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The asymptotic expansions for the coverage probability of a confidence set centred at the James–Stein
estimator presented in our previous publications show that this probability depends on the non-centrality
parameter τ 2 (the sum of the squares of the means of normal distributions). In this paper we establish how
these expansions can be used for a construction of confidence region with constant confidence level, which
is asymptotically (the same formula for both case τ → 0 and τ → ∞) equal to some fixed value 1 − α.
We establish the shrinkage rate for the confidence region according to the growth of the dimension p and
also the value of τ for which we observe quick decreasing of the coverage probability to the nominal level
1 − α. When p → ∞ this value of τ increases as O(p1/4). The accuracy of the results obtained is shown
by the Monte-Carlo statistical simulations.

Keywords: confidence sets; positive part James–Stein estimator; multivariate normal distribution;
coverage probability; asymptotical expansions; second-order asymptotic
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1. Introduction

The shrinkage method plays an important role in studying estimation of the mean vector of
multivariate normal distribution, estimation of common mean of several populations and estima-
tion of regression parameters in a host of models. Since the inception of Stein effect by Stein [1,2]
and James and Stein,[3] the shrinkage method has been studied in the field of multivariate statisti-
cal inference. Stein effect indicates that a suitable shrinkage estimator method may be better than
a usual unbiased estimator. The shrinkage method for the mean parameter vector of multivariate
normal population is recently addressed by, e.g. Tsukuma et al. [4] and Eldar and Chernoi.[5]
Hartung et al. [6, Chapter 5] summarized finite sample and asymptotic results of estimating the
common mean of two or more populations.

Research on the statistical implications of proposed and related estimators is ongoing and it
is practically not possible to mention all important publications in this area. Because of that
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we restricted ourselves to present in the References only publications that are crucial for the
current article.

It is worth mentioning that this is one of the two areas Bradley Efron predicted for the early
twenty-first century (RSS News, January 1995). Shrinkage and likelihood-based methods continue
to be extremely useful tools for efficient estimation.

To our knowledge, however, there are few papers to deal with a confidence set problem based on
shrinkage estimator. The confidence set problem for shrinkage estimators are developed byAhmed
et al.[7,8] Alternatively, Kazimi and Brownstone [9] proposed confidence bands for shrinkage
estimators using a simple percentile bootstrapping method. They find that ‘. . . simple percentile
bootstrap confidence bands perform well enough to support empirical applications of shrinkage
estimators’,[9, p. 99] although there remain issues in using bootstrapping methods in this way, for
the typical type of econometric model one encounters, where bootstrap sub-sampling is required
to ensure consistency, and does not yield consistency in all cases.

In this paper we address the confidence estimation problem of the mean vector θ = (θ1, . . . , θp)

of the p-variate normal distribution with independent components and equal unit variances σ 2 = 1.
Let X̄ = (X̄1, . . . , X̄p) be the sample mean vector that is calculated from samples of equal size n
of marginal distributions. The confidence set

DX̄ = {θ : n‖θ − X̄‖2 ≤ c2}
has the given confidence coefficient 1 − α, if c2 is defined as the quantile of the central chi-square
distribution with p degrees of freedom according to the formula Kp(c2) = 1 − α, where Kp(·) is
the chi-square distribution function.

The confidence set DX̄ possesses the minimax property, but there exist other minimax sets
which may provide improved coverage probability. In this paper we are mostly interested in the
coverage properties of one of such sets, namely

Dδ+ = {θ : n‖θ − δ+(X̄)‖2 ≤ c2},
which is centred at the positive modification of the James–Stein estimator, cf.[3]

δ+(X̄) =
(

1 − p − 2

n‖X̄‖2

)
X̄ I

(
n‖X̄‖2 > p − 2

) =
(

1 − p − 2

n‖X̄‖2

)+
X̄.

We restrict p to be greater than 2, the notation a+ = max(0, a), and we consider euclidian norm

‖θ‖ =
√∑p

i=1 θ2
i .

There are many publications on shrinkage estimation topic by various authors. We are mostly
interested in the results connected with asymptotic investigations of the coverage probability of
the true value of vector θ , and we refer to the bibliography presented in Ahmed et al.[7]

In Ahmed et al.,[7] a novel approach to the approximation of the coverage probability was
developed, which is based on a combination of geometrical and analytical methods. It was estab-
lished that Q+

p (τ ) = P(Dδ+) depends on the values of the vector θ via the parameter τ 2 = n‖θ‖2;
in fact it is a decreasing function of τ 2, with Q+

p (τ ) = Kp(w(c2, τ)) + Rp(τ ), where

w(c2, τ) = p − 2 + c2 − τ 2

2
+

√
(c2 − τ 2)2

4
+ c2τ 2 − (p − 2)(τ 2 − c2). (1)

The second term Rp(τ ) is represented as a double integral and it is established that Rp(τ ) =
O(τ 2) for τ → 0, and Rp(τ ) = O(τ−2) for τ → ∞. It is important to note that we have the general
formula that deals with both cases of the asymptotic behaviour of τ for the coverage probability
by the confidence set centred at the positive-part James–Stein estimator.
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InAhmed et al.,[8] the second-order asymptotic expansions of coverage probabilities for τ → 0
and τ → ∞ were established. Numerical illustrations for the same values of p and τ as in Ahmed
et al. [7] show that for τ much bigger than c and τ very small, the third term of the asymptotic
has the magnitude of order 10−4, but the general picture is such that the third term makes the
approximation even worse, especially for small values of p. Therefore, the initial approximations
presented above might be interpreted from the practical point of view as approximations of the
order τ±3.

Note that James–Stein estimators are applied in the case when it is known that the true values of
the means θ1, . . . , θp are concentrated close to some common value μ. This is the reason why we
use the term ‘shrinkage’ for these estimates. Usually the value of μ is known from the essence of
a statistical problem that we consider. For example, μ may be the value of a characteristic of some
standard object, while θ1, . . . , θp are the values of the same characteristic for some other objects,
which should be close to μ. On the other hand, according to data of measures of the characteristics
for each of these objects, or according to data of measures of the characteristic for some similar
objects, we can estimate the value of the centre of shrinkage μ of our observations. Note that we
need also an estimate of the variance σ 2 in order to construct asymptotically confidence sets that
are suggested in this paper.

Without loss of generality in this paper it is assumed that μ = 0 and σ = 1. If the concentration
point and the variance is different from these values, in all formulae we should substitute the vector
X̄ by (X̄ − μ)/σ . All properties of the shrinkage estimations with a large amount of examples can
be found in Chapter 5 of Lehmann and Casella.[10]

In this paper we show how using the approximation above, it is possible to construct a confidence
region with constant, asymptotically equal (τ → 0 and τ → ∞) to the fixed confidence level 1 −
α. The method that we use to construct these confidence intervals borrows some ideas from Hwang
and Casella.[11] We establish the rate of shrinkage of the confidence region as the dimension p
increases.Also we find the value of τ for which happens the quick drop of the coverage probability
to the nominal level 1 − α. Note that the coverage probability before this value of τ is close to one
and for large p even equals one. When p → ∞ this value of τ increases as O(p1/4). The accuracy
of the asymptotic obtained is illustrated by the statistical simulations.

2. Confidence region with asymptotically constant coverage probability

The basis of the confidence region Dδ+ consists of the random function

T 2 = T 2(θ , δ+) = n
p∑

i=1

(θi − δ+
i )2

of the vector parameter θ and vector statistic δ+(X̄) with components

δ+
i =

(
1 − p − 2

n
∑p

j=1 X̄2
j

)+
X̄i, i = 1, . . . , p.

The transformation of Dδ+ to a region with asymptotically constant coverage probability is based
on the fact that w(c2, τ) is a strictly increasing function of the variable c, if the expression under
the root in Equation (1) is positive. This is simple to establish by rewriting the function in the
form

w(c2, τ) = q + λ +
√

λ2 + 2λτ 2 + τ 4 + 2qλ,

where q = p − 2 and λ = (c2 − τ 2)/2.
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The region of real values for the function w(c2, τ) is defined by the inequality

c2 ≥ c0 = 2
√

2τ 2q + q2 − 2q − τ 2.

Note that c0 < τ 2 and c0 ∼ τ 2 for τ → 0, that is, the complex values of the function w(c, τ)

belong to the regions of small values of τ and c.
Introduce the subregions

D = {θ : w(T 2, τ) ≤ c2, T 2 ≥ c0} ∪ {T 2 < c0} and D0 =
{
θ : T 2 ≤

(
c − q

c

)2
}

of the parametric space Rp.

Theorem Let c2 = K−1
p (1 − α), α 
 0, 5. Then for Qp, the coverage probability of the true

value of the parameter θ by subregion D the following asymptotic equalities are true Qp =
1 − α + O(τ 2) if τ → 0, and Qp = 1 − α + O(τ−2) if τ → ∞.

The region D is a part of the region Dδ+ and covers the region D0, that is,

D0 ⊆ D ⊆ Dδ+ .

Proof The first statement of the theorem concerning the confidence region D follows directly
from the results of Ahmed et al.,[7] see formula (1). Note that

Qp = P(T 2 ≤ w−1
τ (c2), T 2 ≥ c0) + P(T 2 < c0)

= Kp(w(w−1
τ (c2), τ)) − Kp(c0) + Kp(c0) + O(τ 2)

= Kp(c
2) + O(τ 2) = 1 − α + O(τ 2).

The region

D0 = {θ : w(T 2, 0) ≤ c2}

=
{

θ :
T 2

2
+ q +

(
T 4

4
+ qT 2

)1/2

≤ c2

}

=
{
θ : T 2 ≤

(
c − q

c

)2
}

corresponds to the maximum value w(c2, τ) as a function of τ for each fixed value of c (recall
that w(c2α 
 0, 5., τ) is strictly decreasing function of τ ). The region Dδ+ corresponds to the
minimal value of w for τ → ∞. These two remarks prove the required inclusion relations. The
theorem is proved. �

The theorem provides the smallest (by inclusion) set D0 which is not a confidence set for τ �= 0,
but is the ‘limit’ of confidence sets D when τ → 0. Region D0 corresponds to the maximum gain
in the size of confidence regions that were constructed on the principle of constant (at least
asymptotically) coverage probability. If the true value τ = 0, then the confidence coefficient of
this region equals exactly to the given level 1 − α. We also note that when τ = 0 there are no
negative values under the square root of the function w(τ , c).

At the same time, set D may be much smaller by size than confidence set Dδ+ , which is usually
used. Region D0 is a ball of the radius c − (p − 2)/c. With respect to the region Dδ+ , the radius
is smaller in (1 − (p − 2)/c2)−1 times. Since for p → ∞ the quantile c2 = K−1(1 − α) ∼ p, we
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Figure 1. Relations between the regions D0, D, and Dδ+ for p = 3.

can state that with the growth of the number p of components of the vector X the region D0 shrinks
to a point. Hence for small values of ‖θ‖ (as we already mentioned, the true value lies close by the
shrinkage point) and large p the radius D is close to the radius of the region D0 and the confidence
set D has much smaller size than the confidence region Dδ+ .

Relations between the regions D0, D, and Dδ+ for p = 3 are presented in Figure 1. Note that
the region D is the shaded area with the white spot in the middle. This white spot corresponds to
the negative values under square root of the function w(τ , c) and from the figures we see that it
is a significant part of the confidence set D. The left picture corresponds to τ 2 = 0.03, θ1 = θ2 =
θ3 = 0.1, the right picture to τ = 1, θ1 = θ2 = θ3 = 1/

√
3. For the given values of θ , realizations

of (x1, x2, x3) and (y1, y2, y3) as independent normal (θi, 1) random variables were obtained and
their corresponding regions D0, D and Dδ+ are calculated. The figures provide projections on the
plane (θ1, θ2) of levels of these regions when θ3 = x3 (left figure) and when θ3 = y3 (right figure).

3. Graphical illustrations of the coverage probabilities

As we already mentioned, the coverage probability by the region D of the true value of the para-
metric vector θ depends on θ only through the values of the parametric function τ . Therefore,
Qp = Qp(τ ) and the plots of these functions for the values p = 3, 5, 10, 15 and n = 1 are pre-
sented in Figure 2 (α = 0.01), Figure 3 (α = 0.10), and Figure 5 (α = 0.05). In Figure 4, we
present similar plots of Qp(τ ) when α = 0.05 and the sample size n = 10. For a comparison
in Figure 6 we present (α = 0.05) the coverage probabilities of θ by the James–Stein confi-
dence region Dδ+ (thick lines) and their approximation Kp(w(c2, τ)) (thin lines). Calculations
were conducted by the Monte-Carlo method with 106 replications for each fixed values of p
and τ = 0.0(0.1)10.0(0.5)30.0. The values of θi, i = 1, . . . , p were chosen identical and equal to√

τ 2/p because the coverage probabilities depend on the coordinates of vector θ only through the
symmetric functions T 2 and τ 2. With high probability guaranteed, the accuracy of calculations of
the coverage probability values is of the order 0.002.

The graphical illustrations provide the following conclusions. The coverage probability con-
stancy corresponding to the nominal 1 − α can be guaranteed only in the neighbourhood τ < 1
of the shrinkage point θ = 0. Approximately up to the values 2 ≤ τ ≤ 3, the coverage probability
is insignificantly higher than the nominal. ‘A catastrophe’ happens after these values of τ , and as
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Figure 2. Plots of Qp for the values p = 3, 5, 10, 15 for α = 0.01 and n = 1.

Figure 3. Plots of Qp for the values p = 3, 5, 10, 15 for α = 0.1 and n = 1.

plots in Figures 5 and 6 show, the point of the breakdown corresponds to the point of the sharp
slump of coverage probability by the James–Stein confidence region. Moreover, this is exactly
the point where our approximation of the coverage probability is equal to its exact value.

The maximum value of the difference (1 − α) − Qp(τ ) strongly depends on the values of p and
increases with a growth of p. Thus, for p = 5, the actual coverage probability is close to 1 − 1.5α,
while for p = 15 it reduces to 1 − 2α.

Therefore, we could recommend using the confidence region D only in the case when the
statistician has information that the true values of the parametric vector θ are close to the shrinkage
point, otherwise it is better to use confidence sets centred at the positive part James–Stein estimator
Dδ+ or at the sample mean DX̄ .

In connection with this, we could state a problem of the detection of point τ0 starting from
which a quick decreasing of coverage probability of true parametric values by the region D
appears. Obviously this point is a function of c and dimension p, as we can observe from the
plots of Q+

p (τ ) = Pτ (T 2 ≤ c2). If this point is passed, then we observe a rapid decreasing to the
nominal level 1 − α of the coverage probability by the confidence region Dδ+ . Recall that at this
point the coverage probability is Q+

p (τ ) = Kp(w(c2, τ)), that is, coincides with the approximation
suggested in Ahmed et al.[7, Figure 4] Hence there exists point τ(c) for Qp(τ ) for the function
Q+

p (τ ) in which happens the quick decrease of coverage probability by region D.



2512 S.E. Ahmed et al.

Figure 4. Plots of Qp for the values p = 3, 5, 10, 15 for α = 0.05 and n = 10.

Figure 5. Plots of Qp for the values p = 3, 5, 10, 15 for α = 0.05 and n = 1.

Figure 6. The coverage probabilities of θ by the James-Stein confidence region Dδ+ (thick lines) and their approximation
Kp(w(c2, τ)) (thin lines) with α = 0.05.
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We can show that τ(c) = √
c2 − (p − 2). Note that Qp(τ ) = Pτ (T 2 ≤ w−1

τ (c2)) =
Q+

p (w−1
τ (c2)) and hence τ(c) is the root of the equation τ = w−1

τ (c2) or, which is equivalent,
w(τ 2, τ) = c2. The last equality gives c2 = p − 2 + τ 2.

Calculations of τ(c) for the values of p and α that we used in the graphical illustrations provided
above, show that this is correct and the obtained value of τ(c) is the change point. Note that
since c2 ∼ p + �−1(1 − α)

√
2p when p → ∞, we have that τ 2(c) ∼ �−1(1 − α)

√
2p + 2. This

gives us a conclusion that the interval [0, τ(c)] of preferable usage of the confidence region D is
increasing when the dimension p of the observed vector increases. For p = 8 the length of this
interval is approximately 3.

4. Concluding remarks

We constructed a confidence region D with confidence level, which is asymptotically (τ → 0 or
τ → ∞) equal to some fixed value 1 − α. The confidence region D may be much smaller by
size than usually used confidence set Dδ+ . Moreover a point τ is detected, starting from which a
quick decreasing of coverage probability of true parametric values by the region D appears. This
provides us an interval of values of τ when it is preferable to use of the confidence region D, than
the usual confidence set Dδ+ .

The point of the probability ‘breakdown’ is the most important result of this paper. The asymp-
totic obtained in our previous papers work poorly exactly in the neighbourhood of this point.
It is interesting to investigate the asymptotic of the remainder term Rp(τ ) from the asymptotic
representation of the coverage probability as τ = √

c2 − (p − 2) = O(p1/4) and p → ∞.
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