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ABSTRACT  A general statement of the interval estimation problem of two 

proportions ratio according to data from two independent samples is considered.  Each 

sample may be obtained in the framework of direct or inverse binomial sampling.  Five 

asymptotic confidence intervals are constructed in accordance with different types of 

sampling schemes.  Main probability characteristics of intervals are investigated by the 

Monte Carlo method: coverage probability, median, expectation and standard deviation 

of intervals length.  The results of the simulations are presented in tables and some 

recommendations for an application of each of the intervals obtained is presented.  

Sufficiently complete review of the literature for the problem is also presented. 
 

Keywords Confidence limits; Ration of binomial proportions; Inverse binomial sampling; 

Asymptotic confidence limits.  
  
 

1. Introduction 
 

Generally speaking, the problem we are solving can be formulated in the following way.  

Let 1 2, ,X X   and 1 2, ,Y Y   be two independent Bernoulli sequences with probabilities of 

success 1p  and 2p  respectively.  Observations are done in sequential schemes of sam- 

plings with Markov’s stopping times 1  and 2 .  According to the results of the observations 
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X .�1/ D .X1; : : : ; X�1
/ and Y .�2/ D .Y1; : : : ; Y�2

/ it is required to construct a confidence

interval for the parametric function � D p1=p2:

Up to our knowledge, this statistical problem has been solved only for schemes of sampling

with a fixed number of observations �i D ni ; i D 1; 2, while an unbiased estimation of odds

ratio with inverse binomial sampling was used in Roberts (1993).

A complexity of the problem stated can be explained by two reasons. The first is the

absence of uniformly most powerful test for hypothesis testing � D �0 with one-sided or two-

sided alternative in the case of an arbitrary hypothetical value �0. As it is known (see, for

example Lehmann (1984), Section 4.5), the uniformly most powerful unbiased test exists for

the values of the cross-product ratio � D p 1.1 � p2/=p2.1 � p1/, but this is not what we

need. Hence, it seems to be impossible to use the standard method of uniformly most accurate

confidence boundaries construction based on an acceptance region of the corresponding test,

and other tests should be applied or the method of pivot functions with an additional estimation

of the nuisance parameter should be used.

The second, but not less important difficulty that precludes from the pivot functions with

good accuracy properties construction, is the absence of an unbiased estimation for the paramet-

ric function 1=p for Bernoulli trials with the fixed sample size n (see Lehmann (1998), Chapter

2, Section 1, Example 1.2; general theory of unbiased estimation is presented in the monograph

Voinov and Nikulin (1993)). But if the inverse, not direct binomial sampling method is used,

then such unbiased estimation exists and this is the starting point for our investigation on the

confidence limits construction for a ratio of probabilities of success.

Now we provide a brief discussion of the literature pertaining to this subject in order to

compare our results with already known.

The first easily computed methods of confidence estimation � have been suggested Noether

(1957) and Guttman (1958). A review of these early methods may be found in Sheps (1959).

Methods of confidence estimation of the ratio of proportions as a diagnostic test that can detect

a disease, are used in McNeil et al. (1975).

Next, some methods based on the corresponding tests for significance have been developed.

For example, Thomas et al. (1977) suggests to apply the method based on fixed marginals in

the two-by-two tables for confidence interval construction. Santher et al. (1980) develops and

generalizes this method and suggested three related exact methods for finding such intervals.

Katz et al. (1978) suggests three methods of lower confidence limit for � , and the limits are

defined as solutions of some equations. Numerical comparison shows that the method in which

the logarithmic transformation is applied to the ratio of estimates of probabilities is preferential.

Some modifications of these methods, that take their origin in Fiellers method, are discussed in

Bailey (1987).

Santher et al. (1980) derives exact intervals for the risk ratio from Cornfield’s (1956)

confidence interval for the odds ratio.
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Koopman (1984), and Miettinen and Nurminen (1985) proposed methods based on asymp-

totic likelihood for hypothesis � D �0 testing with the alternative � ¤ �0. In Koopman (1984)

this method compared with the one recommended by Katz et all (1978).

All the results until the end of 80s were summarized in Gart and Nam (1988). In this

paper they provide a comprehensive survey of various approximation methods of confidence

limits constructions for the ratio of probabilities based on the properties of goodness of fit with

Pearson’s chi-square test, invariance, universality of an application for all observations and

computational simplicity. Also, asymptotic methods were improved by taking into account the

asymptotic asymmetry of statistics (see also Gart and Nam (1990)). The results obtained are

extended for the case of estimating the common ratio in a series of two-by-two tables, which was

considered before in Gart (1985). Extensive numerical illustrations are provided, which allow

to compare accuracy properties of the methods of interval estimation of probabilities ratio.

Instead of iterative algorithms for calculating the approximate confidence intervals that have

been provided by Koopman (1984), Gart and Nam (1988a), Nam (1995) gives the analytical

solutions for upper and lower confidence limits in closed form.

For an interval estimator construction, Bedrick (1987) used the special power divergent

family of statistics. Intervals based on inverting the Pearson, likelihood-ratio, and Freeman-

Tukey statistics are included in this family. Asymptotic efficiency, coverage probability, and

expected interval length are investigated. Comparisons of methods are provided by numerical

examples.

The bootstrap method of a confidence interval construction for � is suggested in Kinsella

(1987).

Coe and Tamhane (1993) provided a method for small sample confidence intervals con-

struction for the difference of probabilities, based on an extension of known Sterne’s method

for constructing small sample confidence intervals for a single success probability. Modifica-

tions of the algorithm for ratio probabilities are also indicated.

Nam and Blackwelder (2002) developed a superior alternative to the Walds interval and

gave corresponding sample size formulas. Bonett and Price (2006) proposed alternatives to the

Nam-Blackwelder confidence interval based on combining two Wilson score intervals. Two

sample size formulas are derived to approximate the sample size required to achieve an interval

estimate with desired confidence level and length.

Extensive numerical illustrations for comparison of exact and asymptotic methods for �

confidence intervals constructions are presented in the thesis by Mukhopadhyay (2003).

We construct asymptotic confidence intervals for a few schemes of direct and inverse sam-

pling and illustrate their characteristics by the results of statistical modeling (see Tables). In

each cell of tables the following characteristics are presented: actual confidence level (the nom-

inal confidence level is chosen to be 0.095), median, expectation, and standard deviation of the

length of a corresponding confidence interval. For each interval 10 000 random numbers with
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Bernoulli and/or Negative Binomial distributions were generated with parameters (probabilities

of success) p2 � p1 .D 0:1 .0:1/ .0:9// . The tables presented contain only a part of the results

for the probability values 0:1 .0:2/ .0:9/ and not for all values of sample sizes n and m, but

the conclusions (see the last section) are made according to all obtained results of statistical

modeling.

2. Confidence Limits with Using Direct and Inverse Binomial Sampling

Methods

Sufficiently simple method of asymptotic confidence limits construction for the ratio of

probabilities � D p1=p2 exists in the case when the stopping moment for observations from

the Bernoulli sequence with success probability p1 are priory fixed (�1 D n), that is, the ob-

servations are done in the framework of a direct binomial sampling, while observations from

the sequence with success probability p2 are done as an inverse binomial sampling, that is, the

stopping time � is defined by the number of the observation that results in achieving m .� 1/

successes.

The likelihood function of the random samples
�

X .n/; Y .�/
�

depends on the components

of these samples only through the values of complete sufficient statistics
�Pn

1 Xk; �
�

. The

distribution of the statistics T D
Pn

kD1 Xk follows binomial law B.n; p1/, and the distribution

of � follows Pascal law P.m; p2/. It is well known, the statistic Xn D T=n has the expected

value �1 D p1, variance �2
1 D p1.1 � p1/=n, and it is asymptotically .n ! 1/ normal

with parameters .�1; �2
1 /. Statistic Y m D �=m has the expected value �2 D 1=p2, variance

�2
2 D .1 � p2/=mp2

2, and it is asymptotically .m ! 1/ normal with parameters .�2; �2
2 /.

Hence (see Lehmann (1998), Chapter 2, Section 1), O�n;m D XnY m is an unbiased estima-

tion of probabilities ratio � such that uniformly by all values of p1; p2 it minimizes any risk

function with convex loss function and it is asymptotically .n; m ! 1/ normal with mean

� D � and variance

�2 D p1.1 � p1/

p2
2n

C p2
1.1 � p2/

p2
2m

D �

�

p�1
2 � �

n
C � � p1

m

�

: .1/

The last statement immediately follows from the following easy to prove lemma.

Lemma 1 Let Xn be asymptotically .n ! 1/ normal .�1; �2
1 =n/ and Ym be asymptotically

.m ! 1/ normal .�2; �2
2 =m; /, then Xn � Ym is asymptotically .n; m ! 1/ normal with

parameters � D �1�2 and �2 D �2
2�2

1 =n C �2
1�2

2 =m.

Proof. Introduce a normalized random variable

Zn;m D Xn � �1

�1

p
n � Ym � �2

�2

p
m;
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which under simultaneous limits n and m to infinity has a nondegenerate distribution. Then

Xn � Ym D Zn;m � �1�2p
nm

C Xn �2 C Ym �1 � �1 �2:

Hence, by Slutsky’s theorem, the asymptotic distribution of Xn � Ym coincides with asymptotic

distribution of Xn �2 C Ym �1 � �1 �2. �

The results obtained, allows us to the state the following theorem.

Theorem 1 If n; m ! 1, then an asymptotic .1 � ˛/-confidence region (interval) for the

parametric function � as defined by the inequality

ˇ

ˇ

ˇ � � O�n;m

ˇ

ˇ

ˇ � ˆ�1
�

1 � ˛

2

�

v

u

u

t�

 

Y m � �

n
C � � Xn

m

!

: .2/

The interval with bounds

O�n;m ˙ ˆ�1
�

1 � ˛

2

�

v

u

u

tXnY m

 

Y m.1 � Xn/

n
C Xn.Y m � 1/

m

!

; .3/

is an asymptotically .1 � ˛/-confidence interval for � .

Proof. The statements follow from the asymptotic normality of the estimate O�n;m. If in the right

hand side of formula (1) for the asymptotic variance of the estimate we change p1 and p�1
2 on

their consistent estimates Xn and Y m respectively, then we obtain the asymptotically confident

region (2). If additionally in (1) we change � on its estimate O�n;m, then we obtain the confident

interval (3). �

Note that the left and right bounds of interval (3) are the asymptotically lower and upper

.1 � ˛=2/-confidence bounds for the parametric function � .

The important part of the suggested plan realization of the estimate of � is the choice of

the number m. The (random) sample size for the second sample depends on this number. If

a statistician could obtain the same size of sample n which she had in the first sample and

moreover has some prior knowledge of the type p2 > p1, then the following sampling plan

for the second stage of the statistical experiment can be suggested. Repeat observations until

the same number of successes as in the first experiment, that is set m D T . Of course, we

consider only the case when the value of T is greater than zero. Then for the estimate of 1=p2

it is natural to consider the statistics Y T D �=T , where the conditional distribution of � is

the Pascal distribution P.T; p2/ and the unconditional distribution is obtained by taking the

expectation of this distribution by the truncated at zero Binomial distribution T . The estimate

of the parameter � is O�n D �=n.
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Table 1 (conf. int. (3))

Lemma 2 If n ! 1, then the estimate O�n is asymptotically normal with the mean � D � and

variance � 2 D �
�

2p�1
2 � � � 1

�

=n:

Proof. The characteristic function of Pascal’s distribution P.m; p2/ (the distribution of � given

T D m) is 'm.t/ D � m.t/, where

�.t/ D p2 eit

1 � .1 � p2/ eit
:

Under the assumption that T has truncated at zero binomial distribution, the characteristic func-

tion of the unconditional distribution of � takes the form

'.t/ D 1

1 � .1 � p1/ n
�

n
X

iD1

 

n

i

!

Œ p1 �.t/ � i .1 � p1/ n�i

D Œ p1 �.t/ C .1 � p1/ � n � .1 � p1/ n

1 � .1 � p1/ n
:

�

The statement of the lemma follows now from the Taylor expansion of the function '.t/.

The lemma immediately implies the following result.

Theorem 2 If n ! 1, the asymptotic .1 � ˛/-confidence interval for the parametric function

� is defined by the inequality

ˇ

ˇ

ˇ � � O�n

ˇ

ˇ

ˇ � ˆ�1
�

1 � ˛

2

�

r

�

n

�

2Y T � � � 1
�

: .4/
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The interval bounded by the points

O�n ˙ ˆ�1
�

1 � ˛

2

�

s

O�n

n

�

2Y T � O�n � 1
�

; .5/

Is the asymptotically .1 � ˛/-confidence interval for � .

Characteristics of this interval are presented in Table 2.

Table 2 (Confidence interval (5))

3. Confidence Limits with Using Only Direct Binomial Sampling

Consider now the standard situation when a statistician has in his hands only the numbers

of success

nXn D
n
X

1

Xi ; mY m D
m
X

1

Xi

for two binomial experiments B.n; p1/ and B.m; p2/ with priory fixed sample sizes n and m.

Initially for such type of data, asymptotic confidence intervals were constructed on the bases

of the statistic if sample means ratio Xn=Y m, that is, for 1=p2, a biased estimation was ex-

plored. Moreover, a problem with its irregular behaviour under the absence of successes in

trials B.m; p2/ appear. As it has been mentioned in introduction, in this case there is no unbi-

ased estimation of the parametric function 1=p2. But it is possible to construct an estimation of

this function that has exponentially small for m ! 1 value of a bias.
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Let X1; : : : ; Xn be a sample in Bernoulli scheme with success probability p, and T D
Pn

1 Xi . For a construction of an estimate O�n of the parametric function � D 1=p, we apply the

statistic �, which equals to the number of the last trial with X� D 1. Then, by the analogy with

the inverse binomial sampling, it is natural to suggest the statistic O�n D �=T as the estimate of

� . But the value of � in our case is unknown, so it is better to use the projection ��

n D ��

n .T / D
Ef O�n j T g of this statistic on the sufficient statistic T . As it is known, (see Lehmann (1998),

Chapter 2, Section 1), a projection does not cause an increase of the risk if the loss function is

convex.

Lemma 3 The projected estimator has the following representation ��

n D .n C 1/=.T C 1/ and

its mean value is

E ��

n .T / D 1

p

�

1 � .1 � p/ nC1
�

:

Proof. The joint distribution of statistics � and T is defined by the probabilities

pr. � D k; T D t / D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; if k D 0; t � 1;

.1 � p/ n; if k D 0; t D 0;

�

k�1

t�1

�

p t.1 � p/ n�t ; if t D 1; : : : ; n; k D t; : : : ; n:

The marginal distribution of statistic T is

pr. T D t / D
 

n

t

!

p t.1 � p/n�t ; t D 0; 1; : : : ; n;

then the conditional distribution

pr. � D k j T D t / D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; if k D 0; t � 1;

1; if k D 0; t D 0;

�

k�1

t�1

�

=
�

n

t

�

; if t D 1; : : : ; n; k D t; : : : ; n:

All further calculations for mean values are trivial, if we use the well known combinatorial

formula
N
X

kD1

 

n C k

n

!

D
 

n C N C 1

n C 1

!

:

�

It follows from the lemma proved above that for an estimate of the parametric function

� D p1=p2, it is appropriate to take the statistic

O�n;m D Xn .m C 1/

mY m C 1
;

with mean value

E O�n;m D �
�

1 � .1 � p2/ mC1
�

:
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The next theorem provides two kinds of asymptotic confidence intervals for � .

Theorem 3 If n; m ! 1, then an asymptotic .1 � ˛/-confident region (interval) for the para-

metric function � is defined by the inequality

ˇ

ˇ

ˇ
� � O�n;m

ˇ

ˇ

ˇ
� ˆ�1

�

1 � ˛

2

�

v

u

u

t�

 

.m C 1/.1 � Xn/

n.mY m C 1/
C �

.m C 1/.1 � Y m/

m.mY m C 1/

!

: .6/

The interval with bounds

O�n;m ˙ ˆ�1
�

1 � ˛

2

�

v

u

u

t O�n;m

 

.m C 1/.1 � Xn/

n.mY m C 1/
C �

.m C 1/.1 � Y m/

m.mY m C 1/

!

; .7/

is an asymptotically .1 � ˛/-confident interval for � .

Proof. By the analogy with the proof of Theorem 1, the current proof follows from the following

asymptotic representation (standard technique of asymptotic normality parameters’ calculations

for a ratio of two asymptotically normal estimates is used):

O�n;m D Xn

p2

� 1

p2

"

XY

r

p1p2.1 � p1/.1 � p2/

nm
C p1.Y m � p2/ C Op2

�

1

m2

�

#

;

where

X D Xn � p1

p1.1 � p1/

p
n; Y D Y m � p2

p2.1 � p2/

p
m :

�

Table 3 (Confidence interval (7))
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Therefore, the confidence interval constructed above is asymptotically equivalent to the

interval based on the statistic Xn=Y m, but the problem that appears when the denominator

of the estimate is zero with a positive probability is completely solved, and the estimate with

smaller bias is explored. An interested reader may compare with a solution of this problem in

the paper Cho (2007); see the beginning of Section 2.)

4. Confidence Limits with Using Only Inverse Binomial Sampling

For the case when both samples are obtained in the schemes P.m i ; p i/; i D 1; 2 of the

inverse binomial sampling, there exists an unbiased estimate of � with the uniformly minimal

risk for any loss function. Really, for the parametric function 1=p2 we have the unbiased esti-

mate � 2=m 2, and for p1 under the scheme of inverse sampling for m1 � 2 there also exists the

unbiased estimate (see Guttman, I. (1958)) Op1 D .m1 � 1/=.�1 � 1/. Therefore, the optimal

unbiased estimate of � D p1=p2 is

O�n;m D � 2 .m1 � 1/

.�1 � 1/ m 2

:

We have that E� i=m i D 1=p i ; var.�/ i=m i D .1 � p i/=m i p 2
i ; i D 1; 2, and by

the same method of asymptotic analysis for a ratio of two asymptotically normal estimates that

we explored in the previous section, we obtain the following theorem.

Theorem 5 if m i ! 1; i D 1; 2, then the interval bounded by the points

O�n;m ˙ ˆ�1
�

1 � ˛

2

�

s

O�n;m

� Op1 .1 � Op2/

m 2

C O�n;m

1 � Op1

m 1

�

; .8/

where Op i D .m i � 1/=.� i � 1/; i D 1; 2 ; is an asymptotically .1 � ˛/-confident interval for

� .

5. Comparative Analysis of Methods

As it was mentioned in the introduction, we provide more detailed analysis of charac-

teristics of the confidence intervals obtained in the paper. For the direct binomial sampling

the sample sizes are chosen to be n D 30; 50; 100 for all intervals, except (5), where n D
30; 50; 70; 100. For the inverse binomial sampling, in order to obtain a correct comparison

of intervals’ characteristics, sampling stopped at m D np2 successes, because in this case

E � D n. For each fixed values of n; m p1 and p2.� p1/ a table contains the blocks, in which

the following characteristics are provided (from top to bottom): coverage probabilities, length

median, expected value, and standard deviation for the confidence interval obtained from the

formula with the number presented at the bottom of the table.
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Table 4 (Confidence interval (8))

In order to estimate the accuracy of a confidence interval characteristics’ calculations, each

table was reproduced 10 times. For all cases and for all characteristics, we observed a difference

only in the third digit after the decimal point. Hence a calculation error should not exceed 0.01.

We start with analysis of the modeling results (see Table 3) for the confidence interval (7),

which is a modification of the classical interval with only direct sampling. After we compare

characteristics of other intervals with this “classical” case.

Assuming that the coverage probability error in comparison with the nominal should not

exceed 0.025, it is possible to make a certain conclusion about strictly low coverage probability

for the values p1 < 0:2 for any values of p2 � p1 and n � 50 (we remind that we have more

detailed tables, based on which we make these conclusions). If p1 becomes bigger than 0.2,

then for all values of p2 and n, the coverage probability does not differ too much from the

nominal level (still lower). The smallest value of the coverage probability always corresponds

to the equal proportions (p1=p2 D 1).

The values of median and expectation of the interval length is practically the same in all

blocks of the table. This expectations that the length of the interval is symmetrically distributed.

Most probably this follows from the application of unbiased estimators for our results. We

interpret the phenomenon of the symmetry of the length distribution as an additional fact that

these intervals should be used. Median, expectation, and standard deviation of the length are

increasing when the ratio p1=p2 increases even in the case when probabilities start to take

values more than 0.5. For each fixed value of p1 (p2, correspondingly), these characteristics
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have a tendency to become smaller when the value of p2 is increasing (p1, correspondingly).

Now it is appropriate to compare the case of only direct binomial sampling with the case

of only inverse binomial sampling for both experiments (see Table 4). Here the area of small

differences with the nominal level shrinks significantly. Except poor performing values p1 <

0:2 for all p2 � p1, the coverage probability is low for p2 � 0:5 and nearly all sample sizes.

The behaviour of all characteristics of the confidence interval (8) is the same as for the interval

(7), that it the tendency of decreasing for the coverage probability when the ratio of probabilities

increasing is preserved, the values of median and expectation for the length of the interval are

not significantly different (symmetry of the length distribution), the behaviour of the median,

expected length, and standard deviation under the changes of probabilities and their ratio is

similar. But this characteristics of the confidence interval (8) length are somehow better than

for the interval (7), hence it is recommended to use this method of interval estimation, but only

in the region of large values of p2 .> 0:5/ and p1 .> 0:3/.

Good properties according to the coverage probability (close to the nominal level) and with

characteristics of the length very similar to the interval (7), possesses the confidence interval (5)

(see Table 2), where the sample size for the second experiment is defined by the number of

successes in the first sample. If we exclude the values p1 < 0:2, then practically acceptable

correspondence to the nominal level starts from the size n D 50 for the first sample. But even

for n D 30, the interval is still possible to use when p1 > 0:3 and all values p2 � p1.

Now we discuss the confidence interval (3) (see Table 2). Configuration of the region of

acceptable values of coverage probabilities is similar to the region for the interval (8), but the

region itself is much wider. As before, we should exclude the values p1 < 0:2, but even for n D
30; m D 30p2 the interval may be recommended for all p2 > 0:3. The same recommendations

are true for all n and m < 100p2 and only for sample sizes n D 30; 50 and m D 100p2, the

recommended region of the interval (3) applications is increased to the region p2 � p1 > 0:1.

Probability characteristics of the interval (3) length are practically the same as characteristics

of interval (7).

Hence, if we order the interval according to the size of the regions of p1 and p2 values

where we could recommend their application, then the order is the following: (5), (3), (7), (8).

If we compare the coverage probabilities of intervals (5) and (7) with known before, then

according to very poor numerical illustrations provided in the previously published papers, they

are better than the intervals based on tests (such as Koopman (1984), for example), but obviously

are inferior to the confidence intervals of a complex construction Gart–Nam (1988) which were

specially designed for small sample sizes.
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