

Lifetime Distribution

3.1 Introduction

A continuous random variable X has a Birnbaum – Saunders distribution (BS-

distribution), if X has the cumulative distribution function

Fα,β(x) = 1− Φ

α
√β

x
−
√
x

β

 , x > 0, α > 0, β > 0, (3.1)

where Φ(·) is the cumulative distribution function of the standard normal distribution,

and α and β are regarded as the location and scale parameter of the distribution,

respectively.

The use of recurrence relations is given in Birnbaum and Saunders (1969a). Inter-

estingly, these recurrence relations lead to a new parameterization of the model. For

example, on a metallic sample, which has the form of a rectangular plate of thickness

h and is fixed on two sides, suppose there is a cyclic loading, which results in the

development of a crack. Let Xk be the size of the crack at time k = 1, 2, . . . , that is,

after the kth loading cycle. The following recurrence equations are derived (Desmond
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(1986)):

Xk+1 = Xk + Ykg(Xk), k = 0, 1, . . . , Y0 = X0 = 0, g(0) 6= 0. (3.2)

These equations connect the crack size in previous and next moments of time by a pos-

itive continuous function g and a sequence of random variables Y1, Y2, . . . , that take

care of variations in values of loading and some other physical factors that influence

the development of the crack. Assume that the random variables Yk are nonnegative,

independent and identically distributed. Further, we assume the existence of the sec-

ond moment of Yk. We are interested in the time U (= 1, 2, ...), at which the crack

achieves the critical value h. By the recurrence equations (3.2) we obtain

U−1∑
k=0

Yk =
U−1∑
k=0

Xk+1 −Xk

g(Xk)
≈

XU∫
0

dx

g(x)
.

Here we assume, of course, that the increments Xk+1 −Xk are sufficiently small.

For each sufficiently large value t of the variable U, the random variable on the left

hand side of the equality, can be approximated by a normal distribution with mean

tm and variance tσ2, where m = E(Y1), σ2 = V ar(Y1). Hence, for large t,

P (U > t) = P

 Xt∫
0

dx

g(x)
<

h∫
0

dx

g(x)

 ≈ P

(
U−1∑
k=0

Yk < a(h)

)

≈ Φ

(
a(h)−mt
σ
√
t

)
,

where

a(h) =
∫ h

0

dx

g(x)

is a strictly increasing function of the upper limit h (> 0), since g(x) ≥ 0.

In this chapter we introduce a re-parameterization technique. We obtain a nat-

ural re-parameterization by letting λ = a(h)/σ, µ = m/σ. Importantly, this re-

parameterization fits the physics of studying phenomena since the proposed parame-

ters λ and µ correspond to the thickness of the sample and nominal treatment loading
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on the sample, respectively. The cumulative distribution function of U is

Fµ,λ(x) = 1− Φ

(
λ√
x
− µ
√
x

)
, x > 0, λ > 0, µ > 0.

Finally, we find the relations between the usual parameters α, β and new parameters

µ and λ as follows:

µ = α√
β

λ = α
√
β

and
α =

√
µλ

β = λ
µ

(3.3)

Birnbaum and Saunders (1969b) found the expected values and mean square errors

(MSE) of some statistics of BS-distributions. We can use the above relations to

rewrite expected values and MSE of the statistics in terms of µ and λ.

A plan of this chapter is as follows. In Sections 3.2 -3.3 we consider two estimation

strategies, namely maximum likelihood estimations (MLE), and the method of mo-

ments estimations (MME). Further, expressions for asymptotic MSE of the proposed

estimators are derived analytically and some computational aspects are discussed.

The regression-quantile (least square) estimation (RQE) technique is presented in

Section 3.4. In Section 3.5, we provide MSE analysis of the estimators and summa-

rize the findings.

3.2 The Method of Maximum Likelihood

The probability density function of the BS- distribution after the re-parame-

terization is as follows:

f(x ; µ, λ) =
1

2
√

2π

(
λ

x
√
x

+
µ√
x

)
exp

−1

2

(
λ√
x
− µ
√
x

)2
 , x > 0.
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The observed likelihood function is of the form

L (µ, λ) =
n∑
k=1

ln f(Xk, µ, λ)

�
n∑
k=1

ln

(
λ

Xk

√
Xk

+
µ√
Xk

)
− 1

2

n∑
k=1

(
λ√
Xk

− µ
√
Xk

)2

.

We obtain the system of maximum likelihood equations by evaluating derivatives with

respect to µ and λ.

∂L(µ, λ)

∂µ
=

n∑
k=1

Xk

λ+ µXk

+
n∑
k=1

(λ− µXk) ,

∂L(µ, λ)

∂λ
=

n∑
k=1

1

λ+ µXk

+
n∑
k=1

(
λ

Xk

− µ
)
.

Hence the MLE µ̂(MLE) and λ̂(MLE) of µ and λ can be obtained by simultaneously

solving ∂L(µ,λ)
∂µ

= 0 and ∂L(µ,λ)
∂λ

= 0. Further, we get

µ =
λ

n

n∑
k=1

1

Xk

− 1

n

n∑
k=1

1

λ+ µXk

(= f1(µ, λ)),

λ =
µ

n

n∑
k=1

Xk −
1

n

n∑
k=1

Xk

λ+ µXk

(= f2(µ, λ)). (3.4)

It seems to be natural to use the iteration method for a solution of the system

which is given by the above two equations. However, for a parametric space µ >

0, λ > 0 there is no initial point that can ensure the convergence of the iteration

process. Thus, in this situation the iteration process may diverge. A necessary (but

not sufficient) condition for convergence of the iteration process is the inequality

‖A(µ, λ) ‖ < 1, where the operator A(µ, λ) = (f1, f2). In the L2-metric the norm of

operator A is equal to the largest eigenvalue of the Jacobian matrix

G = G(µ, λ) =

 ∂f1

∂µ
∂f1

∂λ

∂f2

∂µ
∂f2

∂λ

 .
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The equation for eigenvalues is(
1

n

n∑
k=1

Xk

(λ+ µXk)2
− a2

)2

− 1

n

[(
n∑
k=1

1

Xk

+
n∑
k=1

1

(λ+ µXk)2

)(
n∑
k=1

Xk +
n∑
k=1

X2
k

(λ+ µXk)2

)]
= 0,

and its solutions are

a1(µ, λ) =
1

n

n∑
k=1

Xk

(λ+ µXk)2

+
1√
n

(
n∑
k=1

1

Xk

+
n∑
k=1

1

(λ+ µXk)2

)(
n∑
k=1

Xk +
n∑
k=1

X2
k

(λ+ µXk)2

)
;

a2(µ, λ) =
1

n

n∑
k=1

Xk

(λ+ µXk)2

− 1√
n

(
n∑
k=1

1

Xk

+
n∑
k=1

1

(λ+ µXk)2

)(
n∑
k=1

Xk +
n∑
k=1

X2
k

(λ+ µXk)2

)
.

Note that a1 > a2. So ‖A ‖ = a1(µ, λ). It is safe to conclude that a1(µ, λ) > 1 for all

µ > 0 and λ > 0. Hence, most likely there do not exist the initial values of parameters

that will ensure the convergence of the iteration process. To this end, we will use

an alternative method to obtain a solution of the maximum likelihood equations in

Section 3.5.

We now derive the asymptotic information matrix

I =

 I11(µ, λ) I12(µ, λ)

I21(µ, λ) I22(µ, λ)

 .
First, let C = 1

23/2
√
π

and

K(x, µ, λ) =

(
λ

x3/2
+ µ
√
x

)
exp

−1

2

(
λ√
x
− µ
√
x

)2
 .

Hence,

I11(µ, λ) = E

(
∂ ln f(X ; µ, λ)

∂µ

)2
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= C

∞∫
0

(
x

λ+ µx
+ λ− µx

)2

K(x, µ, λ)dx, and

I22(µ, λ) = E

(
∂ ln f(X ; µ, λ)

∂λ

)2

= C

∞∫
0

(
1

λ+ µx
+ µ− λ

x

)2

K(x, µ, λ)dx,

I12(µ, λ) = I21(µ, λ) = E

(
∂ ln f(X ; µ, λ)

∂µ

∂ ln(X |µ, λ)2

∂λ

)

= C

∞∫
0

(
x

λ+ µx
+ λ− µx

)(
1

λ+ µx
+ µ− λ

x

)
K(x, µ, λ)dx.

Seemingly, these integrals may not be evaluated in closed form. However the

following transformations are useful for numerical evaluation. Let λ/
√
x− µ

√
x = t.

Then

I11(µ, λ) =
1√
2π

∞∫
−∞

[
2λµ+ t2 + t

√
t2 + 4λµ

µ(4λµ+ t2 + t
√
t2 + 4λµ)

+ λ

− 2λµ+ t2 − t
√
t2 + 4λµ

2µ

]2

e−
t2

2 dt,

I22(µ, λ) =
1√
2π

∞∫
−∞

[
2µ

µ(4λµ+ t2 + t
√
t2 + 4λµ)

+ µ

− 2λµ2

2λµ+ t2 + t
√
t2 + 4λµ

]2

e−
t2

2 dt.

The asymptotic MSE of MLE can be computed by solving these integrals. The

computation is done by Simpson formula

A∫
−A

f(x)dx =
h

6

m−1∑
i=0

(f(xi) + 4f(xi+0.5) + f(xi+1)) ,

where x0, x1, . . . , xm are the points of division of an interval [−A, A], and xi+0.5 =

(xi+1 + xi)/2.

The cancelation of tails in the integrals with infinite limits, that is, the choice of A,

is carried out by the method of sequential approximations. We compute sequentially
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the values of integrals for the points A = 10, 11, . . . up to the point A where the

changes in the values of the integrals become less than 10−3. This gives us sufficient

accuracy. Furthermore, a simulation study is conducted to appraise the properties of

MLE in a practical setting. Tables 3.1-3.3 and 3.10 present the value of the biases

and asymptotic and simulated MSE of the estimators.

MLE is of course a consistent estimator of a parameter, cf. Lehman (1983), Chap-

ter 6, Sections 1-6, p.427-435. Moreover, it is asymptotically (n → ∞) efficient, but

since seemingly the integrals from Fisher’s Information matrix may not be evaluated

in closed form, we cannot produce the lower bound from the Rao-Cramér inequality.

One practice one often uses the estimated Fisher’s Information matrix, so this is only

a theoretical problem.

In the following section we consider the method of moment estimation for the

parameters of interest.

3.3 The Method of Moments

In this section we will present one of the oldest methods for deriving the point

estimators of distribution parameters, the method of moments. However, this method

is based on the assumption that the sample moments should provide good estimates

of the corresponding population moments. Then because the population moments

will be functions of population parameters, we will equate corresponding population

and sample moments and solve for the desired parameters. To do so, consider the

following statistics of BS- distribution for the estimation of the values of µ and λ by

the moment method:

T1 =
1

n

n∑
k=1

Xk, T2 =
1

n

n∑
k=1

1

Xk

, T = T1T2. (3.5)
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Birnbaum and Saunders (1969b) found the expected values and MSE of these

statistics, which can be used to rewrite the expected values and MSE of the statis-

tics in terms of µ and λ with the help of relations between the usual and the new

parameters (cf. Section 3.1, (3.3)):

E1 = E(T1) =
λµ+ 1/2

µ2
, E2 = E(T2) =

λµ+ 1/2

λ2
,

V ar(T1) =
λµ+ 5/4

nµ4
, V ar(T2) =

λµ+ 5/4

nλ4
,

E(T ) =
1

n
+
n− 1

n

(
λµ+ 1/2

λµ

)2

. (3.6)

Hence, by equating these expectations and their sample values, we find the mo-

ment method estimators (MME)

µ̂(MME)
n =

√√√√ √
T

2T1(
√
T − 1)

, λ̂(MME)
n =

√√√√ T1

2
√
T (
√
T − 1)

.

The following theorem gives the asymptotic MSE of MME.

Theorem 3.1. The MSE of µ̂(MME)
n and λ̂(MME)

n are given by

MSE(µ̂(MME)
n ) =

(λµ+ 5/4) (µ2(λµ+ 1)2 + λ2µ4)

n(2λµ+ 1)2
− 2λµ3(λµ+ 1/4)(λµ+ 1)

n(2λµ+ 1)2

+O
(

1
n2

)
,

MSE(λ̂(MME)
n ) =

(λµ+ 5/4) (λ2(λµ+ 1)2 + λ4µ2)

n(2λµ+ 1)2
− 2λ3µ(λµ+ 1/4)(λµ+ 1)

n(2λµ+ 1)2

+O
(

1
n2

)
(3.7)

as n→∞.

Proof. We follow the asymptotic formula derivation of moments of a sample moments

function, the method outlined in Cramér (1946), §27.7, p.352-358. To this end, we

40



introduce functions M(T1, T2) = µ̂n and L(T1, T2) = λ̂n. Now, rewrite the functions

M and L in the following canonical forms

M(x, y) = 2−1/2x−1/4y1/4
(
x1/2y1/2 − 1

)1/2
,

L(x, y) = 2−1/2x1/4y−1/4
(
x1/2y1/2 − 1

)1/2
.

Since the statistics T1 and T2 will have all moments, the following asymptotic

representation can be written

V ar(µ̂(MME)
n )

= V ar(T1)

(
∂M(E1, E2)

∂x

)2

+ 2cov(T1, T2)
∂M(E1, E2)

∂x

∂M(E1, E2)

∂y

+V ar(T2)

(
∂M(E1, E2)

∂y

)2

+O(n−2),

V ar(λ̂(MME)
n )

= V ar(T1)

(
∂L(E1, E2)

∂x

)2

+ 2cov(T1, T2)
∂L(E1, E2)

∂x

∂L(E1, E2)

∂y

+V ar(T2)

(
∂L(E1, E2)

∂y

)2

+O(n−2).

Direct evaluation of derivatives gives that

∂M(E1, E2)

∂x
=
µ3(λµ+ 1)

2λµ+ 1
,

∂M(E1, E2)

∂y
=

λ3µ2

2λµ+ 1
,

∂L(E1, E2)

∂x
=

λ2µ3

2λµ+ 1
,

∂L(E1, E2)

∂y
=
λ3(λµ+ 1)

2λµ+ 1
.

Finally, using formulas (3.6) for the moments of statistics T1, T2 and T we obtain the

required asymptotic expansions.

The asymptotic MSE of MME can be computed by the formulas from Theorem 3.1.

Further, a simulation study is performed to obtain simulated MSE of the estimators

for given sample size. The results are reported in Tables 3.4 – 3.6 and 3.11.
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An MME is of course a consistent estimator of a parameter. This follows from

the law of large numbers and since the estimator as a function of sample moments

has locally continuous inverse.

In the following section we consider another method for the estimation of param-

eters of the BS-distribution, the so-called regression-quantile or least square method.

3.4 The Regression - Quantile (Least Square)

Method

The regression - quantile method is based on the minimization of the quadratic

measure of the difference between the empirical distribution function Fn(x) and the

theoretical cumulative distribution function

F (x) = 1− Φ(λ/
√
x− µ

√
x).

If X(1) ≤ X(2) ≤ . . . ≤ X(n) are order statistics of X1, X2, . . . , Xn, then by defini-

tion the empirical distribution function is given by Fn(X(k)) = k/n, k = 1, . . . , n.

Now, we consider the following asymptotic equality:

Φ−1

(
1− k

n

)
≈ λ√

X(k)

− µ
√
X(k), k = 1, . . . , n− 1,

which can be used for the parameter estimation. Hence, estimations of parameters

are obtained by finding the minimum of the function

G(λ, µ) =
n∑
k=1

 λ√
X(k)

− µ
√
X(k) − tk

2

,

where tk = Φ−1(1− k/n) for k = 1, . . . , n− 1. Since Φ−1( 0 ) = −∞, tn is chosen by

the condition of further minimization of the function G. It is interesting to note that
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the results of statistical simulations of estimators show that the optimal choice of tn

is close to tn−1 − 1 for nearly all µ, λ and n.

We can rewrite statistics T1 and T2 in (3.5) in the following form:

T1 =
1

n

n∑
k=1

X(k), T2 =
1

n

n∑
k=1

1

X(k)

.

Further,

T3 =
1

n

n∑
k=1

tk
√
X(k), T4 =

1

n

n∑
k=1

tk√
X(k)

Hence, the regression - quantile estimations (RQE), are written as

µ̃n =
T2T3 − T4

1− T1T2

, λ̃n =
T3 − T1T4

1− T1T2

.

Seemingly, it is not possible to evaluate asymptotic MSE of these estimators in

closed form. The evaluation of asymptotic MSE as n → ∞ seems to be mathemati-

cally intractable. Thus, we confine our investigation of the behavior of the MSE to

Monte Carlo simulations.

RQE is a consistent estimator of a parameter. This follows from the Glivenko-

Cantelli theorem (cf., for example, Stout (1974), Chapter 3, Section 3.2, p.124) which

states that an empirical distribution function is a strongly (even uniformly) consistent

estimator of a true distribution function.

In the next section, we consider numerical methods to appraise the performance

of the proposed estimators.

3.5 Some Computed Analysis

In this section we will study the statistical properties of the proposed estimators

by numerical methods. For MLE and MME we consider direct computations of
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asymptotic MSE formulas and by Monte Carlo simulations. On the other hand, the

behavior of the RQE is investigated only via a simulation study.

Because the iteration process may diverge, for a solution of the system of maximum

likelihood equations (cf. Section 3.2, (3.4)) in the region µ > 0, λ > 0 we choose a

rectangle, which is divided into 100 congruent rectangles, and we find a point (µ·, λ·),

for which the sum of squares of differences of the left hand and right hand sides of

the equations (3.4) of the maximum likelihood system is obtained. The point (µ·, λ·)

is surrounded by a rectangle of smaller size, which is also divided into 100 parts and

the process is repeated until the required accuracy 10−3 for MLE is achieved.

On the other hand, the asymptotic MSE of MME is computed by the formulas

(3.7) obtained in Theorem 3.1.

Some computed biases and MSE of the MLE and MME are reported in Tables

1,2,3,10 and Tables 4,5,6,11, respectively.

In an effort to calculate the simulated bias and MSE of all proposed estimators

we need a sample from the BS - distribution. First we generate a sample Y1, . . . , Yn,

of given size n from the standard normal distribution. If Y has the standard normal

distribution, then the root

X =

(
−Y +

√
Y 2 + 4µλ

2µ

)2

of the equation λ/
√
X = Y + µ

√
X will have the BS - distribution with parameters

µ and λ. Mention that the second root X =
(
−Y−
√
Y 2+4µλ

2µ

)2

of the equation will not

produce the BS -distribution. A sample, X1, . . . , Xn, is thus obtained from Y1, . . . , Yn.

After we obtain 1000 replications of each estimator we compute Monte Carlo esti-

mations of bias of the estimators and their MSE with the help of standard statistics,

respectively: average of differences between the true value of the parameters and the

values of simulation and an average of squares of these differences. For example, if we
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obtained 1000 replications of estimator of λ, that is, λ∗1, λ
∗
2, . . . , λ

∗
1000, we will estimate

the bias as

1

1000

1000∑
i=1

(λ∗i − λ)

and the MSE as

1

1000

1000∑
i=1

(λ∗i − λ)2.

The simulated bias and MSE of all estimators are calculated at selected values of µ

and λ and given sample size n. The results are reported in Tables 3.1-3.12.

Finally, we present the analysis of bias and MSE of the estimators based on the

preceding numerical computations. It is clear from Tables 3.1, 3.2, 3.3 and 3.10 that

the MLE has a systematic positive bias (underestimation of a value of the parameter),

when the true value of at least one parameter is sufficiently large and the bias is

an increasing function of values of the parameters. For example, for n = 50 and

λ = 5, µ = 10 the bias of λ for MLE is 0.003, while for λ = 50, µ = 50 the bias of λ

is 0.084.

Tables 3.4, 3.5, 3.6 and 3.11 reveal that the MME has a systematic negative bias

(overestimation of a value of the parameter). The absolute value of bias is also an

increasing function of values of parameters. For example, for n = 50 and λ = 5, µ = 10

the bias of λ for MME is −0.129, while for λ = 50, µ = 50 the bias of λ is −1.277.

We observed from the Tables 3.7, 3.8, 3.9 and 3.12 that the RQE has a positive

bias for the parameter λ and a negative bias for µ when the values of the parameters

are small. For example, for n = 50 and λ = 0.5, µ = 0.5 the bias of λ is 0.009 and the

bias for µ is −0.047. For larger values of parameters a systematic overestimation of

true values of parameters takes place (the estimators have a negative bias). Further,

the larger the values of the parameters the larger is the value of the bias. For example,

for n = 50 and λ = 5, µ = 10 the bias of λ is −0.117 and the bias for µ is −0.318.
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It can be safely argued that the bias of the MME and RQE is higher than that for

MLE. However, for n = 500 the simulation study shows an even larger bias for the

MLE. If λ = 100, µ = 100 the bias of λ for MLE is 0.961, for MME is -0.211 and for

RQE is -0.314. This phenomenon requires additional investigation. But maybe this

results from random errors common to the method of statistical simulations.

Since all three estimators are consistent and all moments exist, we can state that

the bias tends to zero when the sample size n→∞.

The asymptotic MSE and simulated MSE of the MLE are given in Tables 3.1, 3.2,

3.3 and 3.10. The tables reveal that the values of the MSE increase with increasing

values of the parameters. For example, for n = 50 and λ = 0.5, µ = 0.5 (Table 3.2) the

asymptotic MSE and the simulated MSE of λ are 0.005 and 0.002, respectively. On

the other hand, for λ = 50, µ = 50 the MSE are 0.020 and 0.232. The simulated MSE

behavior is more or less similar for different sample sizes. For example, it can be seen

from Table 3.2 that when n = 50 and λ = 0.5, µ = 0.5 the simulated MSE of λ are

0.005 and 0.002, respectively, while for λ = 50, µ = 0.5 the MSE are 1.942 and 0.226.

Seemingly, the asymptotic MSE and the simulated MSE are comparable, except in a

few instances. A difference between the asymptotic MSE and the simulated MSE is

small for proportional values of µ and λ; hence our analytical work is well supported

by computational analysis.

The MSE is large when the parameters are disproportional, that is, one parameter

is much bigger than the other. For example, for n = 50 and λ = 0.5, µ = 0.5 the

MSE of λ for MLE is 0.005, while for λ = 50, µ = 0.5 the MSE of λ is 1.942.

Tables 3.4, 3.5, 3.6,3.11 and Tables 3.7, 3.8, 3.9 and 3.12 provide more or less

similar MSE analyses for the MME and RQE to that of the MLE. For all estimators,

the simulated MSE tends to zero as the sample size n→∞. Moreover, for the RQE,
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the MSE varies inversely as sample size n, that is, for a suitable choice of C = C(µ, λ)

the value C/n for sufficiently large sample size n satisfactorily approximates the values

of the variance. Figures 1 and 2 show simulated MSE for all three estimators as

functions of the sample size when the values of the parameters are µ = λ = 5.

It is noted that the asymptotic MSE of the MME is much higher than the MSE

of the MLE, particularly for large values of the parameters. For example, for n =

50, λ = 50, and µ = 50 the asymptotic MSE for the MLE of λ is 0.020, while for

MME it is 25.005. From our point of view, the most interesting phenomenon is the

practical equivalence of the simulated MSE and the asymptotic MSE of the MME

and RQE. The latter has a little bit higher variance, but this is such a small amount

that it can be explained by random errors common to statistical simulation methods.

Figures 1 and 2 show the simulated MSE for all three estimators as functions of the

sample size when the values of the parameters are µ = λ = 5.
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Figure 3.1: Plot of MSE for MLE, MME, and RQE of λ.

Figure 3.2: Plot of MSE for MLE, MME, and RQE of µ.
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Table 3.1: Bias and MSE for Maximum Likelihood Estimators, n = 10

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
0.5 0.5 -0.008 -0.010 0.023 0.002 0.023 0.002
0.5 1 -0.007 +0.007 0.019 0.002 0.076 0.010
0.5 5 -0.005 -0.002 0.008 0.002 0.765 0.232
0.5 10 +0.000 +0.012 0.004 0.000 1.736 0.011
0.5 50 +0.001 +0.022 0.000 0.000 9.708 0.248
1 0.5 +0.008 -0.008 0.076 0.001 0.019 0.002
1 1 -0.003 -0.004 0.056 0.009 0.056 0.009
1 5 -0.013 -0.025 0.017 0.007 0.434 0.197
1 10 +0.001 +0.013 0.009 0.000 0.930 0.011
1 50 +0.001 -0.006 0.002 0.000 4.926 0.239
5 0.5 -0.001 -0.006 0.766 0.229 0.008 0.002
5 1 -0.032 -0.011 0.434 0.197 0.017 0.007
5 5 -0.094 -0.090 0.097 0.192 0.097 0.188
5 10 +0.003 +0.009 0.049 0.003 0.197 0.011
5 50 +0.006 +0.043 0.010 0.002 0.997 0.228
10 0.5 +0.012 +0.000 1.736 0.011 0.004 0.000
10 1 +0.015 +0.000 0.930 0.011 0.009 0.000
10 5 +0.007 +0.004 0.197 0.011 0.049 0.003
10 10 +0.005 +0.006 0.099 0.010 0.099 0.010
10 50 +0.009 +0.046 0.020 0.007 0.499 0.206
50 0.5 -0.217 +0.001 9.708 0.243 0.001 0.000
50 1 +0.002 +0.001 4.926 0.242 0.002 0.000
50 5 +0.036 +0.004 0.997 0.230 0.010 0.002
50 10 +0.049 +0.012 0.499 0.204 0.020 0.007
50 50 +0.051 +0.054 0.100 0.194 0.100 0.189
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Table 3.2: Bias and MSE for Maximum Likelihood Estimators, n = 50

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
0.5 0.5 -0.003 -0.003 0.005 0.002 0.005 0.002
0.5 1 -0.003 +0.001 0.004 0.002 0.015 0.007
0.5 5 -0.003 -0.002 0.002 0.001 0.153 0.125
0.5 10 +0.000 +0.014 0.001 0.000 0.347 0.010
0.5 50 +0.000 +0.023 0.000 0.000 1.942 0.225
1 0.5 -0.000 -0.003 0.015 0.007 0.004 0.002
1 1 -0.004 -0.003 0.011 0.006 0.011 0.006
1 5 -0.006 -0.017 0.004 0.005 0.087 0.109
1 10 +0.001 +0.011 0.002 0.000 0.186 0.010
1 50 +0.001 +0.036 0.000 0.000 0.985 0.214
5 0.5 -0.012 -0.003 0.153 0.126 0.002 0.001
5 1 -0.025 -0.006 0.087 0.114 0.003 0.005
5 5 -0.044 -0.042 0.019 0.141 0.019 0.137
5 10 +0.003 +0.008 0.011 0.002 0.039 0.009
5 50 +0.005 +0.059 0.002 0.002 0.199 0.184
10 0.5 +0.018 +0.000 0.010 0.347 0.001 0.000
10 1 +0.015 +0.001 0.186 0.010 0.002 0.000
10 5 +0.006 +0.003 0.039 0.009 0.010 0.002
10 10 +0.005 +0.006 0.020 0.008 0.020 0.008
10 50 +0.010 +0.055 0.004 0.007 0.100 0.187
50 0.5 +0.018 +0.000 1.942 0.226 0.000 0.000
50 1 +0.015 +0.001 0.985 0.221 0.000 0.000
50 5 +0.034 +0.004 0.199 0.175 0.002 0.002
50 10 +0.054 +0.011 0.100 0.180 0.004 0.007
50 50 +0.084 +0.085 0.020 0.232 0.020 0.227
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Table 3.3: Bias and MSE for Maximum Likelihood Estimators, n = 100

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λMSE µ MSE µ
0.5 0.5 -0.001 -0.001 0.002 0.001 0.002 0.001
0.5 1 -0.002 -0.000 0.002 0.001 0.008 0.005
0.5 5 -0.002 -0.006 0.001 0.001 0.077 0.092
0.5 10 +0.000 +0.017 0.000 0.000 0.174 0.010
0.5 50 +0.000 +0.055 0.000 0.000 0.971 0.022
1 0.5 -0.002 -0.001 0.008 0.005 0.002 0.001
1 1 -0.003 -0.002 0.006 0.005 0.006 0.005
1 5 -0.003 -0.006 0.002 0.003 0.043 0.083
1 10 +0.001 +0.014 0.001 0.000 0.093 0.009
1 50 +0.001 +0.034 0.000 0.000 0.493 0.191
5 0.5 -0.015 -0.002 0.076 0.091 0.001 0.001
5 1 -0.011 -0.002 0.043 0.083 0.002 0.003
5 5 -0.034 -0.032 0.010 0.108 0.010 0.110
5 10 +0.004 +0.010 0.005 0.002 0.020 0.008
5 50 +0.005 +0.054 0.001 0.002 0.100 0.184
10 0.5 +0.011 +0.001 0.174 0.975 0.000 0.000
10 1 +0.010 +0.001 0.093 0.009 0.001 0.000
10 5 +0.007 +0.004 0.020 0.008 0.005 0.002
10 10 +0.009 +0.007 0.010 0.007 0.010 0.008
10 50 +0.014 +0.075 0.002 0.007 0.050 0.189
50 0.5 +0.025 +0.001 0.971 0.210 0.000 0.000
50 1 +0.021 +0.001 0.493 0.191 0.000 0.000
50 5 +0.056 +0.050 0.010 0.175 0.001 0.002
50 10 +0.066 +0.014 0.050 0.187 0.002 0.007
50 50 +0.076 +0.078 0.010 0.235 0.010 0.240
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Table 3.4: Bias and MSE for Moment Method Estimators, n = 10

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
0.5 0.5 -0.107 -0.105 0.024 0.073 0.024 0.067
0.5 1 -0.945 -0.186 0.020 0.053 0.081 0.196
0.5 5 -0.079 -0.777 0.015 0.033 1.476 3.203
0.5 10 -0.076 -1.503 0.014 0.031 11.901 5.475
0.5 50 -0.073 -7.299 0.013 0.028 127.475 279.978
1 0.5 -0.189 -0.093 0.081 0.211 0.020 0.049
1 1 -0.172 -0.169 0.069 0.164 0.069 0.155
1 5 -0.152 -0.751 0.055 0.123 1.369 2.975
1 10 -0.149 -1.476 0.052 0.117 5.244 11.454
1 50 -0.146 -7.274 0.059 0.112 126.244 278.042
5 0.5 -0.788 -0.078 1.476 3.340 0.015 0.032
5 1 -0.760 -0.150 1.369 3.069 0.055 0.119
5 5 -0.734 -0.730 1.275 2.840 1.275 2.780
5 10 -0.730 -1.454 1.262 2.809 5.050 11.122
5 50 -0.727 -7.257 1.252 2.781 125.250 276.804
10 0.5 -1.519 -0.075 5.475 12.277 0.014 0.030
10 1 -1.488 -0.148 5.244 11.715 0.052 0.114
10 5 -1.460 -0.727 5.050 11.236 1.262 2.779
10 10 -1.457 -1.452 5.025 11.168 5.025 11.088
10 50 -1.453 -7.255 5.006 11.106 125.125 276.737
50 0.5 -7.339 -0.073 127.480 284.042 0.013 0.028
50 1 -7.303 -0.145 126.243 280.903 0.051 0.111
50 5 -7.269 -0.726 125.250 278.079 1.252 2.768
50 10 -7.265 -1.451 125.125 277.638 5.005 11.070
50 50 -7.259 -7.255 125.025 277.186 125.025 276.783
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Table 3.5: Bias and MSE for Moment Method Estimators, n = 50

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
0.5 0.5 -0.018 -0.016 0.005 0.006 0.005 0.006
0.5 1 -0.016 -0.030 0.004 0.005 0.016 0.019
0.5 5 -0.014 -0.134 0.003 0.004 0.295 0.348
0.5 10 -0.014 -0.261 0.003 0.003 1.095 1.299
0.5 50 -0.013 -1.278 0.003 0.003 25.495 30.685
1 0.5 -0.033 -0.015 0.016 0.021 0.004 0.005
1 1 -0.030 -0.028 0.014 0.017 0.014 0.016
1 5 -0.027 -0.131 0.011 0.014 0.274 0.325
1 10 -0.026 -0.258 0.011 0.013 1.049 1.254
1 50 -0.026 -1.276 0.010 0.012 25.250 30.491
5 0.5 -0.140 -0.013 0.295 0.367 0.003 0.003
5 1 -0.135 -0.261 0.274 0.339 0.011 0.013
5 5 -0.130 -0.128 0.255 0.313 0.255 0.307
5 10 -0.129 -0.255 0.252 0.309 1.010 1.220
5 50 -0.128 -1.275 0.250 0.306 25.050 30.386
10 0.5 -0.269 -0.013 1.095 1.356 0.003 0.003
10 1 -0.263 -0.026 1.049 1.294 0.011 0.013
10 5 -0.258 -0.128 1.010 1.238 0.253 0.305
10 10 -0.257 -0.255 1.005 1.229 1.005 1.217
10 50 -0.256 -1.275 1.001 1.221 25.025 30.387
50 0.5 -1.296 -0.013 25.495 31.324 0.003 0.003
50 1 -1.288 -0.026 25.249 30.945 0.010 0.012
50 5 -1.279 -0.127 25.049 30.589 0.249 0.304
50 10 -1.279 -0.255 25.025 30.531 1.001 1.215
50 50 -1.277 -1.276 25.005 30.468 25.005 30.404
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Table 3.6: Bias and MSE for Moment Method Estimators, n = 100

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
0.5 0.5 -0.007 -0.006 0.002 0.003 0.002 0.003
0.5 1 -0.007 -0.012 0.002 0.002 0.008 0.009
0.5 5 -0.005 -0.049 0.001 0.002 0.148 0.163
0.5 10 -0.005 -0.095 0.001 0.002 0.548 0.604
0.5 50 -0.005 -0.465 0.001 0.001 12.748 14.133
1 0.5 -0.013 -0.006 0.008 0.009 0.002 0.002
1 1 -0.012 -0.011 0.007 0.008 0.007 0.008
1 5 -0.010 -0.047 0.005 0.006 0.137 0.151
1 10 -0.010 -0.093 0.005 0.006 0.524 0.579
1 50 -0.010 -0.465 0.005 0.006 12.624 14.018
5 0.5 -0.055 -0.005 0.148 0.168 0.001 0.002
5 1 -0.052 -0.009 0.137 0.155 0.005 0.006
5 5 -0.049 -0.047 0.127 0.143 0.127 0.141
5 10 -0.048 -0.093 0.126 0.141 0.505 0.561
5 50 -0.047 -0.467 0.125 0.140 12.525 13.939
10 0.5 -0.103 -0.005 0.548 0.620 0.001 0.002
10 1 -0.100 -0.009 0.524 0.591 0.005 0.006
10 5 -0.096 -0.047 0.505 0.566 0.126 0.139
10 10 -0.095 -0.093 0.502 0.562 0.502 0.559
10 50 -0.094 -0.467 0.499 0.559 12.512 13.933
50 0.5 -0.485 -0.005 12.748 14.312 0.001 0.001
50 1 -0.479 -0.009 12.624 14.145 0.005 0.006
50 5 -0.473 -0.047 12.525 13.996 0.139 0.125
50 10 -0.472 -0.093 12.512 13.974 0.499 0.557
50 50 -0.470 -0.468 12.502 13.951 12.502 13.933
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Table 3.7: Bias and MSE for Regression - Quantile Estimators, n = 10

Bias MSE
λ µ λ µ λ µ

0.5 0.5 +0.004 -0.200 0.048 0.115
0.5 1 -0.007 -0.319 0.038 0.296
0.5 5 -0.029 -1.009 0.029 3.885
0.5 10 -0.037 -1.750 0.028 13.599
0.5 50 -0.048 -7.102 0.027 298.306
1 0.5 -0.013 -0.159 0.152 0.074
1 1 -0.034 -0.257 0.130 0.210
1 5 -0.074 -0.875 0.111 3.400
1 10 -0.086 -1.572 0.109 12.619
1 50 -0.103 -6.741 0.110 291.790
5 0.5 -0.295 -0.101 2.880 0.039
5 1 -0.369 -0.175 2.768 0.136
5 5 -0.483 -0.710 2.726 2.983
5 10 -0.514 -1.348 2.738 11.672
5 50 -0.555 -6.264 2.764 284.279
10 0.5 -0.738 -0.088 11.074 0.034
10 1 -0.855 -0.157 10.925 0.126
10 5 -1.027 -0.674 10.954 2.918
10 10 -1.069 -1.296 10.997 11.497
10 50 -1.129 -6.151 11.095 282.945
50 0.5 -4.833 -0.071 272.615 0.030
50 1 -5.136 -0.135 273.840 0.117
50 5 -5.547 -0.626 276.407 2.843
50 10 -5.644 -1.230 277.385 11.318
50 50 -5.782 -6.009 278.701 281.186
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Table 3.8: Bias and MSE for Regression - Quantile Estimators, n = 50

Bias MSE
λ µ λ µ λ µ

0.5 0.5 +0.009 -0.047 0.005 0.009
0.5 1 +0.004 -0.078 0.005 0.027
0.5 5 -0.006 -0.249 0.003 0.401
0.5 10 -0.007 -0.420 0.003 1.443
0.5 50 -0.011 -1.735 0.003 31.649
1 0.5 +0.008 -0.039 0.018 0.007
1 1 -0.002 -0.063 0.015 0.021
1 5 -0.016 -0.215 0.012 0.357
1 10 -0.018 -0.375 0.013 1.361
1 50 -0.024 -1.641 0.012 31.006
5 0.5 -0.055 -0.025 0.329 0.004
5 1 -0.080 -0.043 0.310 0.014
5 5 -0.114 -0.173 0.279 0.316
5 10 -0.117 -0.318 0.315 1.289
5 50 -0.133 -1.519 0.297 30.296
10 0.5 -0.160 -0.022 1.240 0.004
10 1 -0.195 -0.039 1.203 0.013
10 5 -0.233 -0.159 1.259 0.322
10 10 -0.256 -0.315 1.186 1.225
10 50 -0.271 -1.490 1.190 30.171
50 0.5 -1.136 -0.017 29.668 0.003
50 1 -1.219 -0.033 29.617 0.012
50 5 -1.278 -0.147 31.426 0.317
50 10 -1.357 -0.298 29.739 1.207
50 50 -1.393 -1.453 29.830 30.023
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Table 3.9: Bias and MSE for Regression - Quantile Estimators, n = 100

Bias MSE
λ µ λ µ λ µ

0.5 0.5 +0.008 -0.024 0.003 0.003
0.5 1 +0.004 -0.038 0.002 0.011
0.5 5 -0.001 -0.115 0.002 0.167
0.5 10 -0.002 -0.195 0.001 0.603
0.5 50 -0.004 -0.749 0.001 13.642
1 0.5 +0.009 -0.019 0.009 0.003
1 1 +0.003 -0.030 0.008 0.009
1 5 -0.005 -0.097 0.006 0.151
1 10 -0.007 -0.170 0.005 0.568
1 50 -0.010 -0.700 0.005 13.441
5 0.5 -0.010 -0.011 0.166 0.002
5 1 -0.024 -0.019 0.154 0.006
5 5 -0.043 -0.075 0.133 0.136
5 10 -0.048 -0.140 0.132 0.538
5 50 -0.054 -0.636 0.131 13.254
10 0.5 -0.049 -0.010 0.614 0.002
10 1 -0.069 -0.017 0.545 0.006
10 5 -0.095 -0.070 0.528 0.134
10 10 -0.102 -0.133 0.526 0.533
10 50 -0.110 -0.621 0.526 13.224
50 0.5 -0.425 -0.007 14.343 0.001
50 1 -0.477 -0.014 13.200 0.005
50 5 -0.537 -0.064 13.148 0.133
50 10 -0.551 -0.124 13.149 0.529
50 50 -0.562 -0.593 14.132 14.152
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Table 3.10: Bias and MSE for Maximum Likelihood Estimators, n = 500

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
100 100 +0.961 +0.961 0.002 1.154 0.002 1.157

Table 3.11: Bias and MSE for Moment Method Estimators, n = 500

Simul. bias MSE
λ µ λ µ Asympt. Simul. Asympt. Simul.

MSE λ MSE λ MSE µ MSE µ
100 100 -0.211 -0.210 10.001 10.358 10.001 10.348

Table 3.12: Bias and MSE for Regression - Quantile Estimators, n = 500

Bias MSE
λ µ λ µ λ µ

100 100 -0.314 -0.321 10.451 10.447
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Chapter 4

Weighted Likelihood Method in Robust

Estimation

4.1 Introduction

Let {F (x; θ); θ ∈ Θ} be a parametric family of cumulative distribution functions

with corresponding probability density functions f(x; θ).

Any estimate θ̂n, defined by a maximum problem of the form

n∑
i=1

ρ(Xi; θ) = max

or by an implicit equation
n∑
i=1

ψ(Xi; θ) = 0,

where ρ is an arbitrary differentiable function and

ψ(x; θ) =
∂ρ(x; θ)

∂θ
,

is called an M -estimate (or maximum likelihood type estimate, cf. chapter 3 of Huber

(1981)). Of course ρ need not be differentiable (eg. ρ(x) = |x|). Note that the choice

ρ(x; θ) = ln f(x; θ), where f is the density function of the distribution from which
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the sample X(n) = (X1, . . . , Xn) is taken, gives the ordinary maximum likelihood

estimate. In this chapter we consider i.i.d. sampling.

If we consider an estimation method based on the maximizing of weighted likelihood

function

L(θ |X(n)) =
n∑
i=1

ti ln f(Xi; θ),

where ti depends on the sample: ti = ti(X
(n)), then we obtain a more general notion

of M -estimate defined by a solution of the equation

n∑
i=1

tiψ(Xi; θ) = 0.

We suggest a special choice of weights ti, connected with the theory of robust

estimation and based on the maximum likelihood method with rejection of spurious

observations. Let θ̂n = θ̂n(X(n)) be the usual maximum likelihood estimation of

parameter θ. The weight ti that corresponds to the observation Xi is assumed to be

1, if its estimated likelihood is sufficiently large, and 0 elsewhere, that is, (the choice

of C is discussed in the next paragraph)

ti =


1 if f(Xi; θ̂n) > C

0 elsewhere.

Consequently, we delete all improbable observations from the sample. Not surprisingly,

it can be seen that in the case of a unimodal probability density function f we reject

only extreme order statistics. However, this may not be the case for multimodal

probability density functions.

We now come back to the issue of the choice of C.We suggest this not be considered

as a constant. Rather assume that C = a/θ̂n, where a can be treated as the same as

the selection of the critical constant in the criterion of elimination of outliers.
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The proposed estimator θ∗n of the parameter θ is defined as the solution of the

equation
m∑
k=1

∂ ln f(Xik ; θ)

∂θ
= 0,

where Xi1 , . . . , Xim are the remaining observations in the sample after the rejection

procedure.

Define a set of obstructing distributions (F denotes the cumulative distribution

function with density function f) as

G = {Gε(x) = (1− ε)F (x; θ) + εF (x; θ1), 0 ≤ ε ≤ 1}, (4.1)

where θ1 ∈ Θ and θ1 6= θ. Under the assumption that the sample is taken from the

distribution Gε with fixed ε, we will find the limits in probability of the estimates θ̂n

and θ∗n for n→∞ and compare their biases. The values of θ for which | θ∗n − θ | will

be less than | θ̂n − θ |, will tell us when to favour the estimate θ∗n over the estimate

θ̂n. Finally, we will compare the quadratic risks of these estimates (in spirit of Huber

(1981), (4.5) - (4.6), Chapter 1).

However, we need some additional assumptions on the obstruction coefficient ε.

Assume that with the increasing of sample size n the coefficient of ”obstruction” ε

decreases as 1
n
, that is, ε = λ/n for some λ > 0.

4.2 Proposed Weighted Likelihood Estimator

We consider an exponential distribution of the form

F (x; θ) = 1− exp{−x/θ}, f(x; θ) = θ−1 exp{−x/θ}, x ≥ 0, θ > 0.

Let θ > 0,∆ > 0, and 0 < α < 1 be any positive numbers. Later we will discuss

the meaning and possible choice of α as a function of the sample size. However, here
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for the sake of brevity we assume α is a constant. Let us define θ1 = θ(1 + ∆).

Assume that the obstructing parameter ε is a constant. Later on, when we will deal

with asymptotic analysis we will assume that ε = λ
n
. According to (4.1), the sample

(X1, · · · , Xn) is taken from the distribution of the form

G(x) = Gε(x) = 1− exp
{−x
θ

}
− ε

(
exp

{
−x

θ(1 + ∆)

}
− exp

{−x
θ

})
.

In this case

θ̂n = X = n−1
n∑
i=1

Xi,

and, by the strong law of large numbers,

θ̂n → θε = E(X) = ((1− ε)θ + εθ(1 + ∆) = θ(1 + ε∆) almost surely.

In an effort to consider θ∗n, we assume that C = a/θ̂n, where a can be treated as

the same as in the selection of the critical constant in the criterion of elimination of

outliers. Hence, a is chosen from the condition of a small probability of rejection of

an observation when we choose from the non obstructed exponential distribution with

cumulative distribution function F (x; θ), not G(x). That is, a is defined by the given

small probability α in the equation

P
(

max
1≤i≤n

Xi > −θ̂n ln a
)
≈ 1−

n∏
i=1

P (Xi ≤ −θ ln a) = 1− (1− a)n = α.

From this equation we obtain a = 1 − (1 − α)1/n ≈ α/n. This approximation of a

is reasonable since in our calculations we will replace θ̂n by the limit in probability

(even almost surely) of this estimator, that is, by θ. So, we choose the value of C as

C =
α

nθ̂n
.

Hence, we reject an observation from the sample ifXk > −X ln(CX) = X ln(n/α).

The estimate θ∗n converges in probability (even almost surely) to some value θε which
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can be calculated as the limit of the expected values truncated at the point A =

−θε ln(Cθε) = θε ln(n/α) of the distribution G(x) = G(x)/G(A), 0 < x ≤ A. That is,

θε = lim
n→∞

1

G(A)

A∫
0

x

[
1− ε
θ

exp
{
−x
θ

}
+

ε

θ(1 + ∆)
exp

{
− x

θ(1 + ∆)

}]
dx. (4.2)

Indeed, these integrals can be evaluated in closed form. However the solution is

cumbersome. Thus, we cannot easily compare the relative bias (θε − θ)/θ of θ∗n with

the relative bias (θε − θ)/θ = ε∆ of θ̂n. In fact,

G(A) = 1− exp
{−A
θ

}
− ε

(
exp

{
−A

θ(1 + ∆)

}
− exp

{−A
θ

})

and the integral in the numerator of (4.2) equals

θε − (1− ε)(A+ θ) exp
{
−A
θ

}
− ε(A+ θ(1 + ∆)) exp

{
− A

θ(1 + ∆)

}
.

A cogent conclusion may not be possible concerning the gain in bias using these

precise formulas even if we expand θε in powers of ε. Thus, we shall confine ourselves

to asymptotic analysis. For this, assume that the obstructing parameter

ε =
λ

n

for some λ > 0.

Recall that we reject observations with Xk > X ln(n/α). Note that

X ln(n/α) ∼ θ(1 + ε∆) ln(n/α) = A, almost surely.

The probability of rejecting an observation in the obstructed model is asymptotically

equal to

P (X1 > A) = (1− ε) exp{−A/θ}+ ε exp{−A/θ(1 + ∆)}

= (1− ε)
(
α

n

)1+ε∆

+ ε
(
α

n

) 1+ε∆
1+∆

=
α

n
+O

(
n−

2+∆
1+∆

)
.
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Hence the asymptotic distribution of θ∗n equals the distribution of the α−trimmed

sample mean

Y =
1

n(1− α)

n(1−α)∑
k=1

Yk

of a random sample of size n(1−α) from the distribution concentrated on the interval

(0, A). The probability density of this distribution is positive only on this interval

and has the form

fA(x; θ) =
1

Gα

[
1− ε
θ

exp
{
−x
θ

}
+

ε

θ(1 + ∆)
exp

{
− x

θ(1 + ∆)

}]
,

where Gα = 1− α/n + o(1/n).

Denote by Eα(X) and V arα(X) the mathematical expectation and variance, re-

spectively, of a random variable X relative to the distribution with probability density

function fA(x; θ). With the preliminaries accounted for, the first result can now be

presented.

Theorem 4.1. The maximum likelihood estimator θ̂n under the obstructing model

has the relative bias

ε∆ =
λ∆

n

and the estimator θ∗n has the relative bias

ε∆− α

n
ln
n

α
+O

(
ε lnn

n

)
=
λ∆

n
− α

n
ln
n

α
+O

(
ε lnn

n

)
.

The above relations reveal that the relative bias of the proposed estimator θ∗n in compar-

ison with relative bias of the MLE θ̂n decreases in the value by the order (α/n) ln(n/α).

Proof.

The asymptotic of the bias of the estimator θ∗n :

Eθ∗n ∼ EαY =
1

Gα

{θ(1 + ε∆)−
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∞∫
A

x

[
1− ε
θ

exp
{
−x
θ

}
+

ε

θ(1 + ∆)
exp

{
− x

θ(1 + ∆)

}]
dx


=

θ

Gα

[
1 + ε∆− (1− ε)

(
A

θ
+ 1

)
exp

{
−A
θ

}
− ε(1 + ∆)

(
A

θ(1 + ∆)
+ 1

)
exp

{
− A

θ(1 + ∆)

}]

∼ θ

Gα

[
1 + ε∆− (1− ε)α

n

(
(1 + ε∆) ln

n

α
+ 1

)
−ε(1 + ∆)

(
α

n

)1/(1+∆) (1 + ε∆

1 + ∆
ln
n

α
+ 1

) ]

∼ θ
(

1 +
α

n

) [
1 + ε∆− α

n
ln
n

α
− α

n

]
∼ θ

(
1 + ε∆− α

n
ln
n

α

)
= θ

(
1 +

λ∆

n
− α

n
ln
n

α

)

with the remainder term O
(
n−

2+∆
1+∆ lnn

)
.

The MLE θ̂n has mathematical expectation θ(1+ε∆) and the weighted likelihood

estimator θ∗n has mathematical expectation

Eθ∗n = θ

(
1 + ε∆− α

n
ln
n

α
+O

(
ε

lnn

n

))
.

Hence, the gain in bias has the order α
n

ln n
α
.

Remark 4.1. From Theorem 4.1 it is apparent that the value of α must be chosen as a

quantity of order O(1/ lnn); otherwise we will obtain a negative bias (underestimated

values of θ). Perhaps, we can suggest here to choose α from the relation λ∆ ≈

α ln(n/α). But generally the values of λ and ∆ are unknown.

Finally, we derive expressions for the quadratic risks of the proposed estimator,

which are based on the following two elementary integrals∫
xeaxdx = eax

(
x

a
− 1

a2

)
+ c,

∫
x2eaxdx = eax

(
x2

a
− 2x

a2
+

2

a3

)
+ c
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(mainly we use the case a = −1).

Theorem 4.2. The maximum likelihood estimator θ̂n has the quadratic risk

R(θ̂n) =
θ2

n
[ 1 + 2ε∆(1 + ∆)] (4.3)

and the estimator θ∗n has the asymptotic representation of the quadratic risk

R(θ∗n) ∼ θ2

n(1− α)

[
1 + 2ε∆(1 + ∆)− α

n
ln2 n

α

]
. (4.4)

The relative efficiency of the estimator θ∗n in comparison with maximum likelihood

estimator θ̂n has the asymptotic representation

En =
R(θ̂n)

R(θ∗n)
∼ (1− α)

(
1 +

α

n
ln2 n

α

)
.

Proof. The quadratic risk of θ̂n is

R(θ̂n) =
E(X1 − θ)2

n
=

E(X1 − θ(1 + ε∆))2 + (θ − θ(1 + ε∆))2

n

=
θ2

n

(
V ar

(
X

θ

)
+ ε2∆2

)
.

Direct computations show that the second moment with the distribution G of the

normalized random variable X/θ equals 2 (1 + ε∆(2 + ∆)) . Hence

V ar
(
X

θ

)
= 1 + 2ε∆(1 + ∆)− ε2∆2.

Finally,

R(θ̂n) =
θ2

n
[ 1 + 2ε∆(1 + ∆)] ,

which proves formula (4.3).

Seemingly, for the estimator θ∗n, it is rather difficult to obtain precise results.

However, it is possible to obtain a first order asymptotic. Conceivably, more precise
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results can be obtained based on the joint distribution of the extreme terms of the

sample and the sample mean.

We have

R(θ∗n) ∼ Eα

 1

n(1− α)

n(1−α)∑
k=1

(Yk − θ)

2

=
1

n(1− α)
V arα(Y ) + (µ− θ)2,

where

µ = EαY = θ
(

1 + ε∆− α

n
ln
n

α

)
.

Further, V arα(Y ) = Eα(Y 2)− µ2, so

R(θ∗n) ∼ 1

n(1− α)

[
Eα(Y 2)− µ2

]
+ (µ− θ)2.

Now,

Eα(Y 2) =
θ2

Gα

{2(1 + ε∆(2 + ∆))

−
∞∫

A/θ

x2

[
(1− ε) exp {−x}+

ε

(1 + ∆)
exp

{
− x

(1 + ∆)

}]
dx


=

θ2

Gα

[ 2 (1 + ε∆(2 + ∆))− (1− ε) exp
{
−A
θ

}(
A2

θ2
+

2A

θ
+ 2

)

−ε(1 + ∆)2 exp

{
− A

θ(1 + ∆)

}(
A2

θ2(1 + ∆)2
+

2A

θ(1 + ∆)
+ 2

)
]

∼ θ2
(

1 +
α

n

)
{2 (1 + ε∆(2 + ∆))

−(1− ε)α
n

[
(1 + ε∆)2 ln2 n

α
+ 2(1 + ε∆) ln

n

α
+ 2

]
−ε(1 + ∆)2

(
α

n

)1/(1+∆)
[

(1 + ε∆)2

1 + ∆)2
ln2 n

α
+ 2

1 + ε∆

1 + ∆
ln
n

α
+ 2

]
}

∼ θ2
(

1 +
α

n

) [
2 (1 + ε∆(2 + ∆))− α

n
ln2 n

α
− 2

α

n
ln
n

α
− 2α

n

]
∼ θ2

[
2 (1 + ε∆(2 + ∆))− α

n
ln2 n

α
− 2

α

n
ln
n

α

]
with the remainder term O

(
n−

2+∆
1+∆ ln2 n

)
. Hence we have established that

R(θ∗n) ∼ θ2

n(1− α)

[
1 + 2ε∆(1 + ∆)− α

n
ln2 n

α

]
,
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which completes the proof of formula (4.4).

The relative efficiency of the estimator θ∗n to the estimator θ̂n is defined as the

ratio of their risks (expression (4.3) divided by expression (4.4)). For this ratio, we

have the following asymptotic representation:

En =
R(θ̂n)

R(θ∗n)
∼ (1− α)

1 + 2ε∆(1 + ∆)

1 + 2ε∆(1 + ∆)− α
n

ln2 n
α

∼ (1− α) [ 1 + 2ε∆(1 + ∆) ]
[

1− 2ε∆(1 + ∆) +
α

n
ln2 n

α

]
∼ (1− α)

(
1 +

α

n
ln2 n

α

)
.

Remark 4.2. The asymptotic relative efficiency of the estimator θ∗n of the α-trimmed

mean type (cf. Huber (1981) Chapter 4, pp.104-106) is given by

E = lim
n→∞

En = 1− α

for any distribution. We have the same limiting behavior of the relative efficiency.

In the following section we conduct a simulation study to evaluate the performance

of the proposed estimators for a given sample.

4.3 Monte-Carlo Simulations

For the purposes of simulation, we fix θ > 0, 0 < ε < 1 and ∆ > 0. Recall

that, if a random variable U has the uniform distribution on the interval [0, 1], then

X = −θ ln(U) will have the exponential distribution with parameter θ. We need this

result for generating random numbers from the exponential distribution.

We generate random numbers from the obstructed distribution

G(x) = Gε(x) = 1− exp
{−x
θ

}
− ε

(
exp

{
−x

θ(1 + ∆)

}
− exp

{−x
θ

})
.

68



This procedure is organized in the following way. The main idea is that with proba-

bility 1− ε we need to generate a random number from the exponential distribution

with parameter θ1 = θ and with probability ε generate a random number from the

exponential distribution with parameter θ1 = θ(1 + ∆). To achieve this, we generate

a random number u from the uniform distribution on the interval [0, 1] and compare

u with ε. If u > ε, then take θ1 = θ. Otherwise θ1 = θ(1 + ∆). Next, generate a ran-

dom number x from the exponential distribution with the parameter θ1. The random

number x has the cumulative distribution function G(x).

The Tables 4.1 - 4.6 represent the numerical values of simulated (Sim) and asymp-

totic (Asy) bias and risk for both estimators θ̂ and θ∗ for various values of n, ε and α.

The asymptotic bias and risk are calculated using the formulas (4.2) and (4.4) from

Theorems 4.1 and 4.2. Note that the risk of the estimate θ̂ does not depend on α.

From the tables we see that the asymptotic formulas are sufficiently accurate for the

given sample sizes.

The Tables 4.7 –4.15 represent the differences between the biases Bias(θ̂) −

Bias(θ∗) and the risks R(θ̂) − R(θ∗) for different values of n,∆, ε and α. These

tables show the advantage of the estimator θ∗, especially for large values of ε and α.

Interestingly, the substantial gain in risk is achieved when we take α = ε, but the

value of ε is generally assumed to be unknown.

69



Table 4.1: Simulated and Asymptotic Bias for estimators θ̂ and θ∗ for n = 30 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ -.0291 .0100 -.0013 .0300 .0679 .0500 .0842 .0700 .1242 .0900
α =.01 -.0292 .0083 -.0013 .0283 .0650 .0483 .0776 .0683 .1214 .0883
α =.03 .0209 .0055 .0223 .0256 .0323 .0455 .0377 .0655 .0846 .0855
α =.05 .0041 .0031 .0041 .0231 .0681 .0431 .0480 .0631 .0207 .0831
α =.07 .0116 .0008 .0111 .0208 .0026 .0408 .0583 .0608 .0815 .0808
α =.09 .0039 .0014 .00377 .0186 .0182 .0386 .0179 .0586 .0819 .0786

Table 4.2: Simulated and Asymptotic Risk for Estimators θ̂ and θ∗ for n = 30 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ .0163 .0208 .0244 .0224 .0223 .0240 .0209 .0256 .0395 .0272
α =.01 .0180 .0207 .0182 .0223 .0360 .0239 .0278 .0256 .0412 .0282
α =.03 .0163 .0208 .0220 .0224 .0222 .0241 .0200 .0257 .0352 .0274
α =.05 .0205 .0209 .0282 .0226 .0287 .0243 .0308 .0254 .0191 .0276
α =.07 .0179 .0211 .0200 .0228 .0277 .0245 .0222 .0262 .0361 .0279
α =.09 .0202 .0213 .0116 .0230 .0183 .0248 .0190 .0266 .0248 .0283

Table 4.3: Simulated and Asymptotic Bias for Estimators θ̂ and θ∗ for n = 100 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ .0214 .0100 .0290 .0300 .0558 .0500 .0719 .0700 .1052 .0900
α =.01 .0200 .0091 .0028 .0029 .0516 .0491 .0667 .0691 .1026 .0891
α =.03 .0294 .0076 .0196 .0276 .0491 .0476 .0825 .0676 .0732 .0876
α =.05 .0091 .0062 .0152 .0262 .0637 .0462 .0817 .0662 .0678 .0862
α =.07 .0181 .0049 .0167 .0249 .0373 .0449 .0373 .0659 .0752 .0849
α =.09 .0105 .003 .0013 .0237 .0376 .0437 .0330 .0637 .0531 .0836

70



Table 4.4: Simulated and Asymptotic Risk for Estimators θ̂ and θ∗ for n = 100 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ .0111 .0104 .0110 .0112 .0161 .0120 .0151 .0128 .0274 .0136
α =.01 .0114 .0104 .0108 .0112 .0154 .0120 .0138 .0128 .0267 .0137
α =.03 .0117 .0105 .0113 .0113 .0158 .0122 .0202 .0130 .0176 .0138
α =.05 .0099 .0106 .0084 .0115 .0180 .0123 .0180 .0132 .0159 .0140
α =.07 .0116 .0108 .0170 .0116 .0134 .0125 .0173 .0133 .0192 .0142
α =.09 .0109 .0109 .0118 .0118 .0125 .0127 .0134 .0136 .0190 .0145

Table 4.5: Simulated and Asymptotic Bias for Estimators θ̂ and θ∗ for n = 200 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ .0194 .0100 .0282 .0300 .0422 .0500 .0670 .0700 .0821 .0900
α =.01 .0188 .0095 .0266 .0295 .0391 .0495 .0656 .0695 .0795 .0895
α =.03 .0076 .0087 .0183 .0287 .0507 .0487 .0609 .0687 .0839 .0887
α =.05 .0059 .0079 .0289 .0279 .0479 .0409 .0567 .0679 .0774 .0879
α =.07 .0128 .0072 .0256 .0272 .0445 .0472 .0667 .0672 .0825 .0872
α =.09 .0054 .0065 .0341 .0265 .0442 .0465 .0630 .0665 .0809 .0865

Table 4.6: Simulated and Asymptotic Risk for Estimators θ̂ and θ∗ for n = 200 and
∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Sim Asy Sim Asy Sim Asy Sim Asy Sim Asy

θ̂ .0057 .0052 .0060 .0056 .0077 .0060 .0114 .0064 .0129 .0068
α =.01 .0057 .0052 .0058 .0056 .0072 .0060 .0113 .0064 .0125 .0068
α =.03 .0062 .0053 .0054 .0057 .0083 .0061 .0160 .0070 .0056 .0058
α =.05 .0056 .0054 .0078 .0058 .0074 .0062 .0106 .0066 .0135 .0071
α =.07 .0057 .0055 .0059 .0059 .0078 .0063 .0113 .0068 .0135 .0072
α =.09 .0052 .0056 .0066 .0060 .0067 .0064 ..0117 .0069 .0138 .0073
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Table 4.7: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 30 and ∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0000 .0000 .0034 -.0008 .0000 .0000 .0060 -.0001 .0000 .0000
α =.03 .0000 .0000 .0035 .0001 .0023 -.0014 .0051 .0051 .0249 .0035
α =.05 .0076 .0040 .0022 -.0009 .0109 .0016 .0084 .0002 .0208 .0006
α =.07 .0059 -.0006 .0089 .0018 .0301 .0022 .0126 .0005 .0184 .0095
α =.09 .0037 .0008 .0034 .0008 .0079 .0009 .0387 .0007 .0124 -.0003

Table 4.8: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 30 and ∆ = 3.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0007 -.003 .0282 .0240 .0601 .0213 .0588 .0319 .0598 .0458
α =.03 .0084 .0108 .0572 .0191 .0870 .0413 .0391 .0208 .0822 .0490
α =.05 .0321 .0084 .0134 -.0002 .0516 .0167 .0729 .0381 .0984 .0719
α =.07 .0217 .0049 .0589 .0248 .0940 .0560 .0991 .0364 .1176 .0760
α =.09 .0279 -.0021 .0709 .0219 .0731 .0364 .0802 .0480 .1136 .0653

Table 4.9: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 30 and ∆ = 5.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0215 .0087 .0477 .0231 .0838 .0396 .1496 .1344 .1770 .1197
α =.03 .0334 .0161 .0966 .0641 .1717 .1334 .2675 .3158 .1661 .1403
α =.05 .0258 .0089 .0898 .0432 .1254 .0718 .1686 .1293 .2009 .1569
α =.07 .0272 .0042 01369 .0899 .1719 .1257 .1913 .1679 .2497 .2106
α =.09 .0292 .0083 .0963 .0745 .1768 .0832 .2070 .1603 .2761 .2070
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Table 4.10: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 100 and ∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0148 .0033 .0341 .0094 .0521 .0190 .0722 .0348 .0551 .0308
α =.03 .0272 .0032 .0419 .0112 .0593 .0196 .0693 .0327 .0764 .0468
α =.05 .0177 .0014 .0560 .0064 .0592 .0230 .0654 .0307 .0930 .0505
α =.07 .0122 .0000 .0560 .0131 .0592 .0231 .0654 .0326 .0930 .0503
α =.09 .0117 -.0004 .0475 .0111 .0664 .0190 .0817 .0324 .1043 .0483

Table 4.11: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 100 and ∆ = 3.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0148 .0033 .0341 .0094 .0521 .0190 .0722 .0348 .0551 .0308
α =.03 .0272 .0032 .0419 .0112 .0593 .0196 .0693 .0327 .0764 .0468
α =.05 .0177 .0014 .0560 .0064 .0592 .0230 .0654 .0307 .0930 .0505
α =.07 .0122 .0000 .0560 .0131 .0592 .0231 .0654 .0326 .0930 .0503
α =.09 .0117 -.0004 .0475 .0111 .0664 .0190 .0817 .0324 .1043 .0483

Table 4.12: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 100 and ∆ = 5.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0229 .0028 .0880 .0373 .0865 .0404 .1565 .1089 .1337 .1153
α =.03 .0237 .0056 .0939 .0374 .1559 .1105 .1646 .1193 .2179 .1929
α =.05 .0404 .0065 .1052 .0405 .1584 .0796 .1760 .1146 .2240 .1928
α =.07 .0291 .0078 .0888 .0297 .1503 .0752 .1786 .1074 .2354 .2013
α =.09 .0391 .0033 .1085 .0379 .1388 .0572 .1999 .1267 .2285 .1808
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Table 4.13: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 200 and ∆ = 1.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0000 .0000 .0013 .0000 .0031 .0004 .0012 .0001 .0033 .0004
α =.03 .0016 .0000 .0048 .0003 .0048 .0011 .0075 .0015 .0070 .0009
α =.05 .0015 .0001 .0041 .0002 .0105 .0018 .0081 .0012 .0100 .0020
α =.07 .0030 -.0002 .0065 .0003 .0076 .0005 .0139 .0016 .0151 .0027
α =.09 .0031 -.0001 .0082 .0005 .0111 .0002 .0112 .0011 .0123 .0018

Table 4.14: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 200 and ∆ = 3.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0113 .0014 .0249 .0048 .0438 .0137 .0481 .0204 .0617 .0315
α =.03 .0107 .0010 .0351 .0069 .0419 .0119 .0641 .0235 .0692 .0369
α =.05 .0117 .0012 .0462 .0094 .0510 .0144 .0664 .0238 .0785 .0387
α =.07 .0162 .0018 .0412 .0092 .0575 .0185 .0738 .0265 .0852 .0474
α =.09 .0166 .0018 .0378 .0067 .0540 .0129 .0852 .0340 .0885 .0421

Table 4.15: Differences Between Biases Bias(θ̂)−Bias(θ∗) and Risks R(θ̂)−R(θ∗)
for n = 200 and ∆ = 5.0.

ε =.01 ε =.03 ε =.05 ε =.07 ε =.09
Bias Risk Bias Risk Bias Risk Bias Risk Bias Risk

α =.01 .0233 .0028 .0696 .0212 .1014 .0498 .1255 .0787 .1535 .1299
α =.03 .0304 .0038 .0743 .0218 .1200 .0564 .1536 .0927 .1765 .1637
α =.05 .0358 .0058 .0903 .0218 .1363 .0641 .1677 .1017 .2034 .1596
α =.07 .0420 .0058 .0931 .0257 .1376 .0617 .1912 .1017 .2045 .1584
α =.09 .0326 .0042 .0871 .0216 .1465 .0588 .1684 .0916 .2159 .1677
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Chapter 5

The Complete Convergence Rates of the

Bootstrap Mean

5.1 Introduction

The proof of the main result of Section 5.1 is based on the following theorem,

proved in Hu, Rosalsky, Szynal and Volodin (1999), Theorem 3.2 (for this thesis we

took cn = 1 for all n ≥ 1 and weights are built into random elements).

Theorem 5.1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent

random elements in a real separable Banach space such that

∞∑
n=1

kn∑
i=1

P{||Xni|| > ε} <∞ for all ε > 0.

Suppose that there exists s > 0 such that, for some 0 < r ≤ 2,

∞∑
n=1

 kn∑
i=1

E||Xni||r
s <∞,

and
kn∑
i=1

Xni
P→ 0.
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Then
∞∑
n=1

P{||
kn∑
i=1

Xni|| > ε} <∞ for all ε > 0.

We also will need the following lemma in de Acosta (1981) (cf. also Berger (1991)):

Lemma 5.1. Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent

random elements. Then for every p ≥ 1/2, there is a positive constant Ap depending

only on p such that, for all n ≥ 1,

E
∣∣∣∣|| kn∑

i=1

Xni|| − E||
kn∑
i=1

Xni||
∣∣∣∣2p ≤ ApE

 kn∑
k=1

||Xnk||2
p .

In the last section of this chapter we will use the following theorem on complete

convergence for row sums of arrays of random variables from Hu, Szynal and Volodin

(1998): Remark 2 after the Theorem. It forms the basis for the results in this section.

Theorem 5.2. Let {kn, n ≥ 1}, be a sequence of positive integers, kn →∞ as n→∞

and {Ynk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent mean zero random

variables. Suppose, E|Ynk|2 <∞, 1 ≤ k ≤ m(n), n ≥ 1 and r ≥ 0.

Moreover, assume that

A1.
∑∞
n=1 n

r∑kn
k=1 P{|Ynk| > ε} <∞ for all ε > 0.

A2. There exists J ≥ 1 such that

∞∑
n=1

nr

 kn∑
k=1

E|Ynk|2
J <∞.

Then
∞∑
n=1

nrP{|
kn∑
k=1

Ynk| > ε} <∞ for all ε > 0.

We now outline the bootstrap procedure in a Banach space setting. We note

that an outline of the bootstrap procedure for real random variables was presented
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in Chapter 1. Let {Xn; n ≥ 1} be a sequence of (not necessarily independent or

identically distributed) random elements defined on some complete probability space

(Ω,F , P ) which take values in a real separable Banach space. For ω ∈ Ω and n ≥ 1, let

Pn(ω) =
1

n

n∑
i=1

δXi(ω) denote the empirical measure. For n ≥ 1, let {X̂ω
n,j; 1 ≤ j ≤ kn}

be i.i.d. random elements with law Pn(ω) where kn is a positive integer. Let X̄n(ω)

denote the sample mean of {Xi(ω); 1 ≤ i ≤ n}, n ≥ 1, that is, X̄n(ω) =
1

n

n∑
i=1

Xi(ω).

5.2 Complete Convergence of Weighted Sums in Banach Spaces

Let ψ : (0,+∞) −→ (0,+∞) be a function. Assume there exists a constant C > 0

such that

u ≥ v =⇒ ψ(u) ≥ Cψ(v) (5.1)

and for any ε > 0

sup
u>0

ψ(u)

ψ(εu)
<∞ (5.2)

By putting u = v (or by using a continuity argument, if ψ is continuous), it is clear

that 0 < C ≤ 1.

Conditions (5.1) and (5.2) are weaker than any of the conditions used in the papers

Chung (1947), Hu and Taylor (1997), Sung (2000), and Ahmed, Hu and Volodin

(2001). Consequently, the family of functions satisfying (5.1) and (5.2) is wider

than the family of functions used by other authors. The following lemma presents a

sufficient condition for ψ to satisfy (5.1) and (5.2).

Lemma 5.2.Let ψ : (0,+∞) −→ (0,+∞) be a function such that Ax ≤ ψ(x) ≤ Bx

for all x ∈ (0,+∞), for some constants A,B > 0. Then:

A

B

u

v
≤ ψ(u)

ψ(v)
≤ B

A

u

v
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for all u, v > 0.

Throughout this section, unless otherwise specified, ψ will be a function satisfying

(5.1) and (5.2).

Theorem 5.3. Let kn →∞ be a sequence of positive integers. Let {Xni, 1 ≤ i ≤

kn, n ≥ 1} be an array of rowwise independent B-valued random elements. Assume

that
∞∑
n=1

kn∑
i=1

P{||Xni|| > ε} <∞ for all ε > 0, (5.3)

and
∞∑
n=1

 kn∑
i=1

E||Xni||r
s <∞ (5.4)

for some s > 0 and some 1 < r ≤ 2. Then the following statements are equivalent:

(i)
kn∑
i=1

Xni −→ 0 in L1.

(ii)
kn∑
i=1

Xni −→ 0 completely.

(iii)
kn∑
i=1

Xni −→ 0 almost surely.

(iv)
kn∑
i=1

Xni −→ 0 in probability.

Proof.(ii) =⇒ (iii), (iii) =⇒ (iv) and (i) =⇒ (iv) are immediate. (iv) =⇒ (ii) is

stated in Theorem 5.1.

(iv) =⇒ (i). Assume that (iv) holds. From (5.3) and Lemma 5.1 with p = r/2:

E

∣∣∣∣∣∣||
kn∑
i=1

Xni|| − E||
kn∑
i=1

Xni||

∣∣∣∣∣∣
r

≤ Ar/2E(
kn∑
i=1

||Xni||2)r/2

≤ Ar/2
kn∑
i=1

E||Xni||r −→ 0

and so

||
kn∑
i=1

Xni|| − E||
kn∑
i=1

Xni|| −→ 0 in probability.
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Consequently, E||
kn∑
i=1

Xni|| −→ 0, and so (i) holds.

Theorem 5.4.Let kn → ∞ be a sequence of positive integers. Let {Xni, 1 ≤ i ≤

kn, n ≥ 1} be an array of rowwise independent B-valued random elements, and

{ani, 1 ≤ i ≤ kn, n ≥ 1} an array of constants. Assume that

∞∑
n=1

kn∑
i=1

Eψ(||Xni||)
ψ(|ani|−1)

<∞ (5.5)

and
∞∑
n=1

 kn∑
i=1

|ani|rE||Xni||r
s <∞ (5.6)

for some 1 ≤ r ≤ 2 and some s > 0. Then the following statements are equivalent:

(i)
kn∑
i=1

aniXni −→ 0 in L1.

(ii)
kn∑
i=1

aniXni −→ 0 completely.

(iii)
kn∑
i=1

aniXni −→ 0 almost surely.

(iv)
kn∑
i=1

aniXni −→ 0 in probability.

Proof. Consider aniXni instead of Xni in Theorem 4.3. The only thing we need to

prove is that (5.5) =⇒ (5.1).

For each ε > 0 by (5.1), the Markov inequality and (5.2):

∞∑
n=1

kn∑
i=1

P [||aniXni|| > ε]

≤
∞∑
n=1

kn∑
i=1

P [ψ(||Xni||) > Cψ(ε|ani|−1)] ≤ 1

C

∞∑
n=1

kn∑
i=1

E[ψ(||Xni||)]
ψ(ε|ani|−1)

≤ C ′
∞∑
n=1

kn∑
i=1

E[ψ(||Xni||)]
ψ(|ani|−1)

.
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Remark 5.1. An analysis of the proof of Theorem 5.4 shows that the condition (5.2)

can be simplified to

sup
n,i

ψ(|ani|−1)

ψ(ε|ani|−1)
<∞

for any ε > 0

We obtain the complete convergence of weighted sums taking values in a Banach

space of type r (1 ≤ r ≤ 2) as a corollary of this theorem.

Recall that a separable Banach space B is of type r, 1 ≤ r ≤ 2, if, and only if,

there exists a constant Cr such that

E||
n∑
i=1

Xi||r ≤ Cr
n∑
i=1

E||Xi||r

for all independent B-valued random elements X1, ..., Xn with mean zero and finite

r-th moments.

Corollary 5.1.Let kn → ∞ be a sequence of positive integers. Let {Xni, 1 ≤ i ≤

kn, n ≥ 1} be an array of rowwise independent B-valued random elements, and

{ani, 1 ≤ i ≤ kn, n ≥ 1} an array of constants. Assume that EXni = 0 for all

1 ≤ i ≤ kn and n ≥ 1, and that B is of type r (1 ≤ r ≤ 2). Assume (5.3) and (5.6)

hold for this r and some s > 0. Then,

kn∑
i=1

aniXni −→ 0 completely.

Proof. By Theorem 5.4, it is enough to prove that
kn∑
i=1

aniXni −→ 0 in L1.

Since B is of type r and E(aniXni) = 0, we have

E||
kn∑
i=1

aniXni||r ≤ Cr
kn∑
i=1

|ani|rE||Xni||r −→ 0

as a consequence of (5.6).
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Convergence in Lr implies convergence in L1, so Theorem 5.4 implies that

kn∑
i=1

aniXni −→ 0 completely.

Remark 5.2. If C = 1, kn = n and ani =
1

an
, 1 ≤ i ≤ kn, n ≥ 1, then Theorem

5.4 and Corollary 5.1 become Theorem 2.2, Theorem 2.3 and Corollary 2.4 in Sung

(2000).

By using the functions ψ satisfying the hypothesis of Lemma 5.2, we can weaken

slightly the conditions (5.5) and (5.6) in Theorem 5.4.

Theorem 5.5.Let kn → ∞ be a sequence of positive integers. Let {Xni, 1 ≤ i ≤

kn, n ≥ 1} be an array of rowwise independent B-valued random elements, and

{ani, 1 ≤ i ≤ kn, n ≥ 1} an array of constants. Let ψ : (0,+∞) −→ (0,+∞) be

a function such that Ax ≤ ψ(x) ≤ Bx for all x ∈ (0,+∞), for some constants

A,B > 0. Assume that
∞∑
n=1

kn∑
i=1

Eψ(||Xni||)
ψ(|ani|−1)

<∞.

Then the following statements are equivalent:

(i)
kn∑
i=1

aniXni −→ 0 in L1.

(ii)
kn∑
i=1

aniXni −→ 0 completely.

(iii)
kn∑
i=1

aniXni −→ 0 almost surely.

(iv)
kn∑
i=1

aniXni −→ 0 in probability.

Proof. Note that in this case

A

B
||aniXni|| ≤

ψ(||Xni||)
ψ(|ani|−1)

.

For (i) =⇒ (ii) we refer to Corollary 4.7 in Hu, Rosalsky, Szynal and Volodin (1999).
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To see that (iv) =⇒ (i), notice that E||
kn∑
i=1

aniXni|| ≤
kn∑
i=1

|ani|E||Xni|| −→ 0, so (i)

holds.

Similarly, it is easy to check the following result on complete convergence in a

Banach space of type 1 ≤ r ≤ 2.

Corollary 5.2. Let kn → ∞ be a sequence of positive integers. Let {Xni, 1 ≤

i ≤ kn, n ≥ 1} be an array of rowwise independent B-valued random elements, and

{ani, 1 ≤ i ≤ kn, n ≥ 1} an array of constants. Let ψ : (0,+∞) −→ (0,+∞) be

a function such that Ax ≤ ψ(x) ≤ Bx for all x ∈ (0,+∞), for some constants

A,B > 0. Assume that EXni = 0 for all 1 ≤ i ≤ kn and n ≥ 1, and B is of type r

(1 ≤ r ≤ 2). Assume (4.4) holds. Then

kn∑
i=1

aniXni −→ 0 completely.

5.3 Consistency of Bootstrapped Means in the Banach Space

Setting

In order to prove the main result of this section, we need the following lemma:

Lemma 5.3. If s > 0 then, for almost every ω ∈ Ω,

E||X̂ω
n,1 − X̄n(ω)||s ≤ As

[
1

n

n∑
i=1

||Xi(ω)||s + ||X̄n(ω)||s
]
,

where As = 2s−1 for s ≥ 1 and As = 1 for 0 < s < 1.

Proof. For almost every ω ∈ Ω ,

E||X̂ω
n,j − X̄n(ω)||s =

1

n

n∑
i=1

||Xi(ω)− X̄n(ω)||s
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≤ As

[
1

n

n∑
i=1

(
||Xi(ω)||s + ||X̄n(ω)||s

)]
,

by the cr-inequalities.

Theorem 5.6. Let {Xn, n ≥ 1} be a sequence of random elements taking values in

a real separable Banach space. Let kn → ∞ be a sequence of positive integers, and

let {ank, 1 ≤ k ≤ kn, n ≥ 1} be an array of real constants. Let 1 ≤ r ≤ 2. Define

hn =
kn∑
k=1

|ank|r, for every n ≥ 1. Let {bn, n ≥ 1} and {dn, n ≥ 1} be sequences of

positive constants. Suppose that:

(1) sup
n≥1

1

dn
||X̄n|| <∞ a.e. and sup

n≥1

1

bn

n∑
i=1

||Xi||r <∞ a.e.,

(2)
∞∑
n=1

hnbn
n

<∞ and
∞∑
n=1

hnd
r
n <∞,

(3) The bootstrapped mean is weakly consistent with respect to {ank, 1 ≤ k ≤

kn, n ≥ 1}, that is, for almost every ω ∈ Ω

||
kn∑
k=1

ank
(
X̂ω
n,k − X̄n(ω)

)
|| P→ 0.

Then the bootstrapped mean is strongly consistent with respect to {ank, 1 ≤ k ≤

kn, n ≥ 1}, that is, for almost every ω ∈ Ω and all ε > 0,

∞∑
n=1

P

||
kn∑
k=1

ank
(
X̂ω
n,k − X̄n(ω)

)
|| > ε

 <∞.

Proof. If we consider the function ψ(t) = tr, the condition (5.5) in Theorem 5.4 be-

comes
∞∑
n=1

kn∑
k=1

|ank|rE||Xnk||r < ∞, which implies condition (5.6) with s = 1. There-

fore, we need only check condition (5.5) for the array {Znk = X̂ω
n,k − X̄n(ω), 1 ≤ k ≤

kn, n ≥ 1} with ψ(t) = tr.

An application of Lemma 5.3 yields for almost every ω ∈ Ω:

∞∑
n=1

kn∑
k=1

|ank|rE||Znk||r =
∞∑
n=1

kn∑
k=1

|ank|rE||X̂ω
n,k − X̄n(ω)||r
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≤ 2r−1
∞∑
n=1

kn∑
k=1

|ank|r
[

1

n

n∑
i=1

||Xi(ω)||r + ||X̄n(ω)||r
]

= 2r−1

 ∞∑
n=1

(
1

n

n∑
i=1

||Xi(ω)||r)
kn∑
k=1

|ank|r +
∞∑
n=1

||X̄n(ω)||r
kn∑
k=1

|ank|r


= 2r−1

( ∞∑
n=1

hn
n

n∑
i=1

||Xi(ω)||r +
∞∑
n=1

hn||X̄n(ω)||r
)

= 2r−1

( ∞∑
n=1

hnbn
n

[
1

bn

n∑
i=1

||Xi(ω)||r
]

+
∞∑
n=1

hnd
r
n

[
1

dn
||X̄n(ω)||

]r)
<∞

in view of (1) and (2).

By applying Theorem 5.4, we have that
kn∑
k=1

ankZnk −→ 0 completely, that is, the

bootstrapped mean is strongly consistent with respect to {ank, 1 ≤ k ≤ kn, n ≥ 1}.

Remark 5.3. In the particular case ank =
1

an
for all 1 ≤ k ≤ kn and every n ≥ 1,

where {an, n ≥ 1} is a sequence of positive constants, we have Theorem 3 of Ahmed,

Hu and Volodin (2001), with q = r ∈ [1, 2] and cn = 1 for every n ≥ 1.

5.4 Bootstrap of the Mean for Random Variables

The main result of this section is given in Theorem 5.7 below. The main thrust

and unusual feature of Theorem 5.7 is that no assumptions are required concerning

marginal and joint distributions of the random variables {Xn}. Not only that, it is not

assumed that these random variables are either independent or identically distributed.

In general, no moment conditions are imposed on the random variables {Xn}.

Theorem 5.7. Let {Xn, n ≥ 1} be a sequence of random variables and let {an, n ≥ 1}

be a sequence of positive constants. Suppose there exists J ≥ 1 such that

max1≤i≤n |Xi|
knan

→ 0 a.s. as n→∞ and (5.7)

∞∑
n=1

nr
(∑n

i=1 X
2
i

a2
nknn

)J
<∞ a.s. (5.8)
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Then the bootstrapped mean is strongly consistent, that is, for almost all ω ∈ Ω

and all ε > 0,
∞∑
n=1

nrP

|
kn∑
k=1

(
X̂ω
n,k − X̄n(ω)

)
| > εankn

 <∞.

Proof. We need only check the conditions of Theorem 4.2 for the arrayYnk =
X̂ω
n,k − X̄n(ω)

knan
, 1 ≤ k ≤ kn, n ≥ 1

 .
These conditions may be rewritten as follows.

Condition 1:
∑∞
n=1 n

r∑kn
k=1 P{|X̂ω

n,k − X̄n(ω)| > εknan} <∞ for all ε > 0.

Condition 2: There exists J ≥ 1 such that

∞∑
n=1

nr

 kn∑
k=1

E|X̂ω
n,k − X̄n(ω)|2

(anknn)2

J <∞.
Further, for the first condition,

|X̂ω
n,k − X̄n(ω)| ≤ 2 max

1≤i≤n
|Xi(ω)|,

and for the second one, since

E|X̂ω
n,k − X̄n(ω)|2 =

1

n

n∑
i=1

|Xi(ω)− X̄n(ω)|2

≤ 4

n

n∑
i=1

Xi(ω)2,

we have
∞∑
n=1

nr

 kn∑
k=1

E|X̂ω
n,k − X̄n(ω)|2

(anknn)2

J

≤ C
∞∑
n=1

nr
(∑n

i=1 X
2
i

a2
nknn

)J
<∞ a.s.

where C is a positive constant.
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Now we wish to make the following two remarks.

Remark 5.4. If knan →∞ monotonically, then (5.7) is equivalent to the structurally

simpler condition

lim
n→∞

Xn

knan
= 0 a.s. (5.9)

Indeed, let knan → ∞ monotonically and (5.7) holds. Then, for arbitrary n ≥

k ≥ 2,

max1≤i≤n |Xi|
knan

≤ max1≤i≤k−1 |Xi|
knan

+
maxk≤i≤n |Xi|

knan

=
max1≤i≤k−1 |Xi|

knan
+ max

k≤i≤n

|Xi|
knan

≤ max1≤i≤k−1 |Xi|
knan

+ sup
i≥k

|Xi|
knan

→ 0,

as first n→∞ and then k →∞. It is noted that the reverse implication is evident.

Remark 5.5. It appears that the comparison of Theorem 5.7 of this section to

Theorem 2.1 of Li, Rosalsky and Ahmed (1999) may not be possible. One simple

argument is that the difference in the assumptions of both theorems does not provide

for comparative analysis. Li, Rosalsky and Ahmed (1999) assumed the convergence

of partial sums. On the other hand we use only boundness of partial sums.

Finally, we wish to provide another generalization of the main result of Hu and

Taylor (1997). We give the proof for pairwise i.i.d. random variables. Recall that Hu

and Taylor (1997) only considered the i.i.d. case in their publication. In addition, the

result in this investigation is sharper in the sense that it establishes convergence rates

which ware not given in Hu and Taylor (1997). In their paper only a.s. convergence

results were stated. Furthermore, our proof may be simpler than that of Hu and

Taylor (1997).
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Corollary 5.3. Let {Xn, n ≥ 1} be pairwise independent identically distributed ran-

dom variables with E|X|1+δ < ∞ for some δ > 0 and EX = µ. Then for all ε > 0,

for almost all ω ∈ Ω and any real number r:

∞∑
n=1

nrP

{
|
n∑
k=1

(
X̂ω
n,k − µ

)
| > εn

}
<∞.

Proof. Note that it is sufficient to show the result for r ≥ −1, since for r < −1 the

result is obvious. Let an = 1 and kn = n.

In order to prove (5.9), we can write for arbitrary ε > 0

∞∑
n=1

P{|Xn| > εn} ≤ CE|X1| <∞.

Thus, by the Borel-Cantelli lemma,

lim
n→∞

Xn/n = 0, a.s.

To prove (5.8), note that {X2
n, n ≥ 1} are also pairwise independent identically

distributed random variables. Recall that E|X|1+δ < ∞ and, by an application of

Petrov (1996) results, it can be shown that

1

n2/(1+α)

n∑
i=1

X2
i → 0, a.s., where 0 < α < δ.

Now let J > (1+α)(1+r)
2α

. Then

∞∑
n=1

nr
(

1

n2

n∑
i=1

X2
i

)J
≤
(

sup
n≥1

1

n
2

1+α

n∑
i=1

X2
i

)J ∞∑
n=1

1

n
2αJ
1+α
−r

<∞, a.s.

Hence, by Theorem 5.7, for almost all ω ∈ Ω and all ε > 0

∞∑
n=1

nrP

{
|
n∑
k=1

(
X̂ω
n,k − X̄n(ω)

)
| > εn

}
<∞.

87



Further, by an application of Etemadi’s (1981) strong law of large numbers, we have

that X̄n → µ a.s.. Hence, for almost all ω ∈ Ω and all ε > 0 there exists N = N(ε, ω)

such that, for all n ≥ N, we have X̄n − µ < ε/2. Then

∞∑
n=1

nrP

{
|
n∑
k=1

(
X̂ω
n,k − µ

)
| > εn

}

≤
∞∑
n=1

nrP

{
|
n∑
k=1

(
|X̂ω

n,k − X̄n(ω)|+ |X̄n(ω)− µ|
)
> εn

}

≤
∞∑
n=1

nrP

{
|
n∑
k=1

(
|X̂ω

n,k − X̄n(ω)|
)
> εn/2

}
<∞.
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Chapter 6

An Improvement of Kolmogorov

Exponential Inequality for Negatively

Dependent Random Variables

6.1 Introduction

Definition 6.1. The random variables X1, · · · , Xn are said to be negatively de-

pendent if we have

P
{
∩nj=1(Xj ≤ xj)

}
≤ Πn

j=1P {Xj ≤ xj} ,

and

P
{
∩nj=1(Xj ≥ xj)

}
≤ Πn

j=1P {Xj ≥ xj}

for all real x1, · · · , xn.

6.2 Preliminary Results

The following two lemmas are used to obtain the main result in the next sec-

tion. The first lemma is a simple corollary of the observation that if X1, · · · , Xn is a
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sequence of negatively dependent random variables, then eX1 , · · · , eXn are also neg-

atively dependent. The same argument is used in Bosorgnia, Patterson and Taylor

(1996) p.1167.

Lemma 6.1. If X1, · · · , Xn is a sequence of negatively dependent random variables,

then

E exp

{
n∑
k=1

Xk

}
≤ Πn

k=1E exp{Xk}.

The second lemma is only a technical result that will help us to improve a constant

in the Kolmogorov exponential inequality.

Lemma 6.2. Let a > 0 and 0 < α ≤ a3

2(ea−1−a−a2/2)
. Then

ex − 1− x− x2

2
≤ x3

2α

for all 0 ≤ x ≤ a.

Proof. Consider the function

f(x, α) = ln

(
1 + x+

x2

2
+
x3

2α

)
− x.

We need to prove that f(x, α) ≥ 0 for all 0 < α ≤ a3

2(ea−1−a−a2/2)
and 0 ≤ x ≤ a.

Take the derivative

∂f

∂x
= − x2 (x− (3− α))

2α (1 + x+ x2/2 + x3/(2α))
.

Hence f is increasing with respect to x on the interval (0, 3 − α) and decreasing on

the interval (3− α, a).

Note that f(0, α) = 0 and f(a, α) ≥ 0 since α ≤ a3

2(ea−1−a−a2/2)
.
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6.3 Main Result

Now we can formulate and prove the main result of this section.

Theorem 6.1. Let X1, · · · , Xn be a sequence of negatively dependent random vari-

ables with zero means and finite variances. Let s2
n =

n∑
k=1

EX2
k and assume that

|Xk| ≤ Csn almost surely for each 1 ≤ k ≤ n and n ≥ 1. Then for each a > 0

and n ≥ 1, the assumptions εC ≤ a and 0 < α ≤ a3

2(ea−1−a−a2/2)
imply that

P{Sn/sn > ε} ≤ exp

{
−ε

2

2

(
1− εC

α

)}
,

where Sn =
n∑
k=1

Xk, as usual.

Proof. We will follow the proof of the classical Kolmogorov exponential inequality,

cf. Stout (1974), p.263. Fix n ≥ 1 and a > 0. Suppose x = εC ≤ a. For each

1 ≤ k ≤ n, since all series are absolutely convergent we can write

E exp{εXk/sk} = 1 +
ε2EX2

k

2!s2
n

+
ε3EX3

k

3!s3
n

+ · · ·

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

εC

3
+
ε2C2

3 · 4
+ · · ·

)

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

x

3
+

x2

3 · 4
+ · · ·

)

= 1 +
ε2EX2

k

2s2
n

(
ex − x− x2

2

)

≤ 1 +
ε2EX2

k

2s2
n

(
1 +

x

α

)
by Lemma 6.2

≤ exp

{
ε2EX2

k

2s2
n

(
1 +

x

α

)}
since 1 + t ≤ et for all t. By Lemma 6.1,

E exp{εSn/sn} ≤ exp

{
ε2

2

(
1 +

εC

α

)}
.
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Thus

P{Sn/sn > ε} ≤ exp{−ε2}E exp{εSn/sn}

≤ exp

{
−ε

2

2

(
1− εC

α

)}
.

Remark 6.1. Even for a = 1 our Theorem 6.1 gives better constant α = 1
2e−5

=

2.2906 > 2, while in the classical Kolmogorov’s inequality we have α = 2 (cf. Stout,

(1974) p.263).

Remark 6.2. If a → 0 then α = a3

2(ea−1−a−a2/2)
→ 3. As a → ∞ then α → 2. We

need a→ 0 for the proof of the law of iterated logarithm.

Remark 6.3. Another interesting advantage of Theorem 6.1 is that we can consider

any positive a, while a = 1 in the usual Kolmogorov inequality. In our inequality,

the upper bound involves a fixed (given) C and fixed ε and a variable α. Now, α

is a function of a, for a ≥ εC. Note that the left-hand side of the inequality doesn’t

involve a anywhere, whereas the right-hand side is, in effect, a function of a. So the

best possible inequality occurs when a is chosen so that α(a) is maximized on the

interval [ε,∞]. However, α is a decreasing function of a, so the best value of the upper

bound occurs when a is as small as possible; i.e., when a = εC.

In short, then, technically we have a family of inequalities – one for each value

of a ≥ εC. However, the special case where α = α(εC) implies the validity of the

inequality for all larger values of α – so there is really only one inequality, for one

specific value of α.

Remark 6.4 It is interesting to obtain another exponential inequalities (Bernstein’s,

Prohorov’s, Hoeffding’s, Bennett’s, Fuk-Nagaev’s and etc.) for negatively dependent
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random variables.
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Chapter 7

Conclusion and Outlook for Future

Research

We conclude this dissertation by showcasing some open problems and providing

some general comments.

The asymptotic analysis of the confidence coefficient of the interval estimate of

the mean vector with center at the James-Stain estimator is developed in Chapter

2. Most importantly, the method and its technique lead to results that are quite

general in nature. A novel aspect of the derivation is that we were able to find

limits of integration in the double integral and this tells us what the confidence

coefficient is. Consequently, formal calculations for asymptotic analysis are reduced

to asymptotic of roots of a sufficiently simple algebraic equation. Of course, the

method we developed can be successfully used for other statistical models in which

we can find the James-Stein phenomena. An interesting area will be the application

of the results we obtained to multiple regression problems.

The results of Chapter 3, that is, the investigations of point properties of different

methods of estimation of Birnbaum - Sounders distribution parameters ensure us that

maximum likelihood estimators have substantial advantages in comparison with other
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estimators, disregarding the difficulties connected with their computations. This

result is important since we estimate the parameters that reflect a physical nature

of an object, which is analyzed from a statistical point of view by this distribution.

In connection with this, one could continue investigations of asymptotic behavior of

the Fisher information matrix when the parameter λ tends to infinity. Moreover,

we considered a class of new estimators, so-called regression-quartile (least square)

estimators. This method is based on the regression analysis of sample quartiles.

In Chapter 4 we suggested the application of weighted likelihood to robust esti-

mation. We think that this problem is methodologically important and could be of

paramount interest in statistical practice. It demonstrates the nature of robustness

of such estimators as the α-trimmed mean and explains the point of the matter of

outliers and, namely, strongly outstanding observations, and supports the idea of the

necessity of their removal from the sample and further investigation. For the sake of

brevity, we considered the exponential model. It will be exceedingly interesting to

continue the investigation of robust properties of weighted likelihood estimators in

general for obstructed models or other gross error models. It is a necessity to inves-

tigate the behavior of the breakdown point and analyze Hampel’s influence function

for 0 - 1 weights that depend on sample values. That is, we plan to investigate all

robustness properties mentioned in Huber’s (1981) book. Finally, it is interesting

to consider such types of estimators for different obstructing models, especially for

normal distributions with obstruction, for both the mean and the variance.

One of the most interesting and useful examples of negative dependent random

variables arrises in the situation of the sample from a finite population without re-

placement. Hence we can apply the results of Chapters 5 and 6 to the so-called

dependent bootstrap, that is, a sample drawn without replacement from a collection
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of items made up of copies of sample observations. We think that the dependent

bootstrap is only one, of course very interesting, application of the notion of negative

dependence. Another one is to apply it to the limit theorems.

96



REFERENCES

de Acosta, A. (1981). Inequalities for B-valued random vectors with applications to

the strong law of large numbers. Ann. Probab. 9, 157-161.

Ahmad, I. A. (1988). Jackknife estimation for a family of life distribution. J.Statist.

Comput. and Simul. 29, 211-223.

Ahmed, S. E. (1998a). Improved pretest nonparametric estimation in a multivariate

regression model. Communications in Statistics: Theory and Methods 27, 2391-

2421.

Ahmed, S. E. (1998b). Large-Sample Estimation Strategies for Eigenvalues of a

Wishart Matrix. Metrika 47, 35-45.

Ahmed, S. E. (1999a). Simultaneous estimation of survivor functions in exponential

lifetime models. Journal of Statistical Computation and Simulation 63, 235-261.

Ahmed, S. E. (2000a). Construction of improved estimators of multinomial propor-

tions. Communications in Statistics: Theory and Methods 29, 1273-1291.

Ahmed, S. E. (2001). Shrinkage estimation of regression coefficients from censored

data with multiple observations. In: Empirical Bayes and Likelihood Inference

(Montreal, QC, 1997), 103–120, Lecture Notes in Statist., 148, Springer, New

York.

97



Ahmed, S. E. and Basu, A. K. (2000b). Least squares, preliminary test and Stein-

type estimation in general vector AR(p) models. Statistica Neerlandica 54,

47-66.

Ahmed S. E., Gupta A. K., Khan, S. M., and Nicol C. J. (2001b). Simultaneous

estimation of several intraclass correlation coefficients. Ann. Inst. Statist.

Math. 53, 354-369.

Ahmed, S.E., Hu, T.C. and Volodin, A.I. (2001). On the rate of convergence of

bootstrapped means in a Banach space. Internat. J. Math. & Math. Sci. 25,

629-635.

Ahmed, S. E. and Khan, S. M. (2002). Using Several Data To Structure Efficient Es-

timation of Intraclass Correlation Coefficients. Measurement and Multivariate

Analysis, Springer-Verlag: Tokyo.

Ahmed,S.E., Li, D., Rosalsky, A., and Volodin, A. (2001). Almost sure Lim Sup

behavior of bootstrapped means with applications to pairwise i.i.d. sequences

and stationary ergodic sequences, Journal of Statistical Planning and Inference

98, 1-14.

Ahmed, S. E. and Saleh, E. (1999b). Improved nonparametric estimation of location

vector in a multivariate regression Model, Nonparametric Statistics 11, 51-78.

Ahmed, S. E. and Ullah, B. (1999c). Improved biased estimation in an ANOVA

model.Linear Algebra and its Application 289, 3-24.

Ahmed, S. E. and Ullah, B. (1999d). To pool or not to pool: The multivariate data.

Sankhya 61, Series B, 266-288.

98



Ahmed, S. E. and Volodin A.(2001). The convergence rates of the bootstrap mean.

Data Analysis from Statistical Foundations. A Festschrift in honour of the 75th

birthday of D.A.S. Fraser. A.K.Md.E.Saleh (Editor). Nova Science Publica-

tions, Inc. Huntington, New York, 207-213.

Arenal-Gutiérrez, E., Matrán, C. and Cuesta-Albertos, J.A. (1996). On the uncon-

ditional strong law of large numbers for the bootstrap mean. Statist. Probab.

Lett. 27, 49-60.

Athreya, K.B. (1983). Strong law for the bootstrap. Statist. Probab. Lett. 1,

147-150.

Berger, E. (1991). Majorization, exponential inequalities and almost sure behavior

of vector-valued random variables. Ann. Probab. 19 1206-1226.

Bickel, P.J. and Freedman D.A. (1981). Some asymptotic theory for the bootstrap.

Ann. Statist. 9, 1196-1217.

Birnbaum, Z. W., Sounders, S. C. (1969a). A new family of the life distribution,

J.Appl. Probab. 6, 319-327.

Birnbaum, Z. W., Sounders, S. C. (1969b). Estimation for a family of life distribution

with application to fatigue. J.Appl. Probab. 6, 328-337.

Bogdanoff, D., Kozin F. (1985). Probabilistic models of cumulative damage. John

Wiley and Sons, New-York - Chichester.

Bosorgnia, A., Patterson, R.F. and Taylor, R.L. (1997). Chung type strong laws

for arrays of random elements and bootstrapping. Stochastic Anal. Appl. 15,

651-669.

99



Bozorgnia, A., Patterson, R.F. and Taylor, R.L. (1996). Limit theorems for de-

pendent random variables. Proceedings of WCNA’92, Tampa, Florida, 1639 -

1650.

Choi, B.D. and Sung, S.H. (1988). On Chung’s strong law of large numbers in

general Banach spaces. Bull. Austral. Math. Soc. 37, 93-100.

Choi, B.D. and Sung, S.H. (1989). On Teicher’s strong law of large numbers in

general Banach spaces. Probab. Math. Statist. 10, 137-142.

Chung, K.L. (1947). Note on some strong laws of large numbers. Amer. J. Math.

69, 189-192.

Cramér G. (1946). Mathematical methods of statistics. Princeton Mathematical

Series, vol. 9. Princeton University Press, N.J.
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