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ASYMPTOTIC EXPANSION OF THE COVERAGE PROBABILITY
OF JAMES–STEIN ESTIMATORS∗
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Abstract. This paper provides a new approach to the asymptotic expansion construction of the
coverage probability of the confidence sets recentered in [W. James and C. Stein, Estimation with
quadratic loss, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Vol. 1, Univ. California Press, Berkeley, CA, 1961, pp. 361–379] and its positive-part
Stein estimators [C. Stein, J. Roy. Statist. Soc. Ser. B, 24 (1962), pp. 265–296]. The coverage
probability of these confidence sets depends on the noncentrality parameter τ2 as in the case of
risks of these estimators. The new approach (which is different than Berger’s [J. O. Berger, Ann.
Statist., 8 (1980), pp. 716–761] and Hwang and Casella’s [J. T. Hwang and G. Casella, Statist.
Decisions, suppl. 1 (1984), pp. 3–16]) allows us to obtain the asymptotics analysis of the coverage
probabilities for the two cases, namely, when τ2 → 0 and τ2 → ∞. For both cases we provide a
simple approximation of the coverage probabilities. Some graphical and tabular results are provided
to assess the accuracy of our approximations.
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1. Introduction. In this paper we address the confidence estimation problem of
the mean vector θ = (θ1, . . . , θp) of the p-variate normal distribution with independent
components and equal unit variances. Let X = (X1, . . . ,Xp) be the sample mean
vector that is calculated from samples of equal size n of marginal distributions. The
confidence set

DX =

{
θ : n

p∑
1

(θi −Xi)
2 ≤ c2

}

has the given confidence coefficient 1−α if c2 is defined as the quantile of the central
chi-square distribution with p degrees of freedom according to the formula Kp(c

2) =
1 − α, where Kp( · ) is the chi-square distribution function.
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This confidence set DX enjoys many optimal properties, namely, it is (i) best
unbiased, (ii) best invariant, (iii) minimax, but it is not unique; Stein [11] showed
that there exists other sets which may provide improved coverage probability retaining
the minimax property. As a result, Stein [11] suggested considering the recentered
confidence sets Dδ and Dδ+ with fixed volume as DX , defined by

Dδ =
{
θ : n

∥∥θ − δ(X)
∥∥2 ≤ c2

}
, where δ(X) =

(
1 − p− 2

n‖X‖2

)
X,

is the James–Stein estimator (cf. [5]) and

Dδ+ =
{
θ : n

∥∥θ − δ+(X)
∥∥2 ≤ c2

}
,

where

δ+(X) =

(
1 − p− 2

n‖X‖2

)
XI

(
n‖X‖2 > p− 2

)
.

In both cases we restrict p to be greater than 2. Subsequently, many studies followed
by various authors, notably, Brown [2], Berger [1], Hwang and Casella [7], [8], Robert
and Saleh [9], and Saleh [10], among others. A real breakthrough came when Hwang
and Casella [7], [8] showed that Dδ+ dominates DX uniformly in τ2 = n‖θ‖2 for
p ≥ 4 and for approximately 0.8(p− 2) instead of p− 2. Also, Hwang and Casella [8]
provided an approximation of the coverage probability when τ2 → ∞. Our approach
to the approximation of the coverage probability is different, combined with a geo-
metrical and analytical methodology, and shows the following order of the coverage
probabilities

P(DX) ≤ P(Dδ) ≤ P(Dδ+)

for all τ2 as in the case of risk analysis for point estimation.
We investigate an asymptotic expansion of the coverage probability of the confi-

dence sets recentered at the James–Stein and positive-part estimators. It is established
that the probabilities Qp(τ) = P(Dδ) and Q+

p (τ) = P(Dδ+) depend on τ2 = n‖θ‖2

and are decreasing functions of τ2.
If τ → 0, then

(1.1)

Qp(τ) = Kp

(
w2(c, τ)

)
−Kp

(
w1(c, τ)

)
+ O(τ2) = Kp

(
w2(c, 0)

)
−Kp

(
w1(c, 0)

)
+ O(τ2),

where

w1,2(c, τ) = p− 2 +
c2 − τ2

2
∓
√

(c2 − τ2)2

4
+ c2τ2 − (p− 2)(τ2 − c2).(1.2)

If we center at the positive-part James–Stein estimator, the coverage probability can
be written

Q+
p (τ) = Kp

(
w2(c, τ)

)
+ O(τ2) = Kp

(
w2(c, 0)

)
+ O(τ2).(1.3)

If τ → ∞ (cf. with asymptotics of Berger [1] and Hwang and Casella [8]), then

Qp(τ) ∼ Q+
p (τ) = Kp

(
w2(c, τ)

)
+ O(τ−2) = Kp(c

2) + O(τ−2).(1.4)
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We mention that the leading terms of the asymptotic expansion with the func-
tion w1,2(c, τ) in place of w1,2(c, 0) strongly improve the accuracy of the approxi-
mation. It is worthwhile to mention that for the confidence sets recentered at the
positive-part James–Stein estimator, we obtain the same asymptotic formula for both
cases (i.e., τ2 → 0 and τ2 → ∞). The graphical and numerical illustrations, given
in the final section of the paper, show that this formula gives exceptionally accurate
values for the coverage probability in the range τ ≤ C, which are useful for practical
application, for any τ ≥ 0.

It is well known that the range of James–Stein estimators applications is notably
peculiar and requires great care in an interpretation of traditional estimator shrinkage.
First of all, this relates to the existence of the real center of shrinkage μ (without loss
of generality, in our paper it is assumed that μ = 0). There are some other challenges
in these estimator applications, which are discussed in detail in the book of Lehmann
and Casella [12]. At the same time there are many publications in which James–Stein
estimators are applied to real data and numerical results on quadratic risk gains are
presented. In these situations, when the application of shrinkage estimates is justified,
the main results of our paper show the region of the parameter values of the normal
distributions under consideration. In this region the James–Stein estimators have
a substantial advantage over the sample means from the point of view of improved
accuracy and/or reliability. This region is defined by the inequality τ2/σ2 ≤ K−1

p (1−
α), and, as Table 1 and Figure 5 show, the coverage probability rapidly approaches
the nominal confidence coefficient 1−α when the parameters of the distribution move
away from the region.

2. Integral representation of the coverage probability. Our asymptotic
investigation of the coverage probability of the true value of θ by a confidence set
centered by James–Stein estimators is based on the following representation of the
supporting functions

∑p
1(θi − δi)

2 and
∑p

1(θi − δ+
i )2 of the corresponding confidence

sets Dδ and Dδ+ .
Introduce the standard normal random variables Zi = (Xi − θi)

√
n, i = 1, . . . , p,

and put

a = p− 2, τ =

[
n

p∑
1

θ2
i

]1/2

, X =

p∑
1

Z2
i , Y =

[
p∑
1

θ2
i

]−1/2 p∑
1

θiZi.

Let A and B be the events defined by

A =

{
n

p∑
1

X
2

i > a

}
and B =

{
n

p∑
1

(
δi(X) − θi

)2
< c2

}
,

where c2 = K−1
p (1 − α) in terms of the introduced variables. Then

A = {X + 2Y τ + τ2 > a},

B =
{
X
(
X + 2Y τ + τ2

)
− 2aY τ − 2aX < c2

(
X + 2Y τ + τ2

)}
,

since X +2Y τ + τ2 > 0. Using these events we can represent the coverage probability
by the confidence set Dδ and Dδ+ as

Qp(τ) = P(B) and Q+
p (τ) = P(Ac) I(τ < C) + P(A ∩B),
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Fig. 1.

Fig. 2.

where I( · ) is the indicator of the corresponding set. Robert and Saleh [9] obtained
the exact expression for Q+

p (τ).

The respective orthogonal transformation of the vector Z shows that we can
provide the following stochastic representation of the random variables: Y = ξ, X =
χ2 + ξ2, where the normal standard random variable ξ and the chi-square random
variable χ2 with p− 1 degrees of freedom are independent. Such a representation can
be useful for the simulation of confidence sets by the Monte-Carlo method.

The obtained stochastic representation immediately implies the following result.

Proposition 1. The joint density function of the random variables X and Y
is different from zero only in the region y2 < x and it is represented in this region as

f(x, y) =
1√
2π

1

2(p−1)/2Γ((p− 1)/2)
(x− y2)(p−1)/2−1e−x/2.

Now we investigate in detail the geometry of the regions in a plane that correspond
to the events A and B. We start with an observation that the confidence region Dδ+

is equal to the union of the following disjoint events:

{Y 2 < X, X + 2Y τ + τ2 < a}

+

{
Y 2 < X, c2 + a−X > 0, X + 2Y τ + τ2 > a, Y >

(X − a)2 − c2τ2 + X(τ2 − c2)

2τ(c2 + a−X)

}

+

{
Y 2 < X, c2 + a−X < 0, X + 2Y τ + τ2 > a, Y <

(X − a)2 − c2τ2 + X(τ2 − c2)

2τ(c2 + a−X)

}
.

If we represent these events as regions in the plane (x, y), then the boundaries of
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these regions are defined by the following curves in the semiplane x > 0 :

x = y2, y = g(x) =
a− x− τ2

2τ
,

y = h(x) =
(x− a)2 − c2τ2 + x(τ2 − c2)

2τ(c2 + a− x)
=

1

2τ

(
a− x− τ2 +

a(τ2 − c2)

c2 + a− x

)
.

The view of linear-hyperbolic function h(x) points out the significant difference
in the form of confidence regions for the different values of τ, c, and a.

We mention that for small (what we are practically using) values of α, the quantile
c2 = K−1

p (1−α) of the chi-square distribution is bigger than the mean value p of this
distribution, and hence in what follows we assume that a− c2 < 0.

If τ < c, then the derivative of the function y = h(x), x > 0, equals

h′(x) =
1

2τ

(
− 1 +

a(τ2 − c2)

(c2 + a− x)2

)
.

It is always negative, and hence h(x) it is a decreasing function in the region x > 0
(cf. Figures 1 and 2). The curve y = h(x) has two monotonically decreasing branches
that are separated by the vertical asymptote x = a+ c2 and slant asymptote y = g(x)
(the line that defines the event A!). One of the branches that is situated to the left
of the vertical asymptote and below the slant asymptote y = g(x) has the first OX-
intercept at the point y = (a− c2τ2)/2τ(c2 + a) > 0 and the second OX intercept at
the point w1 (cf. (1.2)) when τ < a/c. In the opposite case, that is, when τ ≥ a/c,
it does not have the second OX-intercept and always stays below this axis for x > 0.
Further, this branch tends to −∞, clasping to asymptote x = a + c2 from the left.
The other branch of h(x) that is situated to the right of the vertical asymptote and
above the slant asymptote x = g(y) begins from +∞ and has OX-intercept at the
point w2. Next, it tends to−∞ for x → +∞.

The situation described shows us that for τ < c the confidence coefficient for the
region, centered by the positive-part James–Stein estimation δ+, is defined by the
probability of the event D2 = {X > Y 2, Y > c2 + a − X, Y < h(X)} (the shaded
area in the figures). The gain from using estimation δ+ instead of δ is defined by the
probability of the event D1 = {X > Y 2, Y < c2 + a − X, Y > h(X)} (the darker
shaded area).

Hence, for τ < c

Q+
p (τ) =

∫∫
D2

f(x, y) dx dy, Qp(τ) =

∫∫
D2

f(x, y) dx dy −
∫∫

D1

f(x, y) dx dy,

and the only thing which is left to do is determine the limits of integration in the
double integrals.

There are four points of intersection of the parabola x = y2 and the curve
y = h(x). Hence the two equations

(x− a)2 − c2τ2 + x(τ2 − c2) = 2τ
√
x(c2 + a− x),(2.1a)

(x− a)2 − c2τ2 + x(τ2 − c2) = −2τ
√
x(c2 + a− x)(2.1b)

have two roots each, that is, four roots altogether. Two of them, say u1 and u2,
for τ < a/c are situated on the opposite side of the point w1 and collapse into this
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point for τ → 0. Two other roots, say v1 and v2, for any τ < c satisfy the inequalities
v1 < w2 < v2 and collapse into w2 for τ → 0. Hence, for τ < a/c we have the relations

u1 < w1 < u2 < v1 < w2 < v2,

where the roots u1 and v1 correspond to (2.1a), and u2 and v2 correspond to (2.1b).
Note that it is sufficient to solve (2.1a) to obtain the roots u1 and v1. The roots u2

and v2 of (2.1b) can be obtained by the simple substitution of τ by −τ in the roots
obtained.

For all τ < c represent the event D2 in the form

D2 = Dw2
−Dv1 + Dv2 ,

where

Dw2 = {X > Y 2, X < w2}, Dv1 =
{
v1 < Y < w2, h(X) < Y <

√
X

}
,

and

Dv2
=

{
w2 < Y < v2, −

√
X < Y < h(X)

}
(cf. Figure 1). If τ < a/c, then the analogous representation can be provided for D1

with the substitution of w2 by w1 and v by u. In the region a/c < τ < c the value
w1 < 0, and the equation h(x) = −

√
x has two roots to the left of the vertical

asymptote, say u ′
1 and u ′

2 (cf. Figure 2). In this case,

D1 =
{
u ′

1 < X < u ′
2, −

√
X < Y < h(X)

}
.

Hence for all τ < c, the coverage probability

Q+
p (τ) = P(D2) = P(Dw2) + P(Dv2) − P(Dv1)

and the probability

Qp(τ) = P(D2) − P(D1),

where

P(D1) = P(Dw1) + P(Du2) − P(Du1)

if τ < a/c, and

P(D1) = P
{
u ′

1 < X < u ′
2, −

√
X < Y < h(X)

}
if a/c < τ < c. Such a representation of the coverage probability is important

because the first term in the sum

P(Dw2) = P{X < w2} = Kp(w2) = Kp

(
a +

c2

2
+

√
c4

4
+ ac2

)
+ O(τ2)

gives the leading term of Q+
p (τ) asymptotics for τ → 0 (cf. (1.3)). The difference

P(Dv2) − P(Dv1) provides the residual term that, as this will be proved in what
follows, has an order O(τ2). It is sufficient to investigate the asymptotics of P(Dw2),
since the same result is true for the region Dw1 with substitution v by u and w2 by w1.
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Fig. 3.

Fig. 4.

Hence we can formulate the result and pass on to the study of the confidence
regions geometry for τ ≥ c.

Proposition 2. If τ < c, then

Q+
p (τ) = Kp(w2) +

∫ v2

w2

dx

∫ h(x)

−
√
x

f(x, y) dy −
∫ w2

v1

dx

∫ √
x

h(x)

f(x, y) dy.

If τ < a/c, then

Qp(τ) = Q+
p (τ) −

[
Kp(w1) +

∫ u2

w1

dx

∫ h(x)

−
√
x

f(x, y) dy −
∫ w1

u1

dx

∫ √
x

h(x)

f(x, y) dy

]
,

and if a/c ≤ τ < c, then

Qp(τ) = Q+
p (τ) −

∫ u′
2

u′
1

dx

∫ h(x)

−
√
x

f(x, y) dy.

For τ = c the branches of the curve y = h(x) merge with its asymptotes and the
confidence regions are bounded by the straight lines x = a + c2, y = (a− x− c2)/2c
and the parabola x = y2 (cf. Figure 3). The straight line y = (a − x − c2)/2c (slant
asymptote) has the OX-intercept at the points x1,2 = (c∓

√
a)2 that are situated on

the opposite sides of the point x = c2 + a. Hence, we have the following proposition.
Proposition 3. If τ = c, then the coverage probabilities are

Q+
p (τ) = Kp(c

2) +

∫ x2

c2+a

dx

∫ (a−x−c2)/(2c)

−
√
x

f(x, y) dy,

Qp(τ) = Q+
p (τ) −

∫ x2

x1

dx

∫ (a−x−c2)/(2c)

−
√
x

f(x, y) dy.
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For the case τ > c, a picture of the region that defines the coverage probabilities
is significantly simpler (cf. Figure 4).

The slant asymptote y = (a − τ2 − x)/(2τ) in the region x > 0 has nega-
tive values and intersects the lower branch of the parabola y = −

√
x at the points

x1,2 = (τ ∓
√
a)2. The region below this asymptote and above the lower branch of

the parabola coincides with the region Ac of the zero values of the estimate δ+.
Hence we can simply ignore the right branch of the curve y = h(x), x > c2 + a,
situated below the slant asymptote. Next, the left branch of this curve that is situ-
ated above the slant asymptote in the region 0 < x < c2 + a begins from the point
y = (a2−τ2c2)/(2τ(c2+a)) < 0 (recall that a < c2), intersects the lower branch of the
parabola at the point x = v2, and has OX-intercept at the point x = w2. It intersects
the upper branch of the parabola at the point x = v1. At the same time v2 < v1. Note
that w2 → c2 and v1 − v2 → 0 when τ → ∞. Hence we can formulate the following
proposition.

Proposition 4. If τ > c, then

Q+
p (τ) = Kp(w2) +

∫ v1

w2

dx

∫ √
x

h(x)

f(x, y) dy −
∫ w2

v2

dx

∫ h(x)

−
√
x

f(x, y) dy

+

∫ x2

x1

dx

∫ (a−τ2−x)/(2τ)

−
√
x

f(x, y) dy

and

Qp(τ) = Kp(w2) +

∫ v1

w2

dx

∫ √
x

h(x)

f(x, y) dy −
∫ w2

v2

dx

∫ h(x)

−
√
x

f(x, y) dy.

3. Asymptotic expansions of coverage probability. Integral representa-
tions of the coverage probabilities given in Propositions 2 and 4 (compare them with
the representations obtained in [7]) reduce the problem of asymptotic analysis to an
asymptotic expansion for τ → 0 and, respectively, as τ → ∞ of the following integrals:

J(τ) =

∫ β

w

dx

∫ ψ(x)

ϕ(x)

f(x, y) dy,

where the lower limit w has the form (1.2), the upper limit β is one of the roots
of (2.1 a,b), and the functions ϕ(x) and ψ(x) are equal to either h(x) or ±

√
x.

We start with the asymptotics of the roots of (2.1 a,b). As was mentioned before,
it is sufficient to consider only (2.1a). By making the substitution x = w + z (recall,
h(w) = 0) we can represent this equation in the form

2z(w − a) + z2 + z(τ2 − c2) = 2τ
√
w + z (c2 + a− w − z).(3.1)

Lemma. If τ → 0, then the following asymptotic expansion takes place for the
root of (3.1):

z =
∞∑
k=1

λk(w) τk.(3.2)

If η = 1/τ → 0, then

z =

∞∑
k=1

μk(w) ηk.(3.3)
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Proof. We can rewrite (3.1) for the case τ → 0 in the form z = τ/f(z), where

f(z) =
2(c2 + a− w − z)

√
w + z

2(w − a) + z + τ2 − c2

is a holomorphic function in a neighborhood of the point z = 0 and f(0) �= 0. Hence,
the Burman–Lagrange formula is applicable (cf., for example, [3, section 2.2]) and the
expansion (3.2) takes place with

λk(w) =
1

k!

[
dk−1fk(z)

dzk−1

]
z=0

, k = 1, 2, . . . .

For the case τ → ∞ we represent (2.1a) in terms of ε = 1/τ . Hence it can be
written as

η(x− a)2 − c2 + x = η2xc2 = 2η(c2 + a− x)
√
x.

Next, make the substitution x = w+z and rewrite the equation in the form z = η/f(z)
with

f(z) =
2(c2 + a− w − z)

√
w + z

1 + η2(2(w − a) + z − c2)
.

Applying the Burman–Lagrange formula again yields expansion (3.3).
The fact that for both cases the function f(z) depends on a small parameter (τ2

or, respectively, η2), which will move on the expansion coefficients, does not play any
significant role. It is possible to provide an additional expansion of the coefficient by
this parameter, and the form of the expansion will remain the same.

Hence, the following asymptotic expansions are true for the roots u1, u2, v1, v2

from Proposition 2 for τ → 0:

u1,2 = w1 +

∞∑
k=1

λk(w1)(±τ)k, v1,2 = w2 +

∞∑
k=1

λk(w2)(±τ)k.

For the roots v1, v2 from Proposition 4 (η = 1/τ → 0) the following expansions take
place:

v1,2 = w2 +

∞∑
k=1

λk(w2)(±η)k.

A significant advantage of the expansions obtained above is the fact that the
expansions of v1 and v2 (and u1 and u2 also) have the same coefficients for even
exponents of τ , and for the odd exponents of τ , they are different only by a sign. This
fact provides us with the order of the remaining terms for the coverage probability
asymptotics for τ → 0 (cf. formulas (1.1) and (1.3)) as was stated in the introduction.
Certainly, the expansions of the roots v1 and v2 by the exponents of η, which provide
the form of formula (1.4) from the introduction, have the analogous properties. Now
we will prove this formula.

Theorem. If τ → 0, then the following asymptotic expansion is true for the
coverage probability of the true value by the confidence region Dδ centered by the
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Fig. 5.

James–Stein estimation:

Qp(τ) = Kp

(
p− 2 +

c2 − τ2

2
+

√
(c2 − τ2)2

4
+ c2τ2 − (p− 2)(τ2 − c2)

)

−Kp

(
p− 2 +

c2 − τ2

2
−
√

(c2 − τ2)2

4
+ c2τ2 − (p− 2)(τ2 − c2)

)
+ O(τ2)

= Kp

(
p− 2 +

c2

2
+

√
c4

4
+ (p− 2) c2

)

−Kp

(
p− 2 +

c2

2
−
√

c4

4
+ (p− 2) c2

)
+ O(τ2).

The following asymptotic expansion is true for the coverage probability of the true
value by the confidence region Dδ+ centered by the positive-part James–Stein estima-
tion:

Q+
p (τ) = Kp

(
p− 2 +

c2 − τ2

2
+

√
(c2 − τ2)2

4
+ c2τ2 − (p− 2)(τ2 − c2)

)
+ O(τ2)

= Kp

(
p− 2 +

c2

2
+

√
c4

4
+ (p− 2) c2

)
+ O(τ2).

If τ → ∞, then the coverage probabilities for both regions are asymptotically
equivalent:

Qp(τ) ∼ Q+
p (τ)

= Kp

(
p− 2 +

c2 − τ2

2
+

√
(c2 − τ2)2

4
+ c2τ2 − (p− 2)(τ2 − c2)

)
+ O(τ−2)

= Kp(c
2) + O(τ−2).

Proof. We prove that for τ → 0,

Δ(τ) =

∫ v2

w2

dx

∫ h(x)

−
√
x

f(x, y) dy −
∫ w2

v1

dx

∫ √
x

h(x)

f(x, y) dy = O(τ2).

Then the analogous asymptotics takes place for integrals that have limits in terms
of u1 and u2.
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Perform the substitutions x− w2 = t(v2 − w2) in the first integral and w2 − x =
t(w2 − v1) in the second integral, and make use of the asymptotic expansion

v2 − w2 ∼ w2 − v1 = −λ1τ + O(τ2),

which implies that

h
(
w2 + t(v2 − w2)

)
∼ h

(
w2 − t(w2 − v1)

)
= O(τ2)

since h(w1,2) = 0, and asymptotic equalities

[
w2 + t(v2 − w2)

]1/2 ∼
[
w2 − t(w2 − v1)

]1/2
= −λ1τt

√
w2 + O(τ2)

and

f
(
w2 + t(v2 − w2), y

)
∼ f

(
w2 − t(w2 − v1), y

)
= −λ1τtf(w2, y) + O(τ2).

As a result we obtain that

Δ(τ) = −λ1τ

[ ∫ 1

0

dt

∫ 0

−√
w2

f(w2, y) dy−
∫ 1

0

dx

∫ √
w2

0

f(w2, y) dy

]
+O(τ2) = O(τ2),

since f(x, y) is an even function of y.
As τ → ∞, by the same reason the difference of integrals has the order O(ε2) and

the last integral in the representation of Q+
p (τ) (cf. Proposition 4) has the order

∫ τ+
√
a

τ−
√
a

dx

∫ (a−τ2−x)/(2τ)

−
√
x

f(x, y) dy = O

(
τp−2exp

{
− τ2

2

})
.

To prove this, it is sufficient to substitute y = −
√
xt in the dy-integral.

4. Concluding remarks. The method of variable substitution in integration
with the subsequent application of Taylor’s expansion for the dy-integrals, used in the
proof of the theorem, allowed us to produce asymptotic expansions of the coverage
probability for any small values of τ . Of course, for the case τ → ∞ we will obtain the
same asymptotic formulas as in the papers of Berger [1] and Hwang and Casella [8]
in this case, too. We decided to not provide the subsequent terms of the expansion
due to the complexity of the coefficients, which are in the double integrals form as in
the formulas for the exact values of coverage probability.

We can judge the accuracy of the Kp(w2(c, τ)) asymptotics for Q+
p (τ) for values

p = 3, 5, 10 and α = 0.05 according to Figure 5 and Table 1.
The thick lines in Figure 5 correspond to the exact values of Q+

p (τ), while the
thin lines correspond to the asymptotic values.

Notations in the table are Q = Q+
p (τ) − 0.95 and the approximation error (with

the sign) Δ = Q+
p (τ) −Kp(w2(c, τ)).

Figure 5 and the table show the high accuracy of the asymptotic formula for
τ ≤ c. For τ > c the exact value of coverage probability decreases significantly faster
than the asymptotics obtained in the paper. Starting from p = 5 the approximation
error begins to decrease, and its maximum value at p = 5 is equal to 0.0134. Hence
it is possible to conclude with a practical acceptability of the coverage probability
calculations according to the asymptotic formulas which are provided in the theorem.
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Table 1

p = 3 p = 4 p = 5 p = 7 p = 10
τ

Q Δ Q Δ Q Δ Q Δ Q Δ

0.0 .0288 .0000 .0396 .0000 .0445 .0000 .0483 .0000 .0496 .0000
0.5 .0280 +.0003 .0386 -.0007 .0443 +.0000 .0482 +.0000 .0496 +.0000
1.0 .0278 +.0008 .0374 -.0009 .0438 +.0001 .0480 +.0000 .0496 +.0000
1.5 .0265 +.0016 .0356 -.0011 .0430 +.0004 .0476 +.0000 .0495 +.0000
2.0 .0246 +.0020 .0332 -.0013 .0417 +.0006 .0470 +.0001 .0493 +.0000
2.5 .0216 +.0020 .0295 -.0031 .0399 +.0008 .0462 +.0002 .0491 +.0000
3.0 .0133 -.0038 .0185 -.0104 .0373 +.0007 .0450 +.0003 .0487 +.0001
3.5 .0068 -.0080 .0126 -.0133 .0303 -.0036 .0433 +.0003 .0482 +.0001
4.0 .0043 -.0084 .0096 -.0134 .0219 -.0091 .0375 -.0034 .0473 +.0001
4.5 .0031 -.0078 .0077 -.0127 .0171 -.0110 .0311 -.0075 .0444 -.0017
5.0 .0025 -.0070 .0064 -.0117 .0140 -.0114 .0266 -.0096 .0402 -.0045
5.5 .0020 -.0062 .0054 -.0106 .0118 -.0111 .0230 -.0105 .0367 -.0064
6.0 .0017 -.0055 .0046 -.0096 .0100 -.0106 .0201 -.0110 .0334 -.0078
6.5 .0014 -.0050 .0040 -.0087 .0086 -.0099 .0176 -.0110 .0302 -.0089
7.0 .0012 -.0044 .0034 -.0078 .0075 -.0092 .0156 -.0108 .0274 -.0096
7.5 .0011 -.0039 .0030 -.0071 .0066 -.0085 .0138 -.0104 .0248 -.0100
8.0 .0009 -.0036 .0027 -.0061 .0058 -.0080 .0123 -.0100 .0225 -.0102
8.5 .0008 -.0032 .0024 -.0058 .0052 -.0073 .0110 -.0094 .0205 -.0102
9.0 .0007 -.0030 .0022 -.0053 .0046 -.0068 .0099 -.0089 .0187 -.0100
9.5 .0007 -.0026 .0020 -.0049 .0042 -.0062 .0090 -.0084 .0171 -.0098

10.0 .0006 -.0024 .0018 -.0044 .0038 -.0057 .0082 -.0079 .0157 -.0094
11.0 .0005 -.0020 .0015 -.0038 .0031 -.0050 .0068 -.0070 .0133 -.0087
12.0 .0004 -.0017 .0012 -.0032 .0026 -.0043 .0058 -.0062 .0114 -.0080
14.0 .0003 -.0013 .0009 -.0024 .0019 -.0033 .0043 -.0048 .0086 -.0066
16.0 .0002 -.0010 .0007 -.0019 .0015 -.0026 .0033 -.0039 .0067 -.0054
18.0 .0002 -.0008 .0006 -.0015 .0012 -.0021 .0026 -.0032 .0054 -.0045
20.0 .0002 -.0006 .0005 -.0012 .0009 -.0016 .0022 -.0026 .0044 -.0038
22.0 .0001 -.0006 .0004 -.0010 .0008 -.0014 .0018 -.0022 .0036 -.0032
25.0 .0001 -.0004 .0001 -.0010 .0006 -.0011 .0014 -.0017 .0028 -.0025
26.0 - - - - - - .0013 -.0016 .0026 -.0024
28.0 - - - - - - .0011 -.0014 .0023 -.0020
30.0 - - - - - - .0010 -.0012 .0020 -.0018
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