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A rate of complete convergence for weighted sums of arrays of rowwise independent
Banach space valued random elements was obtained by Ahmed et al. [1]. Recently,
Sung and Volodin [2], Chen et al. [3], and Kim and Ko [4] solved an open question
posed by Ahmed et al. In this article, we improve and complement the result of
Ahmed et al. The method used in this article is simpler than those in Ahmed et al.,
Sung and Volodin, Chen et al., and Kim and Ko.

Keywords Array of random elements; Complete convergence; Convergence in
probability; Rowwise independence; Weighted sums.

AMS Subject Classification 60B12; 60F05; 60F15.

1. Introduction

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins [5] as follows. A sequence �Un� n ≥ 1� of random
variables converges completely to the constant � if

∑�
n=1 P��Un − �� > �� < � for

all � > 0. By the Borel–Cantelli lemma, this implies that Un → � almost surely
(a.s.). The converse is true if �Un� n ≥ 1� are independent random variables. Hsu
and Robbins proved that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges completely to the expected
value if the variance of the summands is finite.

This result has been generalized and extended in several directions. Some of
these generalizations are in a Banach space setting (e.g., see, [1, 6–10]). A sequence
of Banach space valued random elements is said to converge completely to the
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Rate of Complete Convergence 283

0 element of the Banach space if the corresponding sequence of norms converges
completely to 0.

Hu et al. [6] presented a general result establishing complete convergence for
the row sums of an array of rowwise independent but not necessarily identically
distributed Banach space valued random elements. Using this, Hu et al. [11]
obtained the following complete convergence result. Theorem A generalizes results
of [5, 7, 8, 10].

Rowwise independence means that the random elements within each row are
independent but that no independence is assumed between rows.

In the following, we assume that �Xni� i ≥ 1� n ≥ 1� is an array of rowwise
independent random elements in a real separable Banach space and �ani� i ≥ 1� n ≥
1� is an array of real numbers. We recall that the array �Xni� i ≥ 1� n ≥ 1� is said to
be stochastically dominated by a random variable X if

P��Xni� > x� ≤ CP��X� > x� for all x > 0 and for all i ≥ 1 and n ≥ 1�

where C is a positive constant.

Theorem A ([6]). Suppose that the array �Xni� i ≥ 1� n ≥ 1� is stochastically
dominated by a random variable X. Assume that

sup
i≥1

�ani� = O�n−�� for some � > 0 (1.1)

and

�∑
i=1

�ani� = O�n	� for some 	 ∈ 
0� ���

If E�X�1+�1+	+��/� < � for some � ∈ �−1� �− 	− 1 and
∑�

i=1 aniXni → 0 in
probability, then

�∑
n=1

n�P

(∥∥∥∥
�∑
i=1

aniXni

∥∥∥∥ > �

)
< � for all � > 0� (1.2)

It is assumed in Theorem A that
∑�

i=1 aniXni converges a.s. for all n ≥ 1,
since the a.s. convergence is not automatic from the hypotheses. Ahmed et al. [1]
established the following more general result than Theorem A.

Theorem B ([1]). Suppose that the array �Xni� i ≥ 1� n ≥ 1� is stochastically
dominated by a random variable X. Assume that (1.1) holds and

�∑
i=1

�ani� = O�n	� for some 	 < �� (1.3)

Let � be such that 	+ � �= −1 and let � > 1 be such that 1+ 	/� < � ≤ 2� If E�X�� <
�� where � = max�1+ �1+ 	+ ��/�� ��� and assume

∑�
i=1 aniXni → 0 in probability.

Then (1.2) holds.

Note that there was a typographical error in Ahmed et al. [1] (the relation
� > 0 should be � > 1). If � < −1� then the conclusions of Theorems A and B are
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284 Sung and Volodin

immediate. Hence these theorems are of interest only for � ≥ −1� Note that the
condition for � in [1] is as follows:

� =




1+ 1+ 	+ �

�
� if 1+ 	+ � > 0 and � > −1�

��� > 1+ 	/��� if 1+ 	+ � > 0 and � = −1�

��� > 1�� if 1+ 	+ � < 0�

(1.4)

The case of 	+ � = 1 was not treated by Ahmed et al. [1]. In particular, Ahmed
et al. [1] conjectured that if � = −1, then the moment condition E�X�� < � can be
replaced by the weaker condition E�X�1+	/� log���X�� < � for some � > 0� where
log�x� = max�1� ln�x�� and ln�x� denotes the natural logarithm function. When 	 >
0� Sung and Volodin [2] gave a positive answer to this problem as follows:

Theorem C ([2]). Suppose that the array �Xni� i ≥ 1� n ≥ 1� is stochastically
dominated by a random variable X. Assume that (1.1) holds and

�∑
i=1

�ani�� = O�n	� for some 	 > 0 and � > 0 such that �+ 	/� < 2� (1.5)

If E�X��+	/� log���X�� < � for some � > 0 and
∑�

i=1 aniXni → 0 in probability, then

�∑
n=1

1
n
P

(∥∥∥∥
�∑
i=1

aniXni

∥∥∥∥ > �

)
< � for all � > 0�

Two years later, Kim and Ko [4] proved the same result as in Theorem C by
using the same method. Chen et al. [3] improved the result of Sung and Volodin [2]
by proving that the condition E�X��+	/� log���X�� < ��� > 0� can be replaced by the
weaker condition E�X��+	/� < ��

It is important to compare condition (1.3) with condition (1.5). If 	 > 0�
then (1.5) is more general than (1.3). However, condition (1.5) cannot be applied
to the case of 	 ≤ 0� Thus, in general, two conditions (1.3) and (1.5) are not
comparable.

In this article, we improve and complement the result of Ahmed et al. [1]. The
method used in this article is simpler than those in [1–4]. The symbol C denotes a
positive constant which is not necessarily the same one in each appearance.

2. Preliminaries

In this section, we present some inequalities and elementary results which will be
useful in the proof of our main result.

Let B be a real separable Banach space with norm � · �� Let ���� � P� be a
probability space. A random element (or B-valued random element) is defined to
be an � -measurable mapping from � to B equipped with the Borel �-algebra (the
�-algebra generated by the open sets determined by � · ��.

The following inequalities are Banach space analogues of the classical
Marcinkiewicz-Zygmund and Rosenthal inequalities and are due to de Acosta [12].
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Rate of Complete Convergence 285

Lemma 2.1. Let �Xi� 1 ≤ i ≤ n� be a sequence of independent random elements. Then
there exists a positive constant Cp depending only on p such that

(i) for 1 ≤ p ≤ 2�

E

∣∣∣∣∣
∥∥∥∥

n∑
i=1

Xi

∥∥∥∥− E

∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
∣∣∣∣∣
p

≤ Cp

n∑
i=1

E�Xi�p�

(ii) for p > 2�

E

∣∣∣∣∣
∥∥∥∥

n∑
i=1

Xi

∥∥∥∥− E

∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
∣∣∣∣∣
p

≤ Cp

{( n∑
i=1

E�Xi�2
)p/2

+
n∑

i=1

E�Xi�p
}
�

The following lemma is precisely Lemma 2.2(ii) of Hu et al. [11].

Lemma 2.2. Let �Xn� n ≥ 1� be a sequence of random elements. If Xn → 0 in
probability, then for all x > 0 and sufficiently large n

P��Xn� > x� ≤ 2P
(∥∥∥∥Xs

n

∥∥∥∥ >
x

2

)
�

where Xs is a symmetrized version of X.

The next lemma is a modification of a result of Kuelbs and Zinn [13] concerning
the relationship between convergence in probability and mean convergence for sums
of independent bounded random variables. We refer to Lemma 2.1 of Hu et al. [11]
for the proof.

Lemma 2.3. Let �Xni� i ≥ 1� n ≥ 1� be an array of rowwise independent symmetric
random elements. Suppose there exists � > 0 such that �Xni� ≤ � almost surely for
all i ≥ 1 and n ≥ 1� Put Sn =

∑�
i=1 Xni� If Sn → 0 in probability, then E�Sn� → 0

as n → �.

The following lemma shows that the symmetry assumption in Lemma 2.3 can
be dropped without any additional conditions.

Lemma 2.4. Let �Xni� i ≥ 1� n ≥ 1� be an array of rowwise independent random
elements. Suppose there exists � > 0 such that �Xni� ≤ � a.s. for all i ≥ 1 and n ≥ 1�
Put Sn =

∑�
i=1 Xni� If Sn → 0 in probability, then E�Sn� → 0 as n → �.

Proof. Let Xs be a symmetrized version of X� Observe that, by Lemma 2.2, for
sufficiently large n

E�Sn� =
∫ �

0
P��Sn� > x�dx

≤ 2
∫ �

0
P��Ss

n� > x/2�dx (by Lemma 2.2)

= 4E�Ss
n� = 4E

∥∥∥∥
�∑
i=1

Xs
ni

∥∥∥∥� (2.1)
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286 Sung and Volodin

If
∑�

i=1 Xni → 0 in probability, then
∑�

i=1 X
s
ni → 0 in probability. Since �Xs

ni� ≤ 2��
we have by Lemma 2.3 that E�∑�

i=1 X
s
ni� → 0� So the result follows by (2.1). �

3. Main Result

Throughout this section, let �Xni� i ≥ 1� n ≥ 1� be an array of rowwise independent
random elements. The following theorem is our main result.

Theorem 3.1. Suppose � ≥ −1� Let �Xni� i ≥ 1� n ≥ 1� be an array of rowwise
independent random elements which are stochastically dominated by a random variable
X� Let �ani� i ≥ 1� n ≥ 1� be an array of constants satisfying (1.1) and (1.3). Assume
that

∑�
i=1 aniXni → 0 in probability. Then the following statements hold:

(i) If 1+ 	+ � < 0 and E�X� < �� then (1.2) holds.
(ii) If 1+ 	+ � = 0 and E�X� log �X� < �� then (1.2) holds.
(iii) If 1+ 	+ � > 0 and E�X�1+�1+	+��/� < �� then (1.2) holds.

Proof. If 1+ 	+ � < 0� then the result can be easily proved by

�∑
n=1

n�P

(∥∥∥∥
�∑
i=1

aniXni

∥∥∥∥ > �

)
≤ 1

�

�∑
n=1

n�E

∥∥∥∥
�∑
i=1

aniXni

∥∥∥∥
≤ C

�∑
n=1

n�n	E�X� (by (1.3) and stochastic domination)

≤ CE�X� < ��

We now prove the result when 1+ 	+ � ≥ 0� To do this, define for i ≥ 1 and
n ≥ 1

X′
ni = XniI��Xni� ≤ n��� X′′

ni = Xni − X′
ni�

First we prove that

E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥ → 0 (3.1)

and

E

∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥ → 0� (3.2)

From (1.3) and stochastic domination, we get

E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥ ≤
�∑
i=1

�ani�E�X′′
ni�

≤ Cn	E�X�I��X� > n��

≤ C
1

n1+�
E�X�1+�1+	+��/�I��X� > n�� → 0�

since 1+ � ≥ 0 and E�X�1+�1+	+��/�I��X� > n�� → 0 as n → �� Hence, (3.1) holds.
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Rate of Complete Convergence 287

By (3.1) and the hypothesis
∑�

i=1 aniXni → 0 in probability,

�∑
i=1

aniX
′
ni → 0 in probability�

which implies (3.2) by �aniX
′
ni� = O�1� (which follows from (1.1)) and by

Lemma 2.4.
Note that, by (3.1) and (3.2), for all sufficiently large n ≥ 1

P

(∥∥∥∥
�∑
i=1

aniXni

∥∥∥∥ > �

)
≤ P

(∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥ > �/2
)
+ P

(∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥ > �/2
)

≤ P

(∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥
∣∣∣∣ > �/4

)

+ P

(∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥
∣∣∣∣ > �/4

)
�

Hence, it suffices to show that

I1 =�
�∑
n=1

n�P

(∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥
∣∣∣∣ > �/4

)
< � (3.3)

and

I2 =�
�∑
n=1

n�P

(∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥
∣∣∣∣ > �/4

)
< �� (3.4)

We will prove (3.3) and (3.4) with four cases.

Case 1. 1+ 1+	+�

�
= 1 (i.e., 1+ 	+ � = 0�

For I1� we take t > 0 such that 1+ �1+ 	+ ��/�+ t ≤ 2� Then we get by
Markov’s inequality and Lemma 2.1 that

I1 ≤
(
4
�

)1+ 1+	+�
� +t �∑

n=1

n�E

∣∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥
∣∣∣∣∣
1+ 1+	+�

� +t

≤ C
�∑
n=1

n�
�∑
i=1

E�aniX
′
ni�1+

1+	+�
� +t

≤ C
�∑
n=1

n� sup
i≥1

�ani�
1+	+�

� +t
�∑
i=1

�ani�E�X′
ni�1+

1+	+�
� +t

≤ C
�∑
n=1

n� sup
i≥1

�ani�
1+	+�

� +t
�∑
i=1

�ani�

× {
E�X�1+ 1+	+�

� +tI��X� ≤ n��+ n��1+ 1+	+�
� +t�P��X� > n��

}

≤ C
�∑
n=1

1
n1+�t

{
E�X�1+ 1+	+�

� +tI��X� ≤ n��+ n��1+ 1+	+�
� +t�P��X� > n��

}

≤ CE�X�1+ 1+	+�
� < ��
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288 Sung and Volodin

Here, we used the fact that if a random variable Xi is stochastically dominated by
a random variable X� then for all s > 0 and b > 0

E�Xi�sI��Xi� ≤ b� ≤ C�E�X�sI��X� ≤ b�+ bsP��X� > b���

For I2� we get by Markov’s inequality, (1.3), and stochastic domination that

I2 ≤
4
�

�∑
n=1

n�E

∣∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥
∣∣∣∣∣

≤ 8
�

�∑
n=1

n�
�∑
i=1

�ani�E�X′′
ni�

≤ C
�∑
n=1

n�n	E�X�I��X� > n��

= C
�∑
n=1

n�+	
�∑
i=n

E�X�I�i� < �X� ≤ �i+ 1���

= C
�∑
i=1

E�X�I�i� < �X� ≤ �i+ 1���
i∑

n=1

n�+	

≤ CE�X� log �X� < ��

since � + 	 = −1�

Case 2. 1 < 1+ 1+	+�

�
< 2

As in Case 1, we have that I1 ≤ CE�X�1+ 1+	+�
� < ��

For I2� we take t > 0 such that 1+ �1+ 	+ ��/�− t > 1� That is, �1+ 	+
��/� > t > 0� Then we get by Markov’s inequality and Lemma 2.1 that

I2 ≤
(
4
�

)1+ 1+	+�
� −t �∑

n=1

n�E

∣∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥
∣∣∣∣∣
1+ 1+	+�

� −t

≤ C
�∑
n=1

n�
�∑
i=1

E�aniX
′′
ni�1+

1+	+�
� −t

≤ C
�∑
n=1

n� sup
i≥1

�ani�
1+	+�

� −t
�∑
i=1

�ani�E�X′′
ni�1+

1+	+�
� −t

≤ C
�∑
n=1

1
n1−�t

E�X�1+ 1+	+�
� −tI��X� > n��

≤ CE�X�1+ 1+	+�
� < ��

Case 3. 1+ 1+	+�

�
= 2

For I1� we take t > 0 sufficiently large such that ��− 	��1+ �1+ 	+ ��/�+
t�/2 > 1+ �� Then we get by Markov’s inequality and Lemma 2.1 that

I1 ≤
(
4
�

)1+ 1+	+�
� +t �∑

n=1

n�E

∣∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′
ni

∥∥∥∥
∣∣∣∣∣
1+ 1+	+�

� +t

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

eg
in

a]
 a

t 0
7:

24
 0

6 
Ju

ly
 2

01
1 



Rate of Complete Convergence 289

≤ C
�∑
n=1

n�

( �∑
i=1

E�aniX
′
ni�2

)�1+�1+	+��/�+t�/2

+ C
�∑
n=1

n�
�∑
i=1

E�aniX
′
ni�1+

1+	+�
� +t

=� I3 + I4�

From (1.1) and (1.3), we have

I3 ≤ C
�∑
n=1

n�

( �∑
i=1

a2
niE�Xni�2

)�1+�1+	+��/�+t�/2

≤ C
�∑
n=1

n�

(
sup
i≥1

�ani�
�∑
i=1

�ani�E�Xni�2
)�1+�1+	+��/�+t�/2

≤ C
�∑
n=1

n�

(
CE�X�2n	

n�

)�1+�1+	+��/�+t�/2

< ��

since ��− 	��1+ �1+ 	+ ��/�+ t�/2− � > 1� Similar to I1 in Case 1, we have
I4 ≤ CE�X�1+ 1+	+�

� < �� Hence, I1 < �� Similar to I2 in Case 2, we have I2 ≤
CE�X�1+ 1+	+�

� < ��

Case 4. 1+ 1+	+�

�
> 2

In this case, we have that � > −1� since 1+ �1+ 	+ ��/� < 2+ �1+ ��/�� As
in Case 3, we have that I1 ≤ CE�X�1+ 1+	+�

� < ��
For I2� we take t > 0 sufficiently small such that 1+ �1+ 	+ ��/�− t > 2�

Then we get by Markov’s inequality and Lemma 2.1 that

I2 ≤
(
4
�

)1+ 1+	+�
� −t �∑

n=1

n�E

∣∣∣∣∣
∥∥∥∥

�∑
i=1

aniX
′′
ni

∥∥∥∥− E

∥∥∥∥
�∑
i=1

aniX
′′
ni

∥∥∥∥
∣∣∣∣∣
1+ 1+	+�

� −t

≤ C
�∑
n=1

n�

( �∑
i=1

E�aniX
′′
ni�2

)�1+�1+	+��/�−t�/2

+ C
�∑
n=1

n�
�∑
i=1

E�aniX
′′
ni�1+

1+	+�
� −t

=� I5 + I6�

From (1.1) and (1.3), we have

I5 ≤ C
�∑
n=1

n�

(
sup
i≥1

�ani�
�∑
i=1

�ani�E�Xni�2I��Xni� > n��

)�1+�1+	+��/�−t�/2

≤ C
�∑
n=1

n�

(
n	

n�
CE�X�2I��X� > n��

)�1+�1+	+��/�−t�/2

≤ C
�∑
n=1

n�

(
1

n1+�
CE�X�1+�1+	+��/�I��X� > n��

)�1+�1+	+��/�−t�/2

≤ C
�∑
n=1

n�

(
1

n1+�
CE�X�1+�1+	+��/�

)�1+�1+	+��/�−t�/2

< ��

since � > −1 and �1+ ���1+ �1+ 	+ ��/�− t�/2− � > 1� Similarly to I2 in Case 2,
we have I6 ≤ CE�X�1+ 1+	+�

� < �� Hence, I2 < �� �
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Remark 3.1. Ahmed et al. [1] have not treated the case of 1+ 	+ � = 0� When 1+
	+ � �= 0� they proved Theorem 3.1 under the stronger moment condition E�X�� <
�� where � is as in (1.4). When 1+ 	+ � = 0� the log term in the moment condition
cannot be removed (see [14]).

4. Complete Convergence of Moving Average Processes

In this section, we present one result about the convergence of moving average
processes, which follows from Theorem 3.1. This result extends the corresponding
result of Ahmed et al. [1].

Theorem 4.1. Suppose � ≥ −1� Let �Yi�−� < i < �� be a doubly infinite sequence of
independent random elements which are stochastically dominated by a random variable
X� Let �ai�−� < i < �� be an absolutely summable sequence of real numbers and
set Xk =

∑�
i=−� ai+kYi� k ≥ 1� Assume that

∑n
k=1 Xk/n

1/p → 0 in probability, where 1 ≤
p < 2� Then the following statements hold:

(i) If � > −1� 1 ≤ p < 2� and E�X�p��+2� < �� then

�∑
n=1

n�P

(∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > n1/p�

)
< � for all � > 0�

(ii) If 1 < p < 2 and E�X�p < �� then

�∑
n=1

1
n
P

(∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > n1/p�

)
< � for all � > 0�

(iii) If E�X� log �X� < �� then

�∑
n=1

1
n
P

(∥∥∥∥
n∑

k=1

Xk

∥∥∥∥ > n�

)
< � for all � > 0�

Proof. Note that

n∑
k=1

Xk =
�∑

i=−�

n∑
k=1

ai+kYi�

Set ani =
∑n

k=1 ai+k/n
1/p and Xni = Yi for −� < i < � and n ≥ 1� Then �Xni�−� <

i < �� n ≥ 1� are rowwise independent random variables. Since �ai�−� < i <
�� is absolutely summable, say

∑�
i=−� �ai� = b� we have that �ani� ≤ b/n1/p

and
∑�

i=−� �ani� ≤
∑n

k=1

∑�
i=−� �ai+k�/n1/p = bn1−1/p� Take � = 1/p and 	 = 1− 1/p�

Since 1 ≤ p < 2� conditions (1.1) and (1.3) are satisfied. Moreover, 1+ 	+ � = �1−
1/p�+ �1+ �� ≥ 0 and 1+ 	+ � = 0 if and only if p = 1 and � = −1� Thus, the
result follows from Theorem3.1. �
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