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A note on the growth rate in the Fazekas–Klesov general law
of large numbers and on the weak law of large numbers

for tail series

By SOO HAK SUNG (Taejon), TIEN-CHUNG HU (Hsinchu)
and ANDREI VOLODIN (Regina)

Abstract. Using the Hájek–Rényi type maximal inequality, Fazekas and Klesov

(2000) obtained the strong law of large numbers for sequences of random variables. Un-

der the same conditions as those in Fazekas and Klesov, Hu and Hu (2006) obtained

the strong growth rate for sums of random variables which improves Fazekas and

Klesov’s result. We further extend and improve these results. Next, the approach of

using Hájek–Rényi type maximal inequality for proving limit theorems is applied to the

weak law of large numbers for tail series.

1. Introduction

Fazekas and Klesov (2000) gave a general method for obtaining the strong
law of large numbers for sequences of random variables by using a Hájek–Rényi
type maximal inequality. This general method, or better to say approach, of
proving strong law of large numbers suggests to use directly a maximal inequality
(the so-called Hájek–Rényi inequality) for a sequence of normed partial sums of
dependent random variables. Under the same conditions as those in Fazekas

and Klesov (2000), Hu and Hu (2006) found the method for obtaining the
strong growth rate for sums of random variables. Although the proof of Hu and
Hu (2006) owes much to that of Fazekas and Klesov (2000), their result is
sharper.
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In this paper, we find a new method for obtaining the strong growth rate for
sums of random variables by using the ideas of Fazekas and Klesov (2000). Our
result generalizes and sharpens the results of Hu and Hu (2006). Moreover, our
method can be applied to almost all cases of a dependence structure considered
in Hu and Hu (2006), and we can get better results. We further extend and
improve these results. Next, the approach of using Hájek–Rényi type maximal
inequality for proving limit theorems is applied to the weak law of large numbers
for tail series.

We use the following notation. Let {Xn, n ≥ 1} denote a sequence of random
variables defined on a fixed probability space (Ω,F , P ). The partial sums of the
random variables are Sn =

∑n
i=1 Xi for n ≥ 1 and S0 = 0. Let ϕ(x) be a positive

function satisfying
∞∑

n=1

ϕ(n)
n2

< ∞ and 0 < ϕ(x) ↑ ∞ on [c,∞) for some c > 0. (1)

2. Main Results

The following lemma generalizes Dini’s theorem for scalar series (cf. Lem-
ma 1.1 in Hu and Hu (2006)).

Lemma 1. Let a1, a2, . . . be a sequence of nonnegative real numbers such

that an > 0 for infinitely many n. Let vn =
∑∞

i=n ai for n ≥ 1. Let ϕ(x) be a

positive function satisfying (1). If
∑∞

n=1 an < ∞, then
∑∞

n=1 anϕ(1/vn) < ∞.

Proof. Without loss of generality, we may assume that c = 1 and v1 ≤ 1.
For each k ≥ 0, define nk by nk = min{n : vn ≤ 2−k}. It follows that

∞∑
n=1

anϕ(1/vn) =
∞∑

k=0

nk+1−1∑
n=nk

anϕ(1/vn) ≤
∞∑

k=0

ϕ(1/vnk+1−1)
nk+1−1∑
n=nk

an

≤
∞∑

k=0

ϕ(1/vnk+1−1)vnk
≤

∞∑

k=0

ϕ(2k+1)
2k

,

where we assume that in the case nk+1 = nk, the sum
∑nk+1−1

n=nk
= 0.

Note that
∑∞

n=1 ϕ(n)/n2 < ∞ is equivalent to
∑∞

k=0 ϕ(2k)/2k < ∞, since

∞∑

k=0

ϕ(2k)
2k

≤ 4
∞∑

k=0

2k+1−1∑

n=2k

ϕ(n)
n2

= 4
∞∑

n=1

ϕ(n)
n2

≤ 4
∞∑

k=0

ϕ(2k+1)
2k

.

The result follows by (1). ¤
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It is easy to find examples of functions ϕ(x) that satisfy (1). Such functions
are |x|δ or |x|δ(log |x|)α, where 0 < δ < 1 and α is any real number. Hu and Hu

(2006) used Lemma 1 with ϕ(x) = |x|δ (0 < δ < 1) to obtain the strong growth
rate for sums of random variables.

The following lemma is due to Fazekas and Klesov (2000), Theorem 2.1.

Lemma 2. Let {bn, n ≥ 1} be a nondecreasing unbounded sequence of

positive numbers and {αn, n ≥ 1} be a sequence of nonnegative real numbers

such that αn > 0 for infinitely many n. Let r and C be fixed positive numbers.

Assume that for each n ≥ 1

E
(

max
1≤i≤n

|Si|
)r

≤ C

n∑

i=1

αi

and ∞∑
n=1

αnb−r
n < ∞.

Then the strong law of large numbers holds, that is,

lim
n→∞

Sn/bn = 0 a.s.

The following theorem gives a sharper result than Theorem 2.1 of Fazekas

and Klesov (2000) (Lemma 2) and Lemma 1.2 of Hu and Hu (2006).

Theorem 1. Assume that all the conditions of Lemma 2 are satisfied. Let

ϕ(x) be a positive function satisfying (1). Let

βn = max
1≤i≤n

biϕ(1/vi)−1/r for n ≥ 1,

where vn =
∑∞

i=n αib
−r
i . Then the following statements hold.

(i) If the sequence {βn, n ≥ 1} is bounded, then Sn/βn = O(1) a.s.

(ii) If the sequence {βn, n ≥ 1} is unbounded, then Sn/βn = o(1) a.s., i.e.,

limn→∞ Sn/βn = 0 a.s.

Proof. It is easy to see that {βn} is a nondecreasing sequence of positive
numbers. Since βn ≥ bnϕ( 1

vn
)−1/r, we have by Lemma 1 that

∞∑
n=1

αnβ−r
n ≤

∞∑
n=1

αnϕ(1/vn)b−r
n < ∞.

If the sequence {βn, n ≥ 1} is unbounded, then limn→∞ Sn/βn = 0 a.s. by
Lemma 2.
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Now assume that {βn} is bounded by some constant D > 0. Then

∞∑
n=1

αn ≤ Dr
∞∑

n=1

αnβ−r
n < ∞.

It follows by the monotone convergence theorem that

E
(

sup
n≥1

|Sn|
)r

= lim
n→∞

E
(

max
1≤i≤n

|Si|
)r

≤ C

∞∑
n=1

αn < ∞.

Thus supn≥1 |Sn| < ∞ a.s. Since 0 < β1 ≤ βn for all n ≥ 1, we have that
Sn/βn = O(1) a.s. ¤

Remarks. 1. In both cases either Sn/βn = O(1) a.s. or Sn/βn = o(1) a.s., it
can be easily obtained that limn→∞ Sn/bn = 0 a.s.

2. For the special case of ϕ(x) = |x|δ (0 < δ < 1), in Lemma 1.2 of Hu

and Hu (2006) it is proved that Sn/βn = O(1) a.s. under the same conditions as
those in Theorem 1. We can safely state that Theorem 1 extends and sharpens
the result of Hu and Hu (2006). Hence we can sharpen many results proved in
Hu and Hu (2006).

It is interesting to investigate the cases in which the sequence {βn, n ≥ 1}
is unbounded. But first we derive a useful condition on ϕ(x).

Lemma 3. If ϕ(x) is a positive function satisfying (1), then

lim
n→∞

ϕ(n)/n = 0.

Proof. Without loss of generality, we may assume that ϕ(x) is a non-
decreasing on [1,∞). According to the proof of Lemma 1, we have that∑∞

k=0 ϕ(2k)/2k < ∞ and hence limk→∞ ϕ(2k)/2k = 0. For 2k ≤ n < 2k+1,

ϕ(2k)
2k+1

≤ ϕ(n)
n

≤ ϕ(2k+1)
2k

.

Thus we have that limn→∞ ϕ(n)/n = 0. ¤

The following lemma shows that {βn} defined in Theorem 1 is unbounded
when αn = 1 for all n ≥ 1.
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Lemma 4. Let b1, b2, . . . be a nondecreasing unbounded sequence of positive

numbers and ϕ(x) be a positive function satisfying (1). Assume that

∞∑
n=1

b−r
n < ∞ for some r > 0.

Let βn = max1≤i≤n biϕ(1/vi)−1/r for n ≥ 1, where vn =
∑∞

i=n b−r
i . Then {βn} is

unbounded.

Proof. For each k ≥ 0, define nk by

nk = min{n : bn ≥ 2k}.

Let dk = nk − nk−1 for k ≥ 1. Then we have that

vnk
≥

nk+1−1∑
n=nk

b−r
n ≥ dk+1b

−r
nk+1−1 ≥ dk+12−r(k+1) ≥ dk+12−rb−r

nk
. (2)

It follows that for all large k

bnk
ϕ(1/vnk

)−1/r ≥ bnk
ϕ

(
2rbr

nk

dk+1

)−1/r

=
[

2rbr
nk

/dk+1

ϕ(2rbr
nk

/dk+1)

]1/r d
1/r
k+1

2
. (3)

Since limn→∞ vn = 0, (2) implies that limdk+1 6=0,k→∞ br
nk

/dk+1 = ∞. By (3) and
Lemma 3, we obtain that limdk+1 6=0,k→∞ bnk

ϕ(1/vnk
)−1/r = ∞. Hence {βn} is

unbounded. ¤

As a consequence of Theorem 1 and Lemma 4, we obtain the following result.

Theorem 2. Let b1, b2, . . . be a nondecreasing unbounded sequence of posi-

tive numbers and ϕ(x) be a positive function satisfying (1). Let r and C be fixed

positive numbers. Assume that for each n ≥ 1

E
(

max
1≤i≤n

|Si|
)r

≤ Cn

and ∞∑
n=1

b−r
n < ∞.

Let βn = max1≤i≤n biϕ(1/vi)−1/r for n ≥ 1, where vn =
∑∞

i=n b−r
i . Then

limn→∞ Sn/βn = 0 a.s.
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3. Application to associated random variables

By using Theorem 1 and Theorem 2, we can extend and sharpen many results
from Hu and Hu (2006). For an illustration we show how Theorem 3.2 of Hu

and Hu (2006) for (positively) associated random variables can be improved. The
interested reader could consider an extension of other results of Hu and Hu (2006)
devoted to negatively associated random variables and martingale differences.

The concept of associated random variables was introduced by Esary et al.
(1967) in the following way. A finite family of random variables {Xi, 1 ≤ i ≤ n}
with finite second moments is said to be associated if for any real coordinate-wise
nondecreasing scalar functions f and g on Rn,

Cov (f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0.

An infinite family of random variables {Xi, i ≥ 1} is associated if every finite
subfamily is associated.

Theorem 3. Let {Xn, n ≥ 1} be a sequence of associated random vari-

ables with mean zero and finite variance, and {bn, n ≥ 1} be a nondecreasing

unbounded sequence of positive numbers. Assume that

∞∑
n=1

ES2
n − ES2

n−1

b2
n

< ∞.

Let βn = max1≤i≤n biϕ(1/vi)−1/2 for n ≥ 1, where vn =
∑∞

i=n(ES2
i −ES2

i−1)/b2
i .

Then the following statements hold.

(i) If {βn, n ≥ 1} is bounded, then Sn/βn = O(1) a.s.

(ii) If {βn, n ≥ 1} is unbounded, then Sn/βn = o(1) a.s., i.e., limn→∞ Sn/βn = 0
a.s.

Proof. The proof is similar to that of Theorem 3.2 in Hu and Hu (2006).
Since {Xn} is a sequence of associated random variables, {−Xn} is also a sequence
of associated random variables. From Theorem 2 of Newman and Wright

(1981), we have

E
(

max
1≤i≤n

S2
i

)
≤ E

(
max

1≤i≤n
Si

)2

+ E
(

max
1≤i≤n

(−Si)
)2

≤ 2ES2
n.

By the definition of associated random variables, we get

ES2
n = ES2

n−1 + EX2
n + 2Cov (Sn−1, Xn) ≥ ES2

n−1.
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Let αn = ES2
n − ES2

n−1 for n ≥ 1. Then

E
(

max
1≤i≤n

S2
i

)
≤ 2

n∑

i=1

αi and
∞∑

n=1

αn

b2
n

< ∞.

Thus the result follows from Theorem 1. ¤

Remark 3. Under the same conditions of Theorem 3 with ϕ(x) = |x|δ (0 <

δ < 1), Hu and Hu (2006) proved that Sn/βn = O(1) a.s. which improves The-
orem 3.3 of Prakasa Rao (2002). Thus Theorem 3 extends the result of Hu

and Hu (2006). In particular, we point out the fact that Theorem 3 sharpens the
result of Hu and Hu (2006) when {βn, n ≥ 1} is unbounded. An example of a
situation is which {βn, n ≥ 1} is unbounded can be easily obtained. For exam-
ple, if ES2

n−ES2
n−1 = 1 for all n ≥ 1, then {βn, n ≥ 1} is unbounded by Lemma 4.

4. Weak law of large numbers for tail series

The rate of convergence for an almost surely convergent series Sn =
∑n

j=1 Xj

of variables {Xn, n ≥ 1} is studied in this section. More specifically, if Sn con-
verges almost surely to a random variable S, then the tail series Tn ≡ S−Sn−1 =∑∞

j=n Xj is a well-defined sequence of random variable (referred to as the tail
series) with Tn → 0 almost surely. The main result provides conditions for

sup
k≥n

|Tk|/bn→0 in probability (4)

to hold for a given numerical sequence 0 < bn = o(1). These results are, of
course, of greatest interest when bn = o(1). Nam and Rosalsky (1996) provided
an example showing inter alia that a.s. convergence to 0 does not necessarily hold
for the expression in (4).

Theorem 4 is a very general result and we will see that some previously
obtained results are immediate corollaries of it. In Theorem 4, a condition is
imposed in general on the joint distributions of the random variables {Xn, n ≥ 1}.
However, in the Corollary {Xn, n ≥ 1} is a martingale difference sequence of
random variables. Certainly, the result is true when {Xn, n ≥ 1} is a sequence of
independent random variables. In the Corollary a moment condition on the |Xn|
and a limit behavior of bn are imposed.

Theorem 4. Let {Xn, n≥ 1} be a sequence of random variables, {bn, n≥ 1}
be a sequence of nonnegative numbers, {αn, n ≥ 1} be a sequence of positive
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numbers, and r > 0. Let moreover

∞∑

j=1

αj < ∞.

If for all natural numbers n < m

E

(
max

n≤k≤m

∣∣∣∣
k∑

j=n

Xj

∣∣∣∣
)r

≤
m∑

j=n

αj ,

then the series
∑∞

n=1 Xn converges a.s. and the tail series {Tn =
∑∞

j=n Xj , n ≥ 1}
is a well-defined sequence of random variables. Next, if

∞∑

j=n

αj = o(br
n) as n →∞,

then the tail series obeys the limit law

supk≥n |Tk|
bn

→0 in probability.

Proof. For arbitrary ε > 0 and n ≥ 1

P

{
sup
m>n

∣∣∣∣
m∑

j=1

Xj −
n∑

j=1

Xj

∣∣∣∣ > ε

}

≤ ε−rE

(
sup
m>n

∣∣∣∣
m∑

j=1

Xj −
n∑

j=1

Xj

∣∣∣∣
r
)

(by the Markov inequality)

= ε−r lim
m→∞

E

(
max

n+1≤k≤m

∣∣∣∣
k∑

j=n+1

Xj

∣∣∣∣
r
)

(by the Lebesgue monotone convergence theorem)

≤ ε−r lim
m→∞

m∑

j=n

αj = o(1).

Then by Corollary 3.3.4 of Chow and Teicher (1997), p. 68,
∑∞

n=1 Xn converges
a.s. Thus, the tail series {Tn =

∑∞
j=n Xj , n ≥ 1} is a well-defined sequence of

random variables.
Next, for arbitrary ε > 0

P

{
supk≥n |Tk|

bn
> ε

}
≤ (εbn)−rE

(
sup
k≥n

|Tk|r
)

(by the Markov inequality)
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= (εbn)−r lim
N→∞

E

(
max

n≤k≤N

∣∣∣∣ lim
m→∞

m∑

j=k

Xj

∣∣∣∣
r
)

(by the Lebesgue monotone convergence theorem)

= (εbn)−r lim
N→∞

E

(
max

n≤k≤N
lim

m→∞

∣∣∣∣
m∑

j=k

Xj

∣∣∣∣
r
)

= (εbn)−r lim
N→∞

E

(
lim

m→∞
max

n≤k≤N

∣∣∣∣
m∑

j=k

Xj

∣∣∣∣
r
)

≤ (εbn)−r lim
N→∞

lim inf
m→∞

E

(
max

n≤k≤N

∣∣∣∣
m∑

j=k

Xj

∣∣∣∣
r
)

(by Fatou’s lemma)

≤ (εbn)−r lim inf
m→∞

E

(
max

n≤k≤m

∣∣∣∣
m∑

j=k

Xj

∣∣∣∣
r
)
≤ (εbn)−r lim inf

m→∞

m∑

j=n

αj = o(1)

The conclusion of the theorem now follows easily. ¤

The next Corollary was obtained by Rosalsky and Rosenblatt (1998).
Our proof seems to be much simpler.

Corollary. Let {Sn =
∑n

j=1 Xj , n ≥ 1} be a martingale and 1 ≤ r ≤ 2. If∑∞
j=n E|Xj |r = O(br

n), then the series
∑∞

n=1 Xn converges a.s.

If
∑∞

j=n E|Xj |r = o(br
n), then the tail series obeys the limit law

supk≥n |Tk|
bn

→0 in probability.

Proof. By the Burkholder-Davis-Gundy inequality (cf., for example
Chow and Teicher (1997)) we have that for all m ≥ n ≥ 1

E

(
max

n≤k≤m

∣∣∣∣
k∑

j=n

Xj

∣∣∣∣
r
)
≤ C

m∑

j=n

E|Xj |r.

We have

lim
m→∞

E

(
max

n≤k≤m

∣∣∣∣
k∑

j=n

Xj

∣∣∣∣
r
)
≤ C

∞∑

j=n

E|Xj |r = o(1) as n →∞

under the conditions of the Corollary.
The Corollary follows immediately from Theorem 4. ¤

Certainly, Theorem 4 could be generalized on the Banach space setting. We
refer the interested reader to the papers Rosalsky and Volodin (2001) and
(2003) for such type of generalizations.
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[7] B. L. S. Prakasa Rao, Hájek–Rényi type inequality for associated sequences, Statist.
Probab. Lett. 57 (2002), 139–143.

[8] A. Rosalsky and J. Rosenblatt, On convergence of series of random variables with ap-
plications to martingale convergence and convergence of series with orthogonal summands,
Stochastic Anal. Appl. 16 (1998), 553–566.

[9] A. Rosalsky and A. Volodin, On convergence of series of random elements via maximal
moment relations with applications to martingale convergence and to convergence of series
with p-orthogonal summands, Georgian Mathematical Journal 8 (2001), 377–388.

[10] A. Rosalsky and A. Volodin, On convergence of series of random elements via maximal
moment relations with applications to martingale convergence and to convergence of se-
ries with p-orthogonal summands. Correction., Georgian Mathematical Journal 10 (2003),
799–802.

SOO HAK SUNG

DEPARTMENT OF APPLIED MATHEMATICS

PAI CHAI UNIVERSITY

TAEJON 302-735

SOUTH KOREA

E-mail: sungsh@pcu.ac.kr

TIEN-CHUNG HU

DEPARTMENT OF MATHEMATICS

NATIONAL TSING HUA UNIVERSITY

HSINCHU 300, TAIWAN

REPUBLIC OF CHINA

E-mail: tchu@math.nthu.edu.tw

ANDREI VOLODIN

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF REGINA

REGINA, SASKATCHEWAN

S4S 0A2, CANADA

E-mail: volodin@math.uregina.ca
URL: http://www.math.uregina.ca/~volodin

(Received August 15, 2006; revised january 12, 2008)


