Asymptotic probability for the bootstrapped means deviations from the sample mean

Tien-Chung Hu ${ }^{\text {a, },}$, Manuel Ordóñez Cabrera ${ }^{\mathrm{b}, 2}$, Andrei Volodin ${ }^{\mathrm{c}, *, 3}$
${ }^{a}$ Department of Mathematics, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
${ }^{\mathrm{b}}$ Department of Mathematical Analysis, University of Seville, Seville 41080, Spain
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Received 28 July 2004; received in revised form 28 March 2005
Available online 31 May 2005

Abstract

In this paper, the asymptotic probability for the bootstrapped means deviations from the sample mean is obtained, without imposing any assumptions on joint distribution of the original sequence of random variables from which the bootstrap sample is withdrawn. A non-restrictive assumption of stochastic domination by a random variable is imposed on marginal distributions of this sequence.

(C) 2005 Elsevier B.V. All rights reserved.

MSC: primary 62 E 20 ; 62 G 05 ; secondary 60 F 15
Keywords: Bootstrapped means; Exponential inequalities; Strong law of large numbers; Stochastic domination

[^0]0167-7152/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2005.04.042

1. Introduction

The main focus of the present investigation is to obtain asymptotic results for the probability of bootstrapped means deviations from the sample mean.

The work on the consistency of the bootstrap estimators has received a lot of attention in recent years due to a growing demand for the procedure, both theoretically and practically. As it is mentioned in Mikosch (1994), the sample mean is fundamental for parameter estimation in statistics. Therefore, most of the recent literature on bootstrap is devoted to statistics of this type. This literature is mainly concerned with bootstrap consistency, that is, to show that a statistic and its bootstrap version have the same asymptotic distributional behaviour.

However, the limiting behaviour of bootstrap statistics is also of interest since it is by no means clear whether the bootstrap version of a consistent estimator is consistent. From our point of view this explains the usefulness and impact of deviations from the sample means in the "exogenously generated" bootstrap samples on the statistical inference. Furthermore, asymptotic probabilities for the bootstrapped means deviations are quite a useful tool for the study of bootstrap moments. It is important to note that exponential inequalities are of practical use in establishing the strong asymptotic validity of the bootstrapped mean.

We mention the special issue of the journal Statistical Science (2003) volume 18, number 2, devoted to the Silver Anniversary of the Bootstrap, where the wide applications of the bootstrap procedure to statistics are discussed.

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables (not necessarily independent or identically distributed) defined on a probability space (Ω, \mathscr{F}, P). For $\omega \in \Omega$ and $n \geqslant 1$, let $P_{n}(\omega)=$ $n^{-1} \sum_{i=1}^{n} \delta_{X_{i}(\omega)}$ denote the empirical measure and let $\left\{\hat{X}_{n, j}^{(\omega)}, 1 \leqslant j \leqslant m(n)\right\}$ be i.i.d. random variables with law $P_{n}(\omega)$, where $\{m(n), n \geqslant 1\}$ is a sequence of positive integers. In other words, the random variables $\left\{\hat{X}_{n, j}^{(\omega)}, 1 \leqslant j \leqslant m(n)\right\}$ result by sampling $m(n)$ times with replacement from the n observations $X_{1}(\omega), \ldots, X_{n}(\omega)$ such that for each of the $m(n)$ selections, each $X_{j}(\omega)$ has probability n^{-1} of being chosen. For each $n \geqslant 1,\left\{\hat{X}_{n, j}^{(\omega)}, 1 \leqslant j \leqslant m(n)\right\}$ is the so-called Efron (1979) bootstrap sample from X_{1}, \ldots, X_{n} with bootstrap sample size $m(n)$.

We are using the following standard notations. Let $\bar{X}_{n}(\omega)=1 / n \sum_{j=1}^{n} X_{j}(\omega)$ denote the sample mean of $\left\{X_{j}(\omega), 1 \leqslant j \leqslant n\right\}, n \geqslant 1$. In order to distinguish the conditional probability of the bootstrap variables from the unconditional probability P we denote

$$
P^{*}\{\cdot\}=P\left\{\cdot \mid X_{1}(\omega), \ldots, X_{n}(\omega)\right\} .
$$

The main focus of the paper is to obtain asymptotic results for the following probability:

$$
P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{m(n)} \hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right| \geqslant \varepsilon\right\},
$$

as $n \rightarrow \infty$ for any $\varepsilon>0$ and $0<\alpha<2$.
For expository purpose, we begin with a brief discussion of results in the literature pertaining to the bootstrap of the mean. We also refer to an overview paper Csörgő and Rosalsky (2003) where a detailed and comprehensive survey of limit laws for the bootstrapped sums is given. In the special case when $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of independent and identically distributed random
variables, strong laws of large numbers (SLLNs) were proved by Athreya (1983), Hu (1991), and Csörgő (1992) for bootstrapped means. Arenal-Gutiérrez et al. (1996) analyzed the results of Athreya (1983) and Csörgő (1992). Then, by taking into account the different growth rates for the resampling size $m(n)$, they gave new and simple proofs of those results. They also provided examples that show that the sizes of resampling required by their results to ensure almost sure (a.s.) convergence are not far from optimal.

Another article which is important for the paper is the work carried out by Mikosch (1994). He established a series of useful exponential inequalities (Theorem 3) that are the important tool in deriving results on the consistency of the bootstrapped mean. Based on these exponential inequalities, he proved an almost sure convergence result for the bootstrapped means (Theorem 1). Next, with the same Mikosch's exponential inequalities, the Baum-Katz/Erdös/Hsu-Robbins/ Spitzer type complete convergence result for the bootstrapped means and a moment result for the supremum of normed bootstrapped sums were established by Li et al. (1999) (Theorem 2).

The following result was proved by Mikosch (1994, Proposition 3.3).
Theorem 1. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent and identically distributed random variables and $0<\alpha<2$. If

$$
\left.E\left|X_{1}\right|^{\alpha}|\log | X_{1}\right|^{\alpha}<\infty
$$

then for almost every $\omega \in \Omega$:

$$
\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{n}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right) \rightarrow 0 \text { a.s. }
$$

The following result was proved by Li et al. (1999, Theorem 2.1).
Theorem 2. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of pairwise independent identically distributed random variables and $0<\alpha<2$. If

$$
\left.E\left|X_{1}\right|^{\alpha}|\log | X_{1}\right|^{\alpha}<\infty
$$

then for every real number q, every $\varepsilon>0$ and almost every $\omega \in \Omega$:

$$
\sum_{n=1}^{\infty} n^{q} P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{n} \hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right| \geqslant \varepsilon\right\}<\infty
$$

Remark 1. Taking $q=0$ it follows from the Borel-Cantelli lemma and the conclusion of Theorem 2, that for almost every $\omega \in \Omega$

$$
\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{n}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right) \rightarrow 0 \text { a.s. }
$$

The initial objective of an investigation resulting in the present paper was only to extend the above-mentioned results on the SLLNs for bootstrap of the mean. But it appears that we are able to establish a more general result. Theorem 2 deals with the moment assumption $\left.E\left|X_{1}\right|^{\alpha}|\log | X_{1}\right|^{\alpha}<\infty$, while our Theorem 4 deals with much more general moment assumption. Moreover, we establish that no independence condition is important and identically distribution assumption can be relaxed to stochastic domination by a random variable which is sufficient.

The main tool is the following result from Mikosch (1994, Lemma 5.1). We mention that this result was proved by Mikosch (1994) under the assumption that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of independent or identically distributed random variables. But a careful analysis of the proof shows that this assumption is unnecessary.

Theorem 3. Let $\left\{a_{n}, n \geqslant 1\right\}$ and $\left\{h_{n}, n \geqslant 1\right\}$ be two sequences of positive real numbers and let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of (not necessarily independent or identically distributed) random variables. Then for $\omega \in \Omega$ and $n \geqslant 1$ such that $h_{n} M_{n}(\omega)<1$ and all $\varepsilon>0$ the following inequality holds:

$$
P^{*}\left\{\left|\sum_{j=1}^{m(n)}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right)\right| \geqslant \varepsilon a_{n}\right\} \leqslant 2 \exp \left\{-\varepsilon \frac{h_{n} a_{n}}{m(n)}+\frac{h_{n}^{2} B_{n}(\omega)}{2\left(1-h_{n} M_{n}(\omega)\right)}\right\}
$$

where

$$
M_{n}(\omega)=\frac{1}{m(n)} \max _{1 \leqslant j \leqslant n}\left|X_{j}(\omega)-\bar{X}_{n}(\omega)\right|
$$

and

$$
B_{n}(\omega)=\frac{1}{n m(n)} \sum_{j=1}^{n}\left(X_{j}(\omega)-\bar{X}_{n}(\omega)\right)^{2}
$$

The following notion is well known.
Definition. We will say that a sequence of random variables $\left\{X_{n}, n \geqslant 1\right\}$ is stochastically dominated by a random variable X, if there exists a constant $C>0$ such that

$$
P\left\{\left|X_{n}\right|>t\right\} \leqslant C P\{|X|>t\}
$$

for all $t \geqslant 0$ and all $n \geqslant 1$.

2. A few technical lemmas

In this section we present a few technical results that we will use in proofs of the main results of the paper. The first lemma is the special case of Adler and Rosalsky (1987) with a_{n} identically 1, hence we omit a proof. Note that there is no independence assumption.

Lemma 1. Let $\phi(t), t>0$, be a continuous function that is positive, strictly increasing and satisfying the condition $\phi(t) \rightarrow \infty$ as $t \rightarrow \infty$. Put $b_{n}=\phi^{-1}(n), n \geqslant 1$, where $\phi^{-1}(t)$ is the inverse function of $\phi(t)$. Let, moreover, $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by a random variable Y. If

$$
\sum_{n=k}^{\infty} b_{n}^{-1}=\mathcal{O}\left(k b_{k}^{-1}\right) \quad \text { and } \quad E \phi(|Y|)<\infty
$$

then

$$
\frac{1}{b_{n}} \sum_{j=1}^{n} Y_{j} \rightarrow 0 \text { a.s. }
$$

The second lemma in this section deals with convergence of maximums of random variables. Again, no assumption of independence is made.

Lemma 2. Let $\psi(t), t \geqslant 0$ be an increasing function and let $\left\{b_{n}, n \geqslant 1\right\}$ be a sequence of positive numbers such that $b_{n}=\psi^{-1}(n), n \geqslant 1$, where $\psi^{-1}(t)$ is the inverse function of $\psi(t)$. Let, moreover, $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of positive random variables stochastically dominated by a random variable X such that $E \psi(C X)<\infty$ for all $C>0$. Then

$$
\frac{1}{b_{n}} \max _{1 \leqslant j \leqslant n} X_{j} \rightarrow 0 \text { a.s. }
$$

Proof. As we already mentioned in the proof of Lemma 1, the assumptions

$$
\sum_{n=1}^{\infty} P\left\{X_{n}>\varepsilon b_{n}\right\}<\infty
$$

for any $\varepsilon>0$, and

$$
E \psi\left(\frac{X}{\varepsilon}\right)<\infty
$$

are equivalent. Then by the Borel-Cantelli lemma $X_{n} / b_{n} \rightarrow 0$ a.s. For arbitrary $n \geqslant k \geqslant 2$,

$$
\begin{aligned}
& \frac{1}{b_{n}} \max _{1 \leqslant j \leqslant n} X_{j} \leqslant \frac{1}{b_{n}} \max _{1 \leqslant j \leqslant k-1} X_{j}+\frac{1}{b_{n}} \max _{k \leqslant j \leqslant n} X_{j} \\
& \quad \leqslant \frac{1}{b_{n}} \max _{1 \leqslant j \leqslant k-1} X_{j}+\max _{k \leqslant j \leqslant n} X_{j} / b_{j} \quad\left(\text { since }\left\{b_{n}, n \geqslant 1\right\} \text { is nondecreasing }\right) \\
& \quad \leqslant \frac{1}{b_{n}} \max _{1 \leqslant j \leqslant k-1} X_{j}+\sup _{j \geqslant k} X_{j} / b_{j} \rightarrow 0
\end{aligned}
$$

as first $n \rightarrow \infty$ and then $k \rightarrow \infty$.
Unfortunately, it is not possible to find the inverse function to the function $\phi(t)=t^{1 / \beta} / \log ^{\gamma} t, t>0, \beta>0$, and $\gamma>0$ in the closed form. But the following lemma gives a good "approximation" to the inverse function.
Lemma 3. Let $\phi(t)=t^{1 / \beta} \log ^{-\gamma / \beta} t$ and $\psi(t)=t^{\beta} \log ^{\gamma} t, t \geqslant e, \beta>0$, and $0<\gamma<e$. Then for any $\varepsilon>0$ and for all sufficiently large t

$$
\beta^{-\gamma}(1-\varepsilon) t \leqslant \psi(\phi(t)) \leqslant \beta^{-\gamma} t .
$$

Proof. Mention that

$$
\psi(\phi(t))=\frac{t}{\beta^{\gamma}}\left(1-\gamma \frac{\log \log t}{\log t}\right)^{\gamma}
$$

and

$$
\frac{\log \log t}{\log t} \downarrow 0
$$

for $t \geqslant e^{e}$, which can be established by the differentiation.
The main idea of Lemma 3 is that for a positive random variable Y, the assumptions $E \phi^{-1}(Y)<\infty$ and $E \psi(Y)<\infty$ are equivalent.
Lemma 4. Let $\beta>1$ and $b_{n}=n^{\beta} \log ^{-2} n, n \geqslant 2$, then

$$
\sum_{j=n}^{\infty} b_{j}^{-1}=\mathcal{O}\left(n b_{n}^{-1}\right)
$$

Proof. Really,

$$
\begin{aligned}
\sum_{j=n}^{\infty} \frac{1}{b_{j}} & =\sum_{j=n}^{\infty} \frac{\log ^{2} j}{j^{\beta}}=\sum_{m=1}^{\infty} \sum_{k=n m}^{n(m+1)-1} \frac{\log ^{2} k}{k^{\beta}} \\
& \leqslant \sum_{m=1}^{\infty} \frac{n \log ^{2}(m n)}{(n m)^{\beta}} \quad\left(\text { since the sequence }\left\{\frac{\log ^{2} k}{k^{\beta}}, k \geqslant e^{2 / \beta}\right\} \text { is strictly decreasing }\right) \\
& \leqslant \frac{2 n \log ^{2} n}{n^{\beta}} \sum_{m=1}^{\infty} \frac{1+\log ^{2} m / \log ^{2} 2}{m^{\beta}}=C \frac{n \frac{n \log ^{2} n}{n^{\beta}} \quad(\text { since } \beta>1)}{} \\
& =C \frac{n}{b_{n}} .
\end{aligned}
$$

3. Main results

With the preliminaries accounted for, we can formulate and prove the main result of the paper, that is the asymptotic probability of deviations for the bootstrap of the mean. We mention that there is no independence and identical distribution assumption on the original sequence of random variables $\left\{X_{n}, n \geqslant 1\right\}$.

Theorem 4. Let $\psi(t), t \geqslant 0$ be an increasing function such that

$$
\begin{equation*}
\sum_{j=n}^{\infty} \frac{1}{\left(\psi^{-1}(j)\right)^{2}}=\mathcal{O}\left(\frac{n}{\left(\psi^{-1}(n)\right)^{2}}\right), \quad n \geqslant 1 \tag{*}
\end{equation*}
$$

where $\psi^{-1}(t)$ is the inverse function of $\psi(t)$. Let, moreover, $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by a random variable X such that $E \psi(C|X|)<\infty$ for all $C>0$ and $\left\{a_{n}, n \geqslant 1\right\}$ be a sequence of positive constants. Then for almost every $\omega \in \Omega$, any $\varepsilon>0$, and any real number r

$$
P^{*}\left\{\left|\sum_{j=1}^{m(n)}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right)\right| \geqslant \varepsilon a_{n}\right\}=\mathcal{O}\left(\exp \left\{-r \frac{a_{n}}{\psi^{-1}(n)}+\frac{m(n)}{n} \mathrm{o}(1)\right\}\right)
$$

Proof. Fix any constants r and $\varepsilon>0$ and let $h_{n}=r m(n) / \varepsilon \psi^{-1}(n)$. The fact that $h_{n} M_{n} \leqslant(r / \varepsilon)\left(1 / \psi^{-1}(n)\right) \max _{1 \leqslant j \leqslant n}\left|X_{j}\right| \rightarrow 0$ a.s. follows directly from Lemma 2.

Next, in Lemma 1 consider $Y_{j}=X_{j}^{2}, Y=X^{2}$, and $\phi(t)=\psi(\sqrt{t})$. Then $\phi^{-1}(n)=\left(\psi^{-1}(n)\right)^{2}$ and $E \phi(Y)=E \psi(|X|)<\infty$. By Lemma 1

$$
h_{n}^{2} B_{n}=\frac{r^{2}}{\varepsilon^{2}} \frac{m(n)}{n} \frac{1}{\left(\psi^{-1}(n)\right)^{2}} \sum_{j=1}^{n} X_{j}^{2}=\frac{m(n)}{n} \mathrm{o}(1) \text { a.s. }
$$

Hence,

$$
\frac{h_{n}^{2} B_{n}}{2\left(1-h_{n} M_{n}\right)}=\frac{m(n)}{n} \mathrm{o}(1) \text { a.s. }
$$

We also mention that

$$
\varepsilon \frac{h_{n} a_{n}}{m(n)}=r \frac{a_{n}}{\psi^{-1}(n)} .
$$

Now the result follows directly from Theorem 3.
Remark 2. The conclusion of Theorem 4 is of course stronger the larger r is taken. The constant r does not play a role in any assumptions and it can be taken arbitrarily large.

Now we can derive different results on asymptotic probability of deviations for the bootstrap of the mean from the sample mean using different moment assumptions.
Corollary 1. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by a random variable X and $0<\alpha<2$. If

$$
E|X|^{\alpha}<\infty
$$

then for almost every $\omega \in \Omega$

$$
P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{n}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right)\right| \geqslant \varepsilon\right\}=\mathrm{o}(1)
$$

that is,

$$
\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{n}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right) \rightarrow 0 \quad \text { in probability } .
$$

Proof. Let $\psi(t)=t^{\alpha}$, then $\psi^{-1}(n)=n^{1 / \alpha}$. The relation $\left(^{*}\right)$ holds trivially since $2 / \alpha>1$. If we take $a_{n}=n^{1 / \alpha}$ and $m(n)=n$, then according to Theorem 4 for any $\varepsilon>0$ and any $r>0$ and for all sufficiently big n

$$
P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{n} \hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right| \geqslant \varepsilon\right\} \leqslant C \exp \{-r\}
$$

that is,

$$
\frac{1}{n^{1 / \alpha}} \sum_{j=1}^{n}\left(\hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right) \rightarrow 0 \quad \text { in probability. }
$$

Corollary 2. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by a random variable X and $0<\alpha<2$. If

$$
\left.E|X|^{\alpha}|\log | X\right|^{\alpha}<\infty
$$

then for every real number r, every $\varepsilon>0$, and almost every $\omega \in \Omega$

$$
P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{n} \hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right| \geqslant \varepsilon\right\}=\mathcal{O}\left(n^{-r}\right)
$$

Proof. Let $\psi(t)=t^{\alpha} \log ^{\alpha} t, t \geqslant 1$, then according to Lemma 3 the sequence $\psi^{-1}(n)$ is equivalent to $n^{1 / \alpha} / \log n, n \geqslant 2$. The relation (*) holds by Lemma 4.

For fixed $r, \varepsilon>0, m(n)=n$, and $a_{n}=n^{1 / \alpha}$, applying Theorem 4 we obtain the result.
Remark 3. Theorem 2 easily follows from Corollary 2. It is sufficient to take for any constant q from Theorem 2, the constant $r=q+2$ and apply Corollary 2.

Corollary 3. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by a random variable X and $0<\alpha<2$. If

$$
E|X|^{\delta}<\infty
$$

for some $\alpha<\delta<2$, then for every $r, \varepsilon>0$ and almost every $\omega \in \Omega$

$$
P^{*}\left\{\frac{1}{n^{1 / \alpha}}\left|\sum_{j=1}^{n} \hat{X}_{n, j}^{(\omega)}-\bar{X}_{n}(\omega)\right| \geqslant \varepsilon\right\}=\mathcal{O}\left(\exp \left\{-r n^{1 / \alpha-1 / \delta}\right\}\right)
$$

Proof. Let $\psi(t)=t^{\delta}, t>0$, then $\psi^{-1}(n)=n^{1 / \delta}$. The relation (*) holds trivially since $2 / \delta>1$. For fixed $r, \varepsilon>0, m(n)=n$, and $a_{n}=n^{1 / \alpha}$, applying Theorem 4 we obtain the result.

Acknowledgements

We would like to thank the referee for a careful reading of this paper and for helpful comments.

References

Adler, A., Rosalsky, A., 1987. Some general strong laws for weighted sums of stochastically dominated random variables. Stochastic Anal. Appl. 5, 1-16.
Arenal-Gutiérrez, E., Matrán, C., Cuesta-Albertos, J.A., 1996. On the unconditional strong law of large numbers for the bootstrap mean. Statist. Probab. Lett. 27, 49-60.
Athreya, K.B., 1983. Strong law for the bootstrap. Statist. Probab. Lett. 1, 147-150.
Csörgő, S., 1992. On the law of large numbers for the bootstrap mean. Statist. Probab. Lett. 14, 1-7.

Csörgő, S., Rosalsky, A., 2003. A survey of limit laws for bootstrapped sums. Internat. J. Math. Math. Sci. 45, 2835-2861.
Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
$\mathrm{Hu}, \mathrm{T} .-\mathrm{C} ., 1991$. Strong consistencies of the bootsrap moments. Internat. J. Math. Math. Sci. 4, 797-802.
Li, D., Rosalsky, A., Ahmed, S.E., 1999. Complete convergence of bootstrapped means and moments of the supremum of normed bootstrapped sums. Stochastic Anal. Appl. 17, 799-814.
Mikosch, T., 1994. Almost sure convergence of bootstrapped means and U-statistics. J. Statist. Plann. Inference 41, 1-19.

[^0]: *Corresponding author. Tel.: + 13065854771 ; fax: + 13065854020.
 E-mail address: andrei@math.uregina.ca (A. Volodin).
 ${ }^{1}$ The research of T.-C. Hu has been partially supported by the Grant NSC93-2118-M-007-003.
 ${ }^{2}$ The research of M. Ordóñez Cabrera has been partially supported by DGICYT Grant BFM2000-0344-C02-01 and Junta de Andalucia FQM 127.
 ${ }^{3}$ The research of A. Volodin has been partially supported by the National Science and Engineering Research Council of Canada.

