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a b s t r a c t

In this paper we continue our investigation connected with the new approach developed
in Ahmed et al. [Ahmed, S.E., Saleh, A.K.Md.E., Volodin, A., Volodin, I., 2006. Asymptotic
expansion of the coverage probability of James–Stein estimators. Theory Probab. Appl. 51
(4) 1–14] for asymptotic expansion construction of coverage probabilities, for confidence
sets centered at James–Stein and positive-part James–Stein estimators. The coverage
probabilities for these confidence sets depend on the noncentrality parameter τ 2, the same
as the risks of these estimators. In this paper we consider only the confidence set centered
at the positive-part James–Stein estimator. As is shown in the above-mentioned reference,
the new approach provides a method to obtain for the given confidence set, an asymptotic
expansion of the coverage probability as one formula for both cases τ → 0 and τ → ∞.
We obtain the third terms of the asymptotic expansion for both mentioned cases, that is,
the coefficients at τ 2 and τ−2. Numerical illustrations show that the third term has only a
small influence on the accuracy of the asymptotic estimation of coverage probability.

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of confidence estimation of the mean vector θ = (θ1, . . . , θp) for the p-dimensional normal distribution
with independent components and equal variances σ 2 = 1 is considered. Let X̄ = (X̄1, . . . , X̄p) be the vector of sample
means calculated by samples of common size n from the marginal distributions. The confidence set

DX̄ =

{
θ : n

p∑
1

(θi − X̄i)2 ≤ c2
}

has the given confidence coefficient 1 − α, if c2 is the quantile of chi-square distribution with p degrees of freedom given
by the relation Kp(c2) = 1− α, where Kp(·) is the chi-square distribution function.
This confidence set possesses the minimax property, but there exist other minimax sets that obtain bigger coverage

probability for all values of the noncentrality parameter τ 2 = n‖θ‖2 if p ≥ 4. In this paper we consider one of these sets
Dδ+ = {θ : n‖θ − δ

+(X̄)‖2 ≤ c2},
which is centered at the positive-part James and Stein (1961) estimator given by

δ+(X̄) =
(
1−

p− 2
n‖X̄‖2

)
X̄ I{n‖X̄‖2 > p− 2}
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(it is assumed that p > 2). This and similar confidence sets have been investigated by many authors. (Our interest is in the
asymptotic expansion of coverage probability of the true values of the vector τ .) These include Berger (1980), Hwang and
Casella (1982), Casella and Hwang (1984), Hwang and Casella (1984) and some others (cf. the bibliography presented in
Ahmed et al. (2006) and Efron (2006)). From the literature, the most pertinent results are those of Hwang and Casella (1982,
1984), in which they obtained approximations of the coverage probability for τ →∞.
In Ahmed et al. (2006), a novel approach to the approximation of the coverage probability was developed, and is based

on a combination of geometrical and analytical methods. It was established that Q+p (τ ) = P(Dδ+) depends on the values
of the vector θ via the parameter τ 2 = n‖θ‖2; in fact it is a decreasing function of τ 2, with Q+p (τ ) = Kp(w(c, τ )) + Rp(τ ),
where

w(c, τ ) = p− 2+
c2 − τ 2

2
+

√
(c2 − τ 2)2

4
+ c2τ 2 − (p− 2)(τ 2 − c2). (1)

The second term Rp(τ ) is represented as a double integral and it is established that: Rp(τ ) = O(τ 2) for τ → 0, and
Rp(τ ) = O(τ−2) for τ → ∞. It is important to note that the form of Rp(τ ) for τ < c or τ > c is different only by an
additional term in the case τ > c , and this term decreases exponentially as τ →∞.
Therefore, if we neglect the exponentially decreasing term, then we have the general formula that covers both cases of

the asymptotic behaviour of τ for the coverage probability by the confidence set centered at the positive-part James–Stein
estimator. This fact allows us to consider, for example, only the case τ → ∞ because the asymptotic of Q+p (τ ) for τ → 0
will have the same form with a difference in some numerical coefficients only.
In this paper, the asymptotic behaviour of Rp(τ ) is established, that is, the third order asymptotic for Q+p (τ ) is derived.

We provide the coefficients for τ 2 as τ → 0, and for ε2 = τ−2 as τ → ∞. Numerical illustrations given in Ahmed et al.
(2006), point out sufficiently high accuracy of the simplest approximation Q+p (τ ) ≈ Kp(w(c, τ )) for τ < c and practically
acceptable accuracy in the region τ > c. (The maximal error is of the magnitude 0.013 for p = 4 and 0.011 for p > 4.) The
high accuracy of the approximation at zero can be explained by the fact that, contrary to the previous investigations, we did
not exchangew(c, τ ) by its limiting valuew(c, 0).
Numerical illustrations for the same values of p and τ as in the paper of Ahmed et al. (2006) show that for τ � c and

τ � 1 the third term of the asymptotic has the magnitude of order 10−4, but the general picture is such that the third term
makes the approximation even worse, especially for small values of p. Therefore, the improvement of the approximation of
Q+p (τ ) ≈ Kp(w(c, τ )) is still an unsolved problem.

2. Integral representations of the coverage probability

In this section we provide some results from Ahmed et al. (2006) simplifying some notations and presenting them in a
convenient form for asymptotic analysis. The main idea was to represent Q+p (τ ), τ ≥ 0 as a probability for a region in R

2
+
,

which is calculated by the distribution with the density function

f (x, y) =
1
√
2π

1

2
p−1
2 Γ

( p−1
2

) (x− y2) p−12 −1e− x2 ,
that takes nonzero values only for y2 < x.
If τ < c , then this region is bounded by the parabola y2 = x and the right branch of the hyperbola

y = h(x) =
(x− a)2 − c2τ 2 + x(τ 2 − c2)

2τ(c2 + a− x)
=
1
2τ

(
a− x− τ 2 +

a(τ 2 − c2)
c2 + a− x

)
,

where a = p− 2 (Fig. 1). For the case τ > c , to the region bounded by the parabola y2 = x and left branch of the hyperbola
y = h(x), the strip which is bounded by the lower branch of the parabola y2 = x and the straight line y = (a− τ 2 − x)/2τ
(Fig. 2) is added.
Point w (in the paper of Ahmed et al. (2006) w = w2) on the axis OX is the null of the function h, that is, h(w) = 0. Let

v1,2 be the roots of the equations h(x) = ±
√
x (abscissa of intersections of corresponding branches of the hyperbola h(·)

with the parabola y2 = x), and x1,2 be the roots of the equation−
√
x = (a− τ 2 − x)/2τ . Then for τ < c (cf. Proposition 2

in Ahmed et al. (2006)), Q+p (τ ) = Kp(w)+ Rp(τ ), where

Rp(τ ) =
∫ v1

w

dx
∫ √x
h(x)
f (x, y)dy−

∫ w

v2

dx
∫ h(x)

−
√
x
f (x, y)dy. (2)

If τ > c , then the coverage probability Q+p (τ ) = Kp(w)+ Rp(τ )+ Jp(τ ) (cf. Proposition 4 in Ahmed et al. (2006)), where

Jp(τ ) =
∫ x2

x1
dx
∫ (a−τ2−x)/2τ

−
√
x

f (x, y)dy,
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and as is shown in the proof of a theorem in Ahmed et al. (2006) for τ →∞

Jp(τ ) = O
(
τ p−2 exp{−τ 2/2}

)
.

Therefore our task is to investigate the asymptotic of the difference of integrals Rp(τ ) = J1(v1)− J2(v2) (cf. formula (2)).
As was mentioned in Ahmed et al. (2006), functions v1 = v1(τ ) and v2 = v2(τ ) contract to the pointw in both cases τ → 0
and τ →∞. The direct Taylor expansion of Ji(vi) by the powers of vi−w is not possible since the derivative of this integral
by vi equals zero (recall that h(v1,2) = ±

√
v1,2), i = 1, 2. Therefore, these integrals being the functions of τ , are constants

as functions of the corresponding variable vi, i = 1, 2. We have to use the expansion by the powers of τ for τ → 0, and by
the powers of ε = 1/τ for τ →∞. For this we need a lemma from the paper of Ahmed et al. (2006). Also note that there are
some typos in the proof of a lemma in Ahmed et al. (2006). Namely, in the notation f (x)we should take the reciprocal, that
is instead of f (x), the fraction 1/f (x) is defined. In the formulas for u1,2 and v1,2 for τ → 0, the sign± should be exchanged
by the sign∓. Next, the equation for which the roots are expanded by the powers of ε, contains typos. The correct equation
should be ε2(x− a)2 − c2 + x− ε2xc2 = 2ε(c2 + a− x)

√
x.

Now we present the formulation of the result from Ahmed et al. (2006), which will be used in the derivation of the third
term of the asymptotic expansion of Rp(τ ).

Lemma 2.1. If τ → 0, then

v1,2 = w +

∞∑
k=1

λ1,k(w)(∓τ)
k, (3)

and for τ →∞

v1,2 = w +

∞∑
k=1

λ2,k(w)(±ε)
k, ε = τ−1, (4)

where

λi,k(w) =
1
k!

[(
dk−1f ki (z)
dzk−1

)]
z=0

, i = 1, 2; k = 1, 2, . . . , (5)
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f1(z) =
(2(w − a)+ z + τ 2 − c2)
2(c2 + a− w − z)

√
w + z

, f2(z) =
1+ ε2(2(w − a)+ z − c2)
2(c2 + a− w − z)

√
w + z

.

3. Second order approximation for the coverage probability

With the preliminaries accounted for, we can formulate and prove the main result of the paper.

Theorem 3.1. If τ → 0, then for p ≥ 4 the following asymptotic expansion of the probability for the coverage of the true value
by the confident set Dδ+ centered at the positive-part James–Stein estimator, is true

Q+p (τ ) = Kp(w)+ τ
2 4λ1,2 + (a− w)λ

2
1,1

2(p+4)/2Γ (p/2)
· w(p−2)/2e−w/2 + O(τ 3),

and for p = 3

Q+3 (τ ) = K3(w)+ τ
2 4λ1,2w + (1− w)λ

2
1,1

4
√
2πw

· e−w/2 + O(τ 3),

where

λ1,1 =
2(w − a)− c2

2
√
w(c2 + a− w)

, λ1,2 =
w − a

4w
√
w(c2 + a− w)2

.

If τ →∞, then for p ≥ 4

Q+p (τ ) = Kp(w)+ ε
2 4λ2,2 + (a− w)λ

2
2,1

2(p+4)/2Γ (p/2)
· w(p−2)/2e−w/2 + O(ε3), (6)

and for p = 3

Q+3 (τ ) = K3(w)+ ε
2 4λ2,2w + (1− w)λ

2
2,1

4
√
2πw

· e−w/2 + O(ε3), (7)

where

λ2,1 =
1

2
√
w(c2 + a− w)

, λ2,2 =
(2w + 1)(c2 + a− w)+ 2w
8w
√
w(c2 + a− w)2

.

Proof. We prove the asymptotic expansion for the case τ →∞ because, as was already mentioned above, for τ → 0 the
asymptotic will have the same form as for the corresponding substitution of coefficients of λ.
By formulas (3) and (4), the roots of equations h(x) = ±

√
x can be represented as vi = w+∆i+O(ε3), i = 1, 2, where

∆1,2 = ±λ1ε + λ2ε
2
→ 0 for ε→ 0. Set

S1(∆1) =
∫ w+∆1

w

dx
∫ √x
h(x)
f (x, y)dy, S2(∆2) =

∫ w

w+∆2

dx
∫ h(x)

−
√
x
f (x, y)dy.

By themean value theorem for the integrals by dx (cf. formula (2)), it is not difficult to show that Rp(τ ) = S1(∆1)−S2(∆2)+
O(∆3). Hence the proof reduces to a simple expansion of the functions Si(∆i), i = 1, 2, in Taylor series by the powers of∆
keeping only two first terms.
We have S1(0) = 0 and

S ′1(∆) =
∫ √w+∆
h(w+∆)

f (w +∆, y)dy.

Note that h(w +∆) 6=
√
w +∆, since only h(v1) =

√
v1. Hence

S ′1(0) =
∫ √w
0

f (x, y)dy,

because h(w) = 0.
Next,

S ′′1 (∆) =
f (w +∆,

√
w +∆)

+ h′(w +∆)f (w +∆, h(w + δ))−
∫ √w+∆
h(w+∆)

d
d∆
f (w +∆, y)dy.
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From this, because f (x,
√
x) = 0

S ′′1 (0) = −h
′(w)f (w, 0)+

∫ √w
0

d
dw
f (w, y)dy.

Similarly we prove that

S2(0) = 0, S ′2(0) = −
∫ √w
0

f (x, y)dy,

S ′′2 (0) = −h
′(w)f (w, 0)−

∫ √w
0

d
dw
f (w, y)dy.

Note that the integrals exist in the second derivatives only for p ≥ 4.With the help of substitution y2 = wt they are reduced
to integrals of beta-function, and easy calculations give us∫ √w

0
f (x, y)dy =

w(p−2)/2e−w/2

2(p+2)/2Γ (p/2)
,

∫ √w
0

d
dw
f (x, y)dy =

(a− w)w(p−4)/2e−w/2

2(p+4)/2Γ (p/2)
.

These calculations allow us to write the difference of integrals in the form

Rp(τ ) = 2ε2λ2,2S ′1(0)+
ε2λ22,1

2

(
S ′′1 (0)− S

′′

2 (0)
)
, (8)

which, after easy calculations lead to formula (6).
Coefficients of λi,k, i, k = 1, 2, are calculated by formula (5).
It is left to consider the case p = 3, when

f (x, y) =
1

2
√
2π
exp

{
−
x
2

}
, y2 < x.

We have

S1(∆) =
1

2
√
2π

∫ w+∆

w

[√
x− h(x)

]
exp

{
−
x
2

}
,

S1(0) = 0, S ′1(0) =
√
w

2
√
2π
exp

{
−
w

2

}
,

S ′′1 (0) =
1

4
√
2π

[
w−1/2 − 2h′(w)− w1/2

]
exp

{
−
w

2

}
.

Similarly for the second integral we have

S2(∆) =
1

2
√
2π

∫ w

w+∆

[√
x− h(x)

]
exp

{
−
x
2

}
,

S2(0) = 0, S ′2(0) = −
√
w

2
√
2π
exp

{
−
w

2

}
,

S ′′2 (0) =
1

4
√
2π

[
w1/2 − 2h′(w)− w−1/2

]
exp

{
−
w

2

}
.

By formula (8) we obtain (7). The theorem is proved. �

4. Concluding remarks

We can judge the influence of the third term on the asymptotic of the coverage probability according to the values
presented in Table 1, in which Q1 = Kp(w)− 0.95 and Q2 are asymptotics obtained in the theorem (confidence coefficient
1 − α = 0.95). In the table we also present the error values ∆ = Q+p − Kp(w) obtained for the first order approximation
taken from the table presented in Ahmed et al. (2006), in which the values of Q = Q+p are given with an accuracy 10

−4. By
the table from the current paper it is simple to find the true value of the coverage probability adding Q1 and∆.
Hyphens (– – –) in the columns corresponding to Q2 mean the negative value of Q2. Hyphens (–) in the columns for ∆

(bottom part of the table) are due to the impossibility of calculating the true value of the coverage probability for very large
values of τ . Underlined values of Q1 correspond to the first value such that τ > c .
According to the values in the table, it is possible to conclude that the third term of the asymptotic in the region of

values of τ where it should ‘‘work’’ has the magnitude of the order 10−4 and less, and its use makes the accuracy of the
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Table 1
Comparison of coverage probabilities and the accuracy of the first approximation.

τ p = 3 p = 4 p = 7 p = 10
Q1 Q2 ∆ Q1 Q2 ∆ Q1 Q2 ∆ Q1 Q2 ∆

0.0 .0288 .0288 .0000 .0396 .0396 .0000 .0483 .0483 .0000 .0496 .0496 .0000
1.0 .0270 .0156 +.0008 .0383 .0285 −.0009 .0480 .0479 +.0000 .0496 .0496 +.0000
2.0 .0224 – – – +.0020 .0345 – – – −.0013 .0469 .0446 +.0001 .0493 .0492 +.0000
3.0 .0171 .1666 −.0038 .0289 – – – −.0104 .0447 – – – +.0003 .0487 .0458 +.0001
4.0 .0127 .0176 −.0084 .0230 .0234 −.0134 .0410 .0410 −.0034 .0472 – – – +.0001
5.0 .0094 .0111 −.0070 .0181 .0182 −.0117 .0362 .0362 −.0096 .0447 .0447 −.0045
6.0 .0072 .0081 −.0055 .0142 .0142 −.0096 .0311 .0311 −.0110 .0411 .0412 −.0078
7.0 .0056 .0062 −.0044 .0113 .0113 −.0078 .0263 .0263 −.0108 .0370 .0370 −.0096
8.0 .0045 .0049 −.0036 .0091 .0091 −.0061 .0222 .0223 −.0100 .0327 .0327 −.0102
9.0 .0036 .0039 −.0030 .0075 .0075 −.0053 .0189 .0189 −.0089 .0287 .0287 −.0100
10.0 .0030 .0032 −.0024 .0062 .0062 −.0044 .0161 .0161 −.0079 .0251 .0251 −.0094
12.0 .0021 .0023 −.0017 .0045 .0045 −.0032 .0120 .0120 −.0062 .0193 .0193 −.0080
16.0 .0012 .0013 −.0010 .0026 .0026 −.0019 .0072 .0072 −.0039 .0121 .0121 −.0054
20.0 .0008 .0008 −.0006 .0017 .0017 −.0012 .0048 .0048 −.0026 .0081 .0081 −.0038
25.0 .0005 .0006 −.0004 .0011 .0011 −.0010 .0031 .0031 −.0017 .0054 .0054 −.0025
28.0 .0004 .0004 – .0009 .0009 – .0025 .0025 −.0014 .0043 .0043 −.0020

1
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0 10 20 30
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Fig. 3.

approximation worse or makes it meaningless in the neighborhood of the point τ = c. Therefore an improvement of the
approximation Q+p (τ ) ≈ Kp(w(c, τ )) is still an open problem.
In order to give an additional illustration of the accuracy of the approximation by Q1, we provide a graph (cf. Fig. 3, taken

from the paper of Ahmed et al. (2006)) of the functions Q+p (τ ) (thick line) and Q1 = Kp(w(c, τ )) (thin line).
Note that in our approach to this problem, the only report the experimenter provides is the infimum; so that is what we

want to approximate accurately. What would be very interesting is if we could use our approximation on a variable radius
confidence set, and assume smaller balls with the same nominal coverage as the usual balls. This is still an open problem
we are working on now.
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