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Abstract

In this paper, the asymptotic probability for the bootstrapped means deviations from the sample mean is
obtained, without imposing any assumptions on joint distribution of the original sequence of random
variables from which the bootstrap sample is withdrawn. A non-restrictive assumption of stochastic
domination by a random variable is imposed on marginal distributions of this sequence.
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1. Introduction

The main focus of the present investigation is to obtain asymptotic results for the probability of
bootstrapped means deviations from the sample mean.
The work on the consistency of the bootstrap estimators has received a lot of attention in recent

years due to a growing demand for the procedure, both theoretically and practically. As it is
mentioned in Mikosch (1994), the sample mean is fundamental for parameter estimation in
statistics. Therefore, most of the recent literature on bootstrap is devoted to statistics of this type.
This literature is mainly concerned with bootstrap consistency, that is, to show that a statistic and
its bootstrap version have the same asymptotic distributional behaviour.
However, the limiting behaviour of bootstrap statistics is also of interest since it is by no means

clear whether the bootstrap version of a consistent estimator is consistent. From our point of view
this explains the usefulness and impact of deviations from the sample means in the ‘‘exogenously
generated’’ bootstrap samples on the statistical inference. Furthermore, asymptotic probabilities
for the bootstrapped means deviations are quite a useful tool for the study of bootstrap moments.
It is important to note that exponential inequalities are of practical use in establishing the strong
asymptotic validity of the bootstrapped mean.
We mention the special issue of the journal Statistical Science (2003) volume 18, number 2,

devoted to the Silver Anniversary of the Bootstrap, where the wide applications of the bootstrap
procedure to statistics are discussed.
Let fX n; nX1g be a sequence of random variables (not necessarily independent or identically

distributed) defined on a probability space ðO;F;PÞ. For o 2 O and nX1, let PnðoÞ ¼

n�1
Pn

i¼1 dX iðoÞ denote the empirical measure and let fX̂
ðoÞ
n;j ; 1pjpmðnÞg be i.i.d. random variables

with law PnðoÞ, where fmðnÞ; nX1g is a sequence of positive integers. In other words, the random

variables fX̂
ðoÞ
n;j ; 1pjpmðnÞg result by sampling mðnÞ times with replacement from the n

observations X 1ðoÞ; . . . ;X nðoÞ such that for each of the mðnÞ selections, each X jðoÞ has

probability n�1 of being chosen. For each nX1; fX̂
ðoÞ
n;j ; 1pjpmðnÞg is the so-called Efron (1979)

bootstrap sample from X 1; . . . ;X n with bootstrap sample size mðnÞ.
We are using the following standard notations. Let X nðoÞ ¼ 1=n

Pn
j¼1 X jðoÞ denote the sample

mean of fX jðoÞ; 1pjpng; nX1. In order to distinguish the conditional probability of the
bootstrap variables from the unconditional probability P we denote

P�f	g ¼ Pf	jX 1ðoÞ; . . . ;X nðoÞg.

The main focus of the paper is to obtain asymptotic results for the following probability:

P� 1

n1=a

XmðnÞ

j¼1

X̂
ðoÞ
n;j � X nðoÞ

�����
�����X�

( )
,

as n ! 1 for any �40 and 0oao2.
For expository purpose, we begin with a brief discussion of results in the literature pertaining to

the bootstrap of the mean. We also refer to an overview paper Csörg +o and Rosalsky (2003) where
a detailed and comprehensive survey of limit laws for the bootstrapped sums is given. In the
special case when fX n; nX1g is a sequence of independent and identically distributed random
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variables, strong laws of large numbers (SLLNs) were proved by Athreya (1983), Hu (1991), and
Csörg +o (1992) for bootstrapped means. Arenal-Gutiérrez et al. (1996) analyzed the results of
Athreya (1983) and Csörg +o (1992). Then, by taking into account the different growth rates for the
resampling size mðnÞ, they gave new and simple proofs of those results. They also provided
examples that show that the sizes of resampling required by their results to ensure almost sure
(a.s.) convergence are not far from optimal.
Another article which is important for the paper is the work carried out by Mikosch (1994). He

established a series of useful exponential inequalities (Theorem 3) that are the important tool in
deriving results on the consistency of the bootstrapped mean. Based on these exponential
inequalities, he proved an almost sure convergence result for the bootstrapped means (Theorem 1).
Next, with the same Mikosch’s exponential inequalities, the Baum-Katz/Erdös/Hsu-Robbins/
Spitzer type complete convergence result for the bootstrapped means and a moment result for the
supremum of normed bootstrapped sums were established by Li et al. (1999) (Theorem 2).
The following result was proved by Mikosch (1994, Proposition 3.3).

Theorem 1. Let fX n; nX1g be a sequence of independent and identically distributed random variables
and 0oao2. If

EjX 1j
aj log jX 1jj

ao1,

then for almost every o 2 O:

1

n1=a

Xn

j¼1

ðX̂
ðoÞ
n;j � X nðoÞÞ ! 0 a:s.

The following result was proved by Li et al. (1999, Theorem 2.1).

Theorem 2. Let fX n; nX1g be a sequence of pairwise independent identically distributed random

variables and 0oao2. If

EjX 1j
aj log jX 1jj

ao1,

then for every real number q, every �40 and almost every o 2 O:

X1
n¼1

nqP� 1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

�����
�����X�

( )
o1.

Remark 1. Taking q ¼ 0 it follows from the Borel–Cantelli lemma and the conclusion of
Theorem 2, that for almost every o 2 O

1

n1=a

Xn

j¼1

ðX̂
ðoÞ
n;j � X nðoÞÞ ! 0 a:s.

The initial objective of an investigation resulting in the present paper was only to extend the
above-mentioned results on the SLLNs for bootstrap of the mean. But it appears that we are able
to establish a more general result. Theorem 2 deals with the moment assumption
EjX 1j

aj log jX 1jj
ao1, while our Theorem 4 deals with much more general moment assumption.

Moreover, we establish that no independence condition is important and identically distribution
assumption can be relaxed to stochastic domination by a random variable which is sufficient.
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The main tool is the following result from Mikosch (1994, Lemma 5.1). We mention that this
result was proved by Mikosch (1994) under the assumption that fX n; nX1g is a sequence of
independent or identically distributed random variables. But a careful analysis of the proof shows
that this assumption is unnecessary.

Theorem 3. Let fan; nX1g and fhn; nX1g be two sequences of positive real numbers and

let fX n; nX1g be a sequence of (not necessarily independent or identically distributed) random
variables. Then for o 2 O and nX1 such that hnMnðoÞo1 and all �40 the following inequality

holds:

P�
XmðnÞ

j¼1

ðX̂
ðoÞ
n;j � X nðoÞÞ

�����
�����X�an

( )
p2 exp ��

hnan

mðnÞ
þ

h2nBnðoÞ
2 1� hnMnðoÞð Þ

� �
,

where

MnðoÞ ¼
1

mðnÞ
max
1pjpn

jX jðoÞ � X nðoÞj

and

BnðoÞ ¼
1

n mðnÞ

Xn

j¼1

ðX jðoÞ � X nðoÞÞ
2.

The following notion is well known.

Definition. We will say that a sequence of random variables fX n; nX1g is stochastically dominated
by a random variable X, if there exists a constant C40 such that

PfjX nj4tgpCPfjX j4tg

for all tX0 and all nX1.
2. A few technical lemmas

In this section we present a few technical results that we will use in proofs of the main results of
the paper. The first lemma is the special case of Adler and Rosalsky (1987) with an identically 1,
hence we omit a proof. Note that there is no independence assumption.

Lemma 1. Let fðtÞ; t40, be a continuous function that is positive, strictly increasing and satisfying
the condition fðtÞ ! 1 as t ! 1. Put bn ¼ f�1

ðnÞ; nX1, where f�1
ðtÞ is the inverse function of

fðtÞ. Let, moreover, fY n; nX1g be a sequence of random variables stochastically dominated by a
random variable Y. If

X1
n¼k

b�1
n ¼ Oðkb�1k Þ and EfðjY jÞo1,



ARTICLE IN PRESS

T.-C. Hu et al. / Statistics & Probability Letters 74 (2005) 178–186182
then

1

bn

Xn

j¼1

Y j ! 0 a:s.

The second lemma in this section deals with convergence of maximums of random variables.
Again, no assumption of independence is made.

Lemma 2. Let cðtÞ; tX0 be an increasing function and let fbn; nX1g be a sequence of positive

numbers such that bn ¼ c�1
ðnÞ; nX1, where c�1

ðtÞ is the inverse function of cðtÞ. Let, moreover,
fX n; nX1g be a sequence of positive random variables stochastically dominated by a random

variable X such that EcðCX Þo1 for all C40. Then

1

bn

max
1pjpn

X j ! 0 a:s.

Proof. As we already mentioned in the proof of Lemma 1, the assumptions

X1
n¼1

PfX n4�bngo1

for any �40, and

Ec
X

�

� 	
o1

are equivalent. Then by the Borel–Cantelli lemma X n=bn ! 0 a.s. For arbitrary nXkX2,

1

bn

max
1pjpn

X jp
1

bn

max
1pjpk�1

X j þ
1

bn

max
kpjpn

X j

p
1

bn

max
1pjpk�1

X j þ max
kpjpn

X j=bj ðsince fbn; nX1g is nondecreasingÞ

p
1

bn

max
1pjpk�1

X j þ sup
jXk

X j=bj ! 0

as first n ! 1 and then k ! 1. &

Unfortunately, it is not possible to find the inverse function to the function
fðtÞ ¼ t1=b=logg t; t40; b40, and g40 in the closed form. But the following lemma gives a
good ‘‘approximation’’ to the inverse function.

Lemma 3. Let fðtÞ ¼ t1=b log�g=b t and cðtÞ ¼ tb logg t; tXe; b40, and 0ogoe. Then for any

�40 and for all sufficiently large t

b�g
ð1� �ÞtpcðfðtÞÞpb�gt.

Proof. Mention that

cðfðtÞÞ ¼
t

bg
1� g

log log t

log t

� 	g
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and
log log t

log t
# 0

for tXee, which can be established by the differentiation. &

The main idea of Lemma 3 is that for a positive random variable Y, the assumptions
Ef�1

ðY Þo1 and EcðY Þo1 are equivalent.

Lemma 4. Let b41 and bn ¼ nb log�2 n; nX2, thenX1
j¼n

b�1
j ¼ Oðnb�1n Þ.

Proof. Really,

X1
j¼n

1

bj

¼
X1
j¼n

log2 j

jb
¼

X1
m¼1

Xnðmþ1Þ�1

k¼nm

log2 k

kb

p
X1
m¼1

n log2ðmnÞ

ðnmÞ
b since the sequence

log2 k

kb ; kXe2=b
� �

is strictly decreasing

� 	

p
2n log2n

nb

X1
m¼1

1þ log2 m=log2 2

mb ¼ C
n log2 n

nb (since b41Þ

¼ C
n

bn

: &

3. Main results

With the preliminaries accounted for, we can formulate and prove the main result of the paper,
that is the asymptotic probability of deviations for the bootstrap of the mean. We mention that
there is no independence and identical distribution assumption on the original sequence of
random variables fX n; nX1g.

Theorem 4. Let cðtÞ; tX0 be an increasing function such thatX1
j¼n

1

ðc�1
ðjÞÞ2

¼ O
n

ðc�1
ðnÞÞ2

� 	
; nX1, (�)

where c�1
ðtÞ is the inverse function of cðtÞ. Let, moreover, fX n; nX1g be a sequence of random

variables stochastically dominated by a random variable X such that EcðCjX jÞo1 for all C40 and

fan; nX1g be a sequence of positive constants. Then for almost every o 2 O, any �40, and any real
number r

P�
XmðnÞ

j¼1

ðX̂
ðoÞ
n;j � X nðoÞÞ

�����
�����X�an

( )
¼ O exp �r

an

c�1
ðnÞ

þ
mðnÞ

n
oð1Þ

� �� 	
.
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Proof. Fix any constants r and �40 and let hn ¼ rmðnÞ=�c�1
ðnÞ. The fact that

hnMnpðr=�Þ ð1=c�1
ðnÞÞmax1pjpn jX jj ! 0 a.s. follows directly from Lemma 2.

Next, in Lemma 1 consider Y j ¼ X 2
j ;Y ¼ X 2, and fðtÞ ¼ cð

ffiffi
t

p
Þ. Then f�1

ðnÞ ¼ ðc�1
ðnÞÞ2 and

EfðY Þ ¼ EcðjX jÞo1. By Lemma 1

h2nBn ¼
r2

�2
mðnÞ

n

1

ðc�1
ðnÞÞ2

Xn

j¼1

X 2
j ¼

mðnÞ

n
oð1Þ a:s.

Hence,

h2nBn

2ð1� hnMnÞ
¼

mðnÞ

n
oð1Þ a:s.

We also mention that

�
hnan

mðnÞ
¼ r

an

c�1
ðnÞ

.

Now the result follows directly from Theorem 3. &

Remark 2. The conclusion of Theorem 4 is of course stronger the larger r is taken. The constant
r does not play a role in any assumptions and it can be taken arbitrarily large.

Now we can derive different results on asymptotic probability of deviations for the bootstrap of
the mean from the sample mean using different moment assumptions.

Corollary 1. Let fX n; nX1g be a sequence of random variables stochastically dominated by a random
variable X and 0oao2. If

EjX jao1,

then for almost every o 2 O

P� 1

n1=a

Xn

j¼1

ðX̂
ðoÞ
n;j � X nðoÞÞ

�����
�����X�

( )
¼ oð1Þ,

that is,

1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

� �
! 0 in probability.

Proof. Let cðtÞ ¼ ta, then c�1
ðnÞ ¼ n1=a. The relation (*) holds trivially since 2=a41. If we take

an ¼ n1=a and mðnÞ ¼ n, then according to Theorem 4 for any �40 and any r40 and for all
sufficiently big n

P� 1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

�����
�����X�

( )
pC expf�rg,
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that is,

1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

� �
! 0 in probability: &

Corollary 2. Let fX n; nX1g be a sequence of random variables stochastically dominated by a random
variable X and 0oao2. If

EjX jaj log jX jjao1,

then for every real number r, every �40, and almost every o 2 O

P� 1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

�����
�����X�

( )
¼ Oðn�rÞ.

Proof. Let cðtÞ ¼ ta loga t; tX1, then according to Lemma 3 the sequence c�1
ðnÞ is equivalent to

n1=a= log n; nX2. The relation (*) holds by Lemma 4.
For fixed r; �40, mðnÞ ¼ n, and an ¼ n1=a, applying Theorem 4 we obtain the result. &

Remark 3. Theorem 2 easily follows from Corollary 2. It is sufficient to take for any constant q
from Theorem 2, the constant r ¼ q þ 2 and apply Corollary 2.

Corollary 3. Let fX n; nX1g be a sequence of random variables stochastically dominated by a random
variable X and 0oao2. If

EjX jdo1,

for some aodo2, then for every r; �40 and almost every o 2 O

P� 1

n1=a

Xn

j¼1

X̂
ðoÞ
n;j � X nðoÞ

�����
�����X�

( )
¼ Oðexpf�rn1=a�1=dgÞ.

Proof. Let cðtÞ ¼ td; t40, then c�1
ðnÞ ¼ n1=d. The relation (*) holds trivially since 2=d41. For

fixed r; �40, mðnÞ ¼ n, and an ¼ n1=a, applying Theorem 4 we obtain the result. &
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