
Test (2012) 21:369–385
DOI 10.1007/s11749-011-0248-0

O R I G I NA L PA P E R

Some theorems on conditional mean convergence
and conditional almost sure convergence for randomly
weighted sums of dependent random variables

Manuel Ordóñez Cabrera · Andrew Rosalsky ·
Andrei Volodin

Received: 12 July 2010 / Accepted: 23 April 2011 / Published online: 15 May 2011
© Sociedad de Estadística e Investigación Operativa 2011

Abstract In (Ordóñez Cabrera and Volodin, J. Math. Anal. Appl. 305:644–658,
2005), the authors introduce the notion of h-integrability of an array of random vari-
ables with respect to an array of constants, and obtained some mean convergence
theorems for weighted sums of random variables subject to some special kinds of
dependence.

In view of the important role played by conditioning and dependence in the mod-
els used to describe many situations in the applied sciences, the concepts and results
in the aforementioned paper are extended herein to the case of randomly weighted
sums of dependent random variables when a sequence of conditioning sigma-algebras
is given. The dependence conditions imposed on the random variables (conditional
negative quadrant dependence and conditional strong mixing) as well as the con-
vergence results obtained are conditional relative to the conditioning sequence of
sigma-algebras.

In the last section, a strong conditional convergence theorem is also established by
using a strong notion of conditional h-integrability.

The research of M. Ordóñez Cabrera has been partially supported by DGICYT grant
BFM2003-03893-C02-01 and Junta de Andalucia FQM 127. The research of A. Volodin has been
partially supported by the National Science and Engineering Research Council of Canada.

M. Ordóñez Cabrera
Department of Mathematical Analysis, University of Sevilla, Sevilla 41080, Spain
e-mail: cabrera@us.es

A. Rosalsky (�)
Department of Statistics, University of Florida, Gainesville, FL 32611, USA
e-mail: rosalsky@stat.ufl.edu

A. Volodin
Department of Mathematics and Statistics, University of Regina, Regina, SK, S4S0A2, Canada
e-mail: andrei@math.uregina.ca

mailto:cabrera@us.es
mailto:rosalsky@stat.ufl.edu
mailto:andrei@math.uregina.ca


370 M. Ordóñez Cabrera et al.

Keywords Conditional residual h-integrability · Randomly weighted sums ·
Conditional negative dependence · Conditional strong-mixing · Conditional strongly
residual h-integrability

Mathematics Subject Classification (2000) 60F05 · 60F15 · 60G99

1 Introduction

The random nature of many problems arising in the applied sciences leads to math-
ematical models which concern the limiting behavior of weighted sums of ran-
dom variables, where the weights are also random variables. Thus, let {Xi, i ≥ 1}
be a sequence of independent and identically distributed random variables, and let
{Θi, i ≥ 1} be a sequence of non-negative random variables which is independent of
the sequence {Xi, i ≥ 1}. Let us write Sn = ∑n

i=1 ΘiXi , n ≥ 1.
This model often appears in actuarial and economic situations, such as discrete

time risk models for the activities of an insurance company (see Wang and Tang
2006 and Shen et al. 2009); each Xi can be understood as the net loss (the total claim
amount minus total incoming premium) within the time period i, and each Θi as the
discount factor from time i to time 0 (the present). Then Sn can be interpreted as the
total discounted amount of the net loss of the company at time n.

If we write Mn = max1≤j≤n Sj , n ≥ 1 and M∞ = sup1≤j<∞ Sj , then the tail prob-
abilities P [Mn > x] and P [M∞ > x] can be understood as the probabilities of ruin
by time n and of ultimate ruin, respectively, where x ≥ 0 is the initial surplus.

The assumption of independence of {Xi, i ≥ 1} does not necessarily answer to a
real need, but rather to the fact of being able to simplify the mathematical treatment of
models. In fact, several improvements of this model, by imposing various conditions
of dependence among {Xi, i ≥ 1}, have been considered lately (see, e.g., Weng et al.
2009). The consideration of conditions of dependence between the random variables
{Xi, i ≥ 1} and the random weights {Θi, i ≥ 1} could be a better approximation of
models to real problems of more complexity.

At the same time, this question of dependence in nature often leads to mathe-
matical models where conditioning is present. Thus, martingale sequences are well-
known cases of stochastic processes defined through conditioning. Markov processes
are another example of stochastic processes in which conditioning (specifically, con-
ditional independence) is essential. See Aas et al. (2009) and Sheremet and Lucas
(2009) for recent work on insurance models involving dependence and conditioning.

A typical example of statistical application of conditional limit theorems is in
the study of statistical inference for some branching processes, such as the Galton–
Watson process (see, e.g., Basawa and Prakasa Rao 1980). Let {Z0 = 1,Zn,n ≥ 1}
be a Galton–Watson process with mean offspring Θ . This process can be studied by
means of the following autoregressive type model:

Zn+1 = ΘZn + Z
1/2
n Un+1, n ≥ 0

where {Uk, k ≥ 0} is the sequence of error random variables.
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In order to estimate the mean offspring Θ from a realization {Z0 = 1,Z1, . . . ,Zn},
the maximum likelihood estimator of Θ is Θ̂n = (

∑n
k=1 Zk−1)

−1(
∑n

k=1 Zk), which
coincides with the “least-squares” estimator of Θ obtained by minimizing

∑n
k=0 U2

k

with respect to Θ .
The study of asymptotic properties of Θ̂n leads to a conditional limit theorem

since, as it is detailed in Basawa and Prakasa Rao (1980), these asymptotic properties
of Θ̂n depend on the event of non-extinction of the process.

Asymptotic properties of estimators in conditional models involving high-
dimensional genomic data have recently been studied by Leek (2011).

The interested reader is referred to Roussas (2008) for a more extensive enumera-
tion of models in which conditioning plays a key role.

We are interested in two concepts of conditional dependence which generalize the
concept of conditional independence, namely the concepts of conditional negative
quadrant dependence and conditional strong mixing.

The concept of conditional negative quadrant dependence is an extension to the
conditional case of the concept of negative quadrant dependence introduced by
Lehmann (1966) as a measure of the degree of association between two random vari-
ables, and are applied, for example, to study tests of independence based on rank
correlation, Kendall’s τ -statistic, or normal scores. In that paper, Lehmann provided
an extensive overview of various concepts of positive and negative dependence.

The origin of the concept of conditional strong mixing (Prakasa Rao 2009) is the
concept of strong-mixing (or α-mixing) for sequences of random variables, intro-
duced by Rosenblatt (1956) to study short range dependence, although the properties
of conditional strong mixing and strong-mixing do not imply each other.

The aim of this paper is to extend the concepts and results of Ordóñez Cabrera
and Volodin (2005) to a much wider setting in which conditional convergence and
conditional dependence play a key role.

In Ordóñez Cabrera and Volodin (2005), the notion of h-integrability of an array
{Xnk} of random variables with respect to an array of constants {ank} is introduced,
starting from the notion of {ank}-uniform integrability introduced in Ordóñez Cabrera
(1994), which is a weakening of classical notion of uniform integrability. This con-
cept of h-integrability with respect to an array of constant weights, which is related to
tail probabilities of random variables, is, in any case, more general and weaker than
the concept of Cesàro α-integrability of Chandra and Goswami (2003). For a more
detailed development of these notions and their relationships, the reader may consult
Ordóñez Cabrera and Volodin (2005).

With this background, in the current work we extend the notion of h-integrability
of {Xnk} with respect to constant weights {ank} to the corresponding conditional no-
tion in the more general setting of randomly weighted sums of random variables (i.e.,
to the case in which the weights are also random variables {Ank}) when a sequence
of conditioning σ -algebras {Bn} is given. We then obtain some results on conditional
convergence of these sums given the conditioning σ -algebras of events {Bn} that ex-
tend, in a substantial way, the main mean convergence theorems in Ordóñez Cabrera
and Volodin (2005).

The notions and the results herein are of the greatest interest when Bn =
σ(Ank,un ≤ k ≤ vn), i.e., when Bn is the σ -algebra generated by the nth row of
the array {Ank}.
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In the last section, we introduce a strong concept of conditional h-integrability
relative to a σ -algebra of events B in order to establish a strong version of the main
result obtained in Sect. 3.

2 Definitions and basic results on conditioning

We present at first basic definitions and results concerning conditional independence
and conditional negative dependence. The interested reader can find further results in
Chow and Teicher (1997) and Roussas (2008). All events and random variables are
defined on the same probability space (Ω, A,P ). Throughout, B is a sub-σ -algebra
of A. We denote by EB(X) the conditional expectation of the random variable X

relative to B, and by P B(A) the conditional probability of the event A ∈ A relative
to B.

Definition A sequence {Gn, n ≥ 1} of classes of events is said to be conditionally
independent given B (B-independent, for short) if for all n ≥ 2 and all choices of
k1, . . . , kn ∈ N where ki �= kj for i �= j and all choices of Ai ∈ Gki

, 1 ≤ i ≤ n

P B
(

n⋂

i=1

Ai

)

=
n∏

i=1

P B(Ai) almost surely (a.s.).

A sequence {Xn,n ≥ 1} of random variables is said to be conditionally indepen-
dent given B (B-independent, for short) if the sequence of σ -algebras generated by
them, {σ(Xn),n ≥ 1}, is B-independent.

It is easy to prove (see Roussas 2008, Theorem 2.1) that the random variables
{Xn,n ≥ 1} are B-independent if, and only if, for every (x1, x2, . . . , xn) ∈ Rn:

P B(Xi ≤ xi, i = 1,2, . . . , n) =
n∏

i=1

P B(Xi ≤ xi) a.s.

A sequence {Xn,n ≥ 1} of random variables is said to be pairwise B-independent
if every pair of random variables in the sequence is B-independent.

If B = {∅,Ω}, then B-independence become ordinary (unconditional) indepen-
dence.

Prakasa Rao (2009) and Roussas (2008) illustrated by simple examples that condi-
tioning may destroy independence, and dependence may be turned into independence
by conditioning. See also Chow and Teicher (1997), p. 229.

The following results are basic:

Proposition 1 (Roussas 2008, Proposition 3.8) If the integrable random variables X

and Y are B-independent, then

EB(XY) = EB(X)EB(Y ) a.s.,

and similarly for any finite number of random variables.
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Proposition 2 (Roussas 2008, Proposition 3.9) Let the random variables X and Y

be B-independent, and let EX2 < ∞ and EY 2 < ∞. Then

CovB(X,Y ) = EB[(
X − EBX

)(
Y − EBY

)] = 0 a.s.

Roussas (2008) provides a detailed proof of an integral representation of the co-
variance of two random variables, a brief proof of which is available in Lehmann
(1966). By applying a conditional version of the Fubini theorem, Roussas (2008)
obtains the following integral representation for the conditional covariance of two
random variables:

Proposition 3 (Roussas 2008, Proposition 4.3) Let X and Y be random variables
with EX2 < ∞ and EY 2 < ∞. Then

CovB(X,Y ) =
∫

R2
H B(x, y) dx dy a.s.,

where H B(x, y) = P B[X ≤ x,Y ≤ y] − P B[X ≤ x]P B[X ≤ y].

We now present the basic definitions and results concerning conditional negative
dependence.

Definition Random variables X and Y are said to be conditionally negative quadrant
dependent relative to a σ -algebra B (B-CNQD, for short) if

P B[X ≤ x,Y ≤ y] ≤ P B[X ≤ x]P B[X ≤ y] a.s. for all x, y ∈ R.

A sequence of random variables {Xn,n ≥ 1} is said to be pairwise conditionally
negative quadrant dependent relative to a σ -algebra B if every pair of random vari-
ables in the sequence is B-CNQD.

An immediate consequence of Proposition 3 is the following lemma.

Lemma 1 Let {Xn,n ≥ 1} be a sequence of pairwise B-CNQD random variables
with finite second moments. Then for all i, j ≥ 1, i �= j we have

EB(XiXj ) ≤ EB(Xi)E
B(Xj ) a.s.

Note that if B = {∅,Ω}, then a sequence of pairwise B-CNQD random variables
is precisely a sequence of random variables which are negative quadrant dependent
(NQD) in the unconditional case, and Lemma 1 becomes the well-known result that
pairwise NQD random variables are non-positively correlated.

Another well-known result for NQD random variables is the fact that the technique
of continuous truncation preserves the NQD property.

The next lemma establishes that the conditional property of being B-CNQD is also
preserved by this technique of truncation.
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Lemma 2 Let {Xn,n ≥ 1} be a sequence of pairwise B-CNQD random variables.
Then, for all sequences {an,n ≥ 1} and {bn,n ≥ 1} of constants such that an < bn for
all n ∈ N, the sequence {Yn,n ≥ 1} defined by

Yn = XnI [an ≤ Xn ≤ bn] + anI [Xn < an] + bnI [Xn > bn], n ≥ 1

is likewise a sequence of pairwise B-CNQD random variables.

Proof For all n ≥ 1, let gn : R → R be defined by

gn(x) =
{an, x < an,

x, an ≤ x ≤ bn,
bn x > bn.

Then Yn = gn(Xn) and gn is a non-decreasing function, n ≥ 1. By the same argument
as that for a sequence of NQD random variables (see Lemma 1 of Lehmann 1966),
we have for m,n ∈ N where m �= n and y1, y2 ∈ R,

P B[Ym ≤ y1, Yn ≤ y2] = P B[
gm(Xm) ≤ y1, gn(Xn) ≤ y2

]

≤ P B[
gm(Xm) ≤ y1

] · P B[
gn(Xn) ≤ y2

]

= P B[Ym ≤ y1] · P B[Yn ≤ y2].

Hence, {Yn,n ≥ 1} is a sequence of pairwise B-CNQD random variables. �

3 Conditional residual h-integrability

Recall that all random variables appearing are defined on the same probability space
(Ω, A,P ) and we let B and Bn, n ≥ 1 be sub-σ -algebras of A.

In the following, {un,n ≥ 1} and {vn,n ≥ 1} will be two sequences of integers
(not necessary positive or finite) such that vn > un for all n ≥ 1 and vn − un → ∞
as n → ∞. Moreover, {h(n), n ≥ 1} will be a sequence of positive constants with
h(n) ↑ ∞ as n → ∞.

We introduce the notion of conditional residual h-integrability relative to the se-
quence {Bn} as follows:

Definition Let {Xnk,un ≤ k ≤ vn,n ≥ 1} and {Ank,un ≤ k ≤ vn,n ≥ 1} be two ar-
rays of random variables. The array {Xnk} is said to be conditionally residually h-
integrable relative to Bn (Bn-CR-h-integrable, for short) concerning the array {Ank}
if the following conditions hold:

(a)

sup
n≥1

vn∑

k=un

|Ank|EBn |Xnk| < ∞ a.s.,
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(b)

lim
n→∞

vn∑

k=un

|Ank|EBn
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

] = 0 a.s.

Remark 1 This concept is a conditional extension to the more general setting of
randomly weighted sums of random variables of (i) the concept of residual Cesàro
α-integrability introduced by Chandra and Goswami (2006) and (ii) the concept of
residual h-integrability concerning an array of (nonrandom) constants introduced by
Yuan and Tao (2008). The work of Yuan and Tao (2008) extends many results of both
Chandra and Goswami (2003, 2006) and Ordóñez Cabrera and Volodin (2005).

Remark 2 Let {h1(n), n ≥ 1} and {h2(n), n ≥ 1} be two positive monotonically
increasing to infinity sequences such that h2(n) ≥ h1(n) for all sufficiently large n.
Then Bn-CR-h1-integrability implies Bn-CR-h2-integrability.

Remark 3 If Ank ≡ ank are constants, and Bn = {∅,Ω} for all n ∈ N, we have the
concept of residual h-integrability concerning the array of constants {ank} of Yuan
and Tao (2008) which we referred to in Remark 1.

Definition Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of random variables and
{ank, un ≤ k ≤ vn,n ≥ 1} an array of constants. The array {Xnk} is said to be resid-
ually h-integrable (R-h-integrable, for short) concerning the array of constants {ank}
if the following conditions hold:

(a)

sup
n≥1

vn∑

k=un

|ank|E|Xnk| < ∞,

(b)

lim
n→∞

vn∑

k=un

|ank|E
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

] = 0.

Remark 4 The concept of R-h-integrability concerning an array of constants {ank}
with the additional condition supn

∑vn

k=un
|ank| ≤ C for some constant C > 0 is

weaker than the concept of h-integrability in Ordóñez Cabrera and Volodin (2005)
because

(|Xnk| − h(n)
)
I
[|Xnk| > h(n)

] ≤ |Xnk|I
[|Xnk| > h(n)

]
.

A very interesting example which reveals inter alia that R-h-integrability is strictly
weaker than h-integrability was provided by Chandra and Goswami (2006) (see Ex-
ample 2.1 in Chandra and Goswami 2006).
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We will now obtain some conditional mean convergence theorems for randomly
weighted sums of arrays of B-CR-h-integrable random variables under some condi-
tions of conditional dependence. Namely, we consider the following row-wise condi-
tional dependence structures for an array: conditional negative quadrant dependence,
non-positive conditional correlation, and conditional strong-mixing.

In the first theorem of this section, we will show that, for an array of row-wise
pairwise conditionally negative quadrant dependent random variables, the technique
of continuous truncation, which preserves the conditional negative quadrant depen-
dence, can be used to obtain a conditional mean convergence theorem, that is, a limit
theorem whose conclusion is EBn |Sn| → 0 a.s. as n → ∞ where {Sn,n ≥ 1} is a se-
quence of random variables. Theorem 1 extends Theorem 1 of Ordóñez Cabrera and
Volodin (2005), Theorem 2.2 of Chandra and Goswami (2006), and Theorem 2.2 of
Yuan and Tao (2008).

Theorem 1 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of row-wise pairwise Bn-
CNQD random variables. Let {Ank,un ≤ k ≤ vn,n ≥ 1} be an array of non-negative
random variables such that, for each n ∈ N, the {Ank,un ≤ k ≤ vn} are Bn-
measurable. Suppose that

(a) {Xnk} is Bn-CR-h-integrable concerning the array {Ank},
(b) h(n)(supun≤k≤vn

Ank) → 0 a.s. as n → ∞.

Let Sn = ∑vn

k=un
Ank(Xnk − EBnXnk), n ≥ 1. Then EBn |Sn| → 0 a.s. as n → ∞.

Proof For each n ∈ N and un ≤ k ≤ vn, we define by using the method of continuous
truncation:

Ynk = XnkI
[|Xnk| ≤ h(n)

] − h(n)I
[
Xnk < −h(n)

] + h(n)I
[
Xnk > h(n)

]
,

S1n =
vn∑

k=un

Ank(Xnk − Ynk),

S2n =
vn∑

k=un

Ank

(
Ynk − EBnYnk

)
, and

S3n =
vn∑

k=un

AnkE
Bn(Ynk − Xnk).

It follows from the following that in the case of infinite un and/or vn, the corre-
sponding conditional expectations of series S1n, S2n, and S3n converge absolutely
a.s. Hence, we can write that

Sn = S1n + S2n + S3n, n ≥ 1,
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and we will estimate the conditional expectation of each of these terms separately.
Note that for n ≥ 1,

EBn |S1n| ≤
vn∑

k=un

AnkE
Bn |Xnk − Ynk| a.s.

and

EBn |S3n| ≤
vn∑

k=un

AnkE
Bn |Xnk − Ynk| a.s.

But since

|Xnk − Ynk| =
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

]
,

we get that

vn∑

k=un

AnkE
Bn |Xnk − Ynk| =

vn∑

k=un

AnkE
Bn

(|Xnk| − h(n)
)
I
[|Xnk| > h(n)

] → 0 a.s.

as n → ∞. Thus EBn |S1n| → 0 a.s. and EBn |S3n| → 0 a.s. as n → ∞.
For S2n we will initially prove that EBnS2

2n → 0 a.s. as n → ∞. Note that for
n ≥ 1,

0 ≤ EBn

[
vn∑

k=un

Ank

(
Ynk − EBnYnk

)
]2

=
vn∑

k=un

A2
nkE

Bn
(
Ynk − EBnYnk

)2 +
∑

j �=k

AnjAnk

[
EBn(YnjYnk) − EBnYnjE

BnYnk

]

≤
vn∑

k=un

A2
nkE

BnY 2
nk +

∑

j �=k

AnjAnk

[
EBn(YnjYnk) − EBnYnjE

BnYnk

]

= B1n + B2n, say.

But noting that |Ynk| = min{|Xnk|, h(n)}, un ≤ k ≤ vn,n ≥ 1, we have

B1n ≤
vn∑

k=un

A2
nkh(n)EBn |Xnk|

≤ h(n)
(

sup
un≤k≤vn

Ank

) vn∑

k=un

AnkE
Bn |Xnk| → 0 a.s. as n → ∞.

With regard to B2n, taking into account that continuous truncation preserves Bn-
CNQD (Lemma 2), by applying Lemma 1 we get

EBn(YnjYnk) − EBnYnjE
BnYnk ≤ 0, j �= k, a.s. for each n ∈ N,
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and hence

0 ≤ EBnS2
2n ≤ B1n → 0 a.s. as n → ∞.

We have EBnS2
2n → 0 a.s. and so EBn |S2n| → 0 a.s. as n → ∞ since (EBn |S2n|)2 ≤

EBnS2
2n a.s., n ≥ 1, by Jensen’s inequality for conditional expectations (see, e.g.,

Chow and Teicher 1997, p. 217). Thus we have shown that EBn |Sn| → 0 a.s. as
n → ∞. �

Remark 5 (i) In the particular case Ank ≡ ank (constants) with supn

∑vn

k=un
|ank| ≤ C

for some constant C > 0, and Bn = {∅,Ω} for every n ∈ N, the preceding theorem
reduces to Theorem 2.2 of Yuan and Tao (2008), which is an improvement of Theo-
rem 1 of Ordóñez Cabrera and Volodin (2005).

(ii) As conditional pairwise independence is a particular case of CNQD, special-
izing Theorem 1 to an array of row-wise pairwise Bn-conditionally independent ran-
dom variables extends Theorem 2.2 of Chandra and Goswami (2006) and extends
and improves Corollary 1 in Ordóñez Cabrera and Volodin (2005) to this much wider
scope.

In many theoretical and practical situations, the random variables {Xnk} are re-
stricted to be non-negative. In the next theorem, we prove that for non-negative {Xnk}
the condition of Bn-CNQD can be replaced by the weaker condition of non-positive
conditional correlation. Theorem 2 extends Theorems 1 and 2 of Ordóñez Cabrera
and Volodin (2005).

Theorem 2 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of non-negative random vari-
ables with CovBn(Xnj ,Xnk) ≤ 0, j �= k, for each n ≥ 1 and let {Ank,un ≤ k ≤
vn,n ≥ 1} be an array of non-negative random variables such that, for each n ∈ N,
the {Ank,un ≤ k ≤ vn} are Bn-measurable. Suppose that

(a) {Xnk} is Bn-CR-h-integrable concerning the array {Ank},
(b) h(n)(supun≤k≤vn

Ank) → 0 a.s. as n → ∞.

Let Sn = ∑vn

k=un
Ank(Xnk − EBnXnk), n ≥ 1. Then EBn |Sn| → 0 a.s. as n → ∞.

Proof The proof is similar to that of Theorem 1. For each n ∈ N and un ≤ k ≤ vn, let

Ynk = XnkI
[
Xnk ≤ h(n)

] + h(n)I
[
Xnk > h(n)

]

and let S1n, S2n, and S3n be defined as in the proof in Theorem 1.
In this case, Xnk − Ynk = (Xnk − h(n))I [Xnk > h(n)], and so

EBn |S1n| = EBnS1n = −S3n ≤
vn∑

k=un

AnkE
Bn

(
Xnk − h(n)

)
I
[
Xnk > h(n)

] → 0 a.s.

as n → ∞.
For S2n we will prove that EBnS2

2n → 0 a.s. as n → ∞ which gives EBn |S2n| → 0
a.s. as n → ∞ as in the proof of Theorem 1. Note that EBnS2

2n = B1n + B2n as in
Theorem 1, and B1n → 0 a.s. as n → ∞ in the same way as previously.
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Next, it suffices to show that lim supn→∞ B2n ≤ 0 a.e. Because of the non-
negativity of the random variables Xnk and Ank and the hypothesis of non-positive
conditional correlation of Xnj and Xnk, j �= k, we have

B2n =
∑

j �=k

AnjAnk

[
EBn(YnjYnk) − EBnYnjE

BnYnk

]

≤
∑

j �=k

AnjAnk

[
EBn(XnjXnk) − EBnYnjE

BnYnk

]

≤
∑

j �=k

AnjAnk

(
EBnXnjE

BnXnk − EBnYnjE
BnYnk

)

≤
vn∑

j,k=un

AnjAnk

[(
EBnXnj − EBnYnj

)
EBnXnk + (

EBnXnk − EBnYnk

)
EBnYnj

]

=
(

vn∑

j=un

AnjE
Bn

(
Xnj − h(n)

)
I
[
Xnj > h(n)

]
)(

vn∑

k=un

AnkE
BnXnk

)

+
(

vn∑

j=un

AnjE
BnYnj

)(
vn∑

k=un

AnkE
Bn

(
Xnk − h(n)

)
I
[
Xnk > h(n)

]
)

≤ 2

(
vn∑

j=un

AnjE
BnXnj

)(
vn∑

k=un

AnkE
Bn

(
Xnk − h(n)

)
I
[
Xnk > h(n)

]
)

→ 0

a.s. as n → ∞. �

Remark 6 In the same way as we commented on in Remark 5, Theorem 2 is an
extension and an improvement of Theorem 1 in Chandra and Goswami (2006) and
Theorem 2 in Ordóñez Cabrera and Volodin (2005).

Perhaps the most fruitful concept in order to study short range dependence is the
concept of strong-mixing which was introduced by Rosenblatt (1956) as follows:

Definition A sequence {Xn,n ≥ 1} of random variables is said to be strong-
mixing if there exists a non-negative sequence {αi} converging to 0 and such that
|P(A ∩ B) − P(A)P (B)| ≤ αi for all A ∈ σ(X1,X2, . . . ,Xk), B ∈ σ(Xk+i ,

Xk+i+1, . . .) and k ≥ 1, i ≥ 1.

The essence behind this definition is that (X1,X2, . . . ,Xk) and (Xk+i ,Xk+i+1, . . .)

are approximately independent for all sufficiently large i and all k ≥ 1.
Prakasa Rao (2009) extends this concept to the conditional case and introduces

the concept of conditional strong-mixing for a sequence of random variables, which
also generalizes the concept of conditional independence. Also Prakasa Rao (2009)
constructs an example of a conditionally strong mixing sequence.
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Definition Let (Ω, A,P ) be a probability space, and let B be a sub-σ -algebra of A.
Let {Xn,n ≥ 1} be a sequence of random variables defined on (Ω, A,P ). The se-
quence {Xn,n ≥ 1} is said to be conditionally strong-mixing (B-strong-mixing) if
there exist non-negative B-measurable random variables αB

i converging to 0 a.s. as
i → ∞ such that

∣
∣P B(A ∩ B) − P B(A)P B(B)

∣
∣ ≤ αB

i a.s.

for all A ∈ σ(X1,X2, . . . ,Xk), B ∈ σ(Xk+i ,Xk+i+1, . . .) and k ≥ 1, i ≥ 1.

The following covariance inequality holds for B-strong-mixing sequences of ran-
dom variables (see Prakasa Rao 2009):

Lemma 3 Let {Xn,n ≥ 1} be a B-strong-mixing sequence of random variables with
mixing coefficient αB

n defined on a probability space (Ω, A,P ). Suppose that a ran-
dom variable Y is measurable with respect to σ(X1,X2, . . . ,Xk) and bounded by a
B-measurable function C, and let Z be a random variable measurable with respect
to σ(Xk+i ,Xk+i+1, . . .) and bounded by a B-measurable function D. Then

∣
∣EB(YZ) − EB(Y )EB(Z)

∣
∣ ≤ 4CDαB

i a.s.

The next theorem is a conditional mean convergence theorem for randomly
weighted sums of Bn-strong-mixing sequences of random variables and it extends
Theorem 3 in Ordóñez Cabrera and Volodin (2005) to this conditional case of depen-
dence.

Theorem 3 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of random variables such that
for each n ≥ 1 the row {Xnk,un ≤ k ≤ vn} is a Bn-strong-mixing sequence of random
variables with

lim sup
n→∞

vn−un∑

i=1

α
Bn

i < ∞ a.s.

Let {Ank,un ≤ k ≤ vn,n ≥ 1} be an array of non-negative random variables such
that, for each n ∈ N, the {Ank,un ≤ k ≤ vn} are Bn-measurable. Suppose that for
each n ∈ N the array {Ank} is row-wise non-increasing a.s., i.e., Anj ≤ Ani a.s. if
i < j . Suppose that

(a) {Xnk} is Bn-CR-h-integrable concerning the array {Ank},
(b) h2(n)

∑vn
un

Ank
2 → 0 a.s. as n → ∞.

Let Sn = ∑vn

k=un
Ank(Xnk − EBnXnk), n ≥ 1. Then EBn |Sn| → 0 a.s. as n → ∞.

Proof The proof is the same as in Theorem 2 concerning S1n, S3n, and B1n. Thus we
only need to prove that

lim sup
n→∞

vn∑

k,j=un
k<j

AnjAnk

[
EBn(YnjYnk) − EBnYnjE

BnYnk

] ≤ 0 a.s.
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To this end, for all n ≥ 1

vn∑

k,j=un
k<j

AnjAnk

[
EBn(YnjYnk) − EBnYnjE

BnYnk

]

=
vn−un∑

i=1

vn−i∑

k=un

AnkAn(k+i)

[
EBn(YnkYn(k+i)) − EBnYnkE

BnYn(k+i)

]

≤ 4h2(n)

vn−un∑

i=1

vn−i∑

k=un

A2
nkα

Bn

i ≤ 4h2(n)

vn∑

k=un

A2
nk

vn−un∑

i=1

α
Bn

i ,

(by Lemma 3 and {Ank} being row-wise non-increasing) and this last expression
converges to 0 a.s. as n → ∞. �

4 Conditional strongly residual h-integrability

In order to obtain a conditional strong convergence result, we introduce the concept
of conditional strongly residual h-integrability relative to the sequence Bn as follows.
Let 0 < h(n) ↑ ∞.

Definition Let {Xnk,un ≤ k ≤ vn,n ≥ 1} and {Ank,un ≤ k ≤ vn,n ≥ 1} be two ar-
rays of random variables. The array {Xnk} is said to be conditionally strongly resid-
ually h-integrable relative to Bn (Bn-CSR-h-integrable, for short) concerning the
array {Ank} if the following conditions hold:

(a)

sup
n≥1

vn∑

k=un

|Ank|EBn |Xnk| < ∞ a.s.,

(b)

∞∑

n=1

vn∑

k=un

|Ank|EBn
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

]
< ∞ a.s.

Remark 7 If Ank ≡ ank are constants, and Bn = {∅,Ω} for all n ∈ N, the preceding
definition reduces to the following new concept of strongly residual h-integrability
concerning the array of constants {ank}:

Definition Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of random variables and
{ank, un ≤ k ≤ vn,n ≥ 1} an array of constants. The array {Xnk} is said to be strongly
residually h-integrable (SR-h-integrable, for short) concerning the array of constants
{ank} if the following conditions hold:
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(a)

sup
n≥1

vn∑

k=un

|ank|E|Xnk| < ∞,

(b)

∞∑

n=1

vn∑

k=un

|ank|E
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

]
< ∞.

Remark 8 It is immediate that the concept of Bn-CSR-h-integrability is stronger than
the concept of Bn-CR-h-integrability. Likewise the unconditional concept of SR-h-
integrability is stronger than the concept of R-h-integrability.

We will now establish a strong version of Theorem 1 under the condition of B-
CSR-h-integrability (i.e., when Bn = B, a sub-σ -algebra of A, for all n ∈ N).

Theorem 4 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of row-wise pairwise B-
CNQD random variables. Let {Ank,un ≤ k ≤ vn,n ≥ 1} be an array of non-negative
B-measurable random variables. Suppose that

(a) {Xnk} is B-CSR-h-integrable concerning the array {Ank},
(b)

∑∞
n=1 h(n)(supun≤k≤vn

Ank) < ∞ a.s.

Then Sn = ∑vn

k=un
Ank(Xnk − EBXnk) → 0 a.s. as n → ∞.

Proof For each n ∈ N, un ≤ k ≤ vn, let Ynk, S1n, S2n, and S3n be as in the proof of
Theorem 1 by putting Bn ≡ B. Then for each n ∈ N, we can write Sn = S1n + S2n +
S3n, and we will estimate each of these terms separately.

Condition (a) implies via the non-negativity of every summand that

EB
( ∞∑

n=1

vn∑

k=un

|Ank|
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

]
)

< ∞ a.s.,

which, in turn, implies that

∞∑

n=1

vn∑

k=un

|Ank|
(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

] =
∞∑

n=1

vn∑

k=un

Ank|Xnk − Ynk| < ∞ a.s.

Hence

|S1n| ≤
vn∑

k=un

Ank|Xnk − Ynk| → 0 a.s.

Next, again by condition (a), we have

|S3n| ≤
vn∑

k=un

AnkE
B|Ynk − Xnk| → 0 a.s. as n → ∞,
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and so S3n → 0 a.s. as n → ∞.
Now we will prove that S2n → 0 a.s. as n → ∞. By the conditional Markov in-

equality, for all ε > 0,

∞∑

n=1

P B[|S2n| > ε
] ≤ 1

ε2

∞∑

n=1

EB|S2n|2

= 1

ε2

∞∑

n=1

(
vn∑

k=un

A2
nkE

B(
Ynk − EBYnk

)2

+
∑

j �=k

AnjAnk

[
EB(YnjYnk) − EBYnjE

BYnk

]
)

a.s.

But EB(YnjYnk) − EBYnjEYnk ≤ 0, j �= k, a.s. for each n ≥ 1, according to Lem-
ma 1.

As
∑∞

n=1 P B[|S2n| > ε] ≥ 0 a.s., if we prove that

∞∑

n=1

vn∑

k=un

A2
nkE

B(
Ynk − EBYnk

)2
< ∞ a.s., (4.1)

then
∑∞

n=1
∑

j �=k AnjAnk[EB(YnjYnk) − EBYnjE
BYnk] will be an a.s. convergent

series with non-positive terms.
To accomplish (4.1), note that

∞∑

n=1

vn∑

k=un

A2
nkE

B(
Ynk − EBYnk

)2 ≤
∞∑

n=1

vn∑

k=un

A2
nkE

BY 2
nk

=
∞∑

n=1

vn∑

k=un

A2
nkE

B(
X2

nkI
[|Xnk| ≤ h(n)

] + h2(n)I
[|Xnk| > h(n)

])

≤
∞∑

n=1

(
h(n) sup

un≤k≤vn

Ank

) vn∑

k=un

AnkE
B|Xnk| < ∞ a.s.,

proving (4.1). Therefore,

∞∑

n=1

P B[|S2n| > ε
] ≤ 1

ε2

∞∑

n=1

vn∑

k=un

A2
nkE

B(
Ynk − EBYnk

)2
< ∞ a.s.

and so by the conditional Borel–Cantelli lemma,

P B[
lim sup

[|S2n| > ε
]] = 0 a.s.

Consequently, S2n → 0 a.s. since the P B -null sets and the P -null sets coincide.
Thus, we have proved that Sn = S1n + S2n + S3n → 0 a.s. �
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A particular case of pairwise B-CNQD random variables is the case of pairwise
B-independent random variables. Thus we have the following corollary to Theorem 4.

Corollary 1 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of row-wise pairwise B-
independent random variables. Let {Ank,un ≤ k ≤ vn,n ≥ 1} be an array of non-
negative B-measurable random variables. Suppose that

(a) {Xnk} is B-CSR-h-integrable concerning the array {Ank},
(b)

∑∞
n=1 h(n)(supun≤k≤vn

Ank) < ∞ a.s.

Then Sn = ∑vn

k=un
Ank(Xnk − EBXnk) → 0 a.s. as n → ∞.

Remark 9 As was stated previously, Theorem 4 is a strong version of Theorem 1, but
an attentive reading of its proof shows that the a.s. finiteness of

∞∑

n=1

vn∑

k=un

A2
nkE

B(
Ynk − EBYnk

)2

can be proved by replacing condition (b) and the condition

sup
n≥1

vn∑

k=un

AnkE
B|Xnk| < ∞ a.s.

(in the definition of B-CSR-h-integrability) by the single condition

∞∑

n=1

h(n)

vn∑

k=un

A2
nkE

B|Xnk| < ∞ a.s.,

which is weaker than both conditions together.

Thus, we can state a slightly stronger version of Theorem 4 as follows:

Theorem 5 Let {Xnk,un ≤ k ≤ vn,n ≥ 1} be an array of row-wise pairwise
B-CNQD random variables. Let {Ank,un ≤ k ≤ vn,n ≥ 1} be an array of non-
negative B-measurable random variables. Suppose that

(a)

∞∑

n=1

vn∑

k=un

AnkE
B(|Xnk| − h(n)

)
I
[|Xnk| > h(n)

]
< ∞ a.s.,

(b)

∞∑

n=1

h(n)

vn∑

k=un

A2
nkE

B|Xnk| < ∞ a.s.

Then Sn = ∑vn

k=un
Ank(Xnk − EBXnk) → 0 a.s. as n → ∞.

An analogous version of Corollary 1 apropos of Theorem 5 also holds.
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