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Abstract: For a sequence of random elements �Tn� n ≥ 1� in a real separable
Banach space � , we study the notion of Tn converging completely to 0 in mean
of order p where p is a positive constant. This notion is stronger than (i) Tn

converging completely to 0 and (ii) Tn converging to 0 in mean of order p.
When � is of Rademacher type p �1 ≤ p ≤ 2�, for a sequence of independent
mean 0 random elements �Vn� n ≥ 1� in � and a sequence of constants bn → �,
conditions are provided under which the normed sum

∑n
j=1 Vj/bn converges

completely to 0 in mean of order p. Moreover, these conditions for
∑n

j=1 Vj/bn
converging completely to 0 in mean of order p are shown to provide an exact
characterization of Rademacher type p Banach spaces. Illustrative examples are
provided.
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1. INTRODUCTION

Let �Tn� n ≥ 1� be a sequence of random elements in a real separable
Banach space � with norm � · �. We recall that Tn is said to converge
completely to 0 (denoted Tn

c→ 0) if

�∑
n=1

P��Tn� > �� < � for all � > 0

and that for p > 0, Tn is said to converge to 0 in mean of order p (denoted

Tn

�p−→ 0) if

E�Tn�p → 0�

In general, the modes of convergence Tn

c→ 0 and Tn

�p−→ 0 are not
comparable. Of course, by the Borel-Cantelli lemma, Tn

c→ 0 ensures that
Tn → 0 almost surely (a.s.).

In this note, we study the following (very strong) convergence
notion. For p > 0, Tn is said to converge completely to 0 in mean of

order p if
∑�

n=1 E�Tn�p < �. This will be denoted by Tn

c��p−→ 0. This
mode of convergence was apparently first investigated by Chow [2] in
the (real-valued) random variable case; our results and his do not entail

each other. Clearly, this mode of convergence implies that Tn

�p−→ 0 and
(by the Markov inequality) Tn

c→ 0. Two examples will be provided in

Section 4 showing that Tn

�p−→ 0 and Tn

c→ 0 do not imply that Tn

c��p−→ 0.
The main results of this paper are Theorems 1 and 2. Theorem 1

provides conditions under which a normed sum of independent random
elements in a real separable Rademacher type p �1 ≤ p ≤ 2� Banach space
converges completely to 0 in mean of order p. (Technical definitions such
as Rademacher type p will be reviewed in Section 2.) An example will
be given in Section 4 showing that Theorem 1 is sharp. In Theorem 2,
it is shown that the implication in Theorem 1 provides an exact
characterization of Rademacher type p Banach spaces.

2. PRELIMINARIES

Some definitions and preliminary results will be presented prior to
establishing the main results.

The expected value or mean of a random element V , denoted EV , is
defined to be the Pettis integral, provided it exists. That is, V has expected
value EV ∈ � if f�EV� = E�f�V�� for every f ∈ �∗ where �∗ denotes the
(dual) space of all continuous linear functionals on � . If E�V� < �, then
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(see, e.g., Taylor [10], p. 40) V has an expected value. But, the expected
value can exist when E�V� = �. For an example, see Taylor [10], p. 41.

Let �Yn� n ≥ 1� be a symmetric Bernoulli sequence; that is, �Yn� n ≥ 1�
is a sequence of independent and identically distributed (i.i.d.) random
variables with P�Y1 = 1� = P�Y1 = −1� = 1/2. Let �� = � × � × � ×
· · · and define

���� =
{
��1� �2� � � � � ∈ �� 	

�∑
n=1

Yn�n converges in probability
}
�

Let 1 ≤ p ≤ 2. Then � is said to be of Rademacher type p if there exists
a constant 0 < C < � such that

E

∥∥∥∥
�∑
n=1

Yn�n

∥∥∥∥
p

≤ C
�∑
n=1

��n�p for all ��1� �2� � � � � ∈ �����

Hoffmann-Jørgensen and Pisier [5] proved for 1 ≤ p ≤ 2 that a real
separable Banach space is of Rademacher type p if and only if there
exists a constant 0 < C < � such that

E

∥∥∥∥
n∑

i=1

Vi

∥∥∥∥
p

≤ C
n∑

i=1

E�Vi�p (1)

for every finite collection �V1� � � � � Vn� of independent mean 0 random
elements.

If a real separable Banach space is of Rademacher type p for some
1 < p ≤ 2, then it is of Rademacher type q for all 1 ≤ q < p. Every
real separable Banach space is of Rademacher type (at least) 1 while
the �p-spaces and 
p-spaces are of Rademacher type 2 ∧ p for p ≥ 1.
Every real separable Hilbert space and real separable finite-dimensional
Banach space is of Rademacher type 2. In particular, the real line R is
of Rademacher type 2.

Lemma 1 (Adler and Rosalsky [1]). Let �bn� n ≥ 1� be a sequence of
positive constants with bpn/n ↑ for some p > 0. Then

�∑
j=n

1
b
p
j

= �
(
n

b
p
n

)

if and only if

lim inf
n→�

b
p
kn

b
p
n

> k for some integer k ≥ 2� (2)

Lemma 2. Let �Vn� n ≥ 1� be a sequence of independent mean 0 random
elements in a real separable Banach space. Then for all p ≥ 1,

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

is nondecreasing� (3)
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Proof. Let �n = ��V1� � � � � Vn�, n ≥ 1. Now it is well known but seems
to have been first observed by Scalora [8] that ��∑n

j=1 Vj���n� n ≥ 1� is
a real submartingale and hence so is (see, e.g., Chow and Teicher [3],
p. 244) ��∑n

j=1 Vj�p��n� n ≥ 1� via convexity and monotonicity of the
function g�x� = xp, 0 ≤ x < �. The conclusion (3) follows immediately.

�

The following result of Hoffmann-Jørgensen and Pisier [5] is a
random element analogue of a classical result of Kolmogorov.

Proposition 1 (Hoffmann-Jørgensen and Pisier [5]). Let 1 ≤ p ≤ 2 and
let � be a real separable Banach space. Then the following statements are
equivalent.

(i) � is of Rademacher type p.
(ii) For every sequence �Vn� n ≥ 1� of independent mean 0 random elements

in � , the condition

�∑
n=1

E�Vn�p
np

< � (4)

implies that the strong law of large numbers (SLLN)∑n
j=1 Vj

n
→ 0 a.s.

obtains.

Proposition 2 (Kuelbs and Zinn [7]). Let �Vn� n ≥ 1� be a sequence of
independent random elements in a real separable Banach space � and
suppose that (4) holds for some 1 ≤ p ≤ 2. Then∑n

j=1 Vj

n
→ 0 a.s. if and only if

∑n
j=1 Vj

n

P→ 0�

Proposition 3 (Etemadi [4]). Let �Vn� n ≥ 1� be a sequence of independent
random elements in a real separable Banach space. Then∑n

j=1 Vj

n
→ 0 a.s.

if and only if∑n
j=1 Vj

n

P→ 0 and
�∑
n=1

1
n
P

{∥∥∥∥
2n∑

j=n+1

Vj

∥∥∥∥ > n�

}
< � for all � > 0�

The next result, also due to Etemadi [4], is a Banach space version
of a famous result of Spitzer [9]. Note that the summands are assumed
to be i.i.d.



Elements in Banach Spaces 27

Proposition 4 (Etemadi [4]). Let �Vn� n ≥ 1� be a sequence of i.i.d.
random elements in a real separable Banach space. Then∑n

j=1 Vj

n
→ 0 a.s.

if and only if

�∑
n=1

1
n
P

{∥∥∥∥
n∑

j=1

Vj

∥∥∥∥ > n�

}
< � for all � > 0� (5)

Finally, a remark about notation is in order. The symbol C denotes
throughout a generic constant �0 < C < ��, which is not necessarily the
same one in each appearance.

3. THE MAIN RESULTS

With the preliminaries accounted for, Theorem 1 may now be established.
The sequence �bn� n ≥ 1� is not assumed to be monotone increasing.

Theorem 1. Let �Vn� n ≥ 1� be a sequence of independent mean 0 random
elements in a real separable Rademacher type p �1≤p≤ 2� Banach space �
and let �bn� n ≥ 1� be a sequence of positive constants with

∑�
n=1 b

−p
n < �.

If

�∑
n=1

��n�E�Vn�p < �� (6)

where ��n� = ∑�
j=n b

−p
j , n ≥ 1, then

∑n
j=1 Vj

bn

c��p−→ 0� (7)

Proof. Set Tn =
∑n

j=1 Vj/bn, n ≥ 1. Then

�∑
n=1

E�Tn�p ≤ C
�∑
n=1

∑n
j=1 E�Vj�p

b
p
n

�by (1)�

= C
�∑
j=1

�∑
n=j

E�Vj�p
b
p
n

= C
�∑
j=1

E�Vj�p��j�

< � �by (6)�� �
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Remark 1. (i) Theorem 1 is new even if � is the real line.

(ii) A perusal of the argument in Theorem 1 reveals that if p = 1,
then the independence hypothesis and the hypothesis that the �Vn� n ≥ 1�
have mean 0 are not needed for the theorem to hold.

While the proof of Theorem 1 was not difficult, we will show
in Theorem 2 that the implication (�6� 
⇒ �7�) indeed completely
characterizes Rademacher type p Banach spaces.

Theorem 2. Let 1 ≤ p ≤ 2 and let � be a real separable Banach space.
Then the following statements are equivalent.

(i) � is of Rademacher type p.

(ii) For every sequence �Vn� n ≥ 1� of independent mean 0 random
elements in � and every sequence �bn� n ≥ 1� of positive constants with∑�

n=1 b
−p
n <�, the condition (6) (where ��n�= ∑�

j=n b
−p
j � n≥ 1) implies (7).

(iii) For every sequence �Vn� n ≥ 1� of independent mean 0 random
elements in � and every sequence �bn� n ≥ 1� of positive constants satisfying

�∑
j=n

1
b
p
j

= �
(
n

b
p
n

)
� (8)

the condition

�∑
n=1

nE�Vn�p
b
p
n

< �

implies (7).

(iv) For every sequence �Vn� n ≥ 1� of independent mean 0 random
elements in � , the condition

�∑
n=1

E�Vn�p
np

< � (9)

implies ∑n
j=1 Vj

n
p+1
p

c��p−→ 0� (10)

Proof. The implication (�i� 
⇒ �ii�) is precisely Theorem 1 whereas the
implications (�ii� 
⇒ �iii�) and (�iii� 
⇒ �iv�) are immediate. It remains
to verify the implication (�iv� 
⇒ �i�). Assume that (iv) holds. Let
�Vn� n ≥ 1� be a sequence of independent mean 0 random elements in �
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such that
∑�

n=1 E�Vn�p/np < �. In view of Proposition 1, it suffices to
verify that ∑n

j=1 Vj

n
→ 0 a.s. (11)

Now (10) holds by
∑�

n=1 E�Vn�p/np < � and (iv) and so

�∑
n=1

1
np+1

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

=
�∑
n=1

E

∥∥∥∥
∑n

j=1 Vj

n
p+1
p

∥∥∥∥
p

< �� (12)

Note that

�∑
m=n

1
mp+1

∼ 1
pnp

� (13)

Thus

E

∥∥∥∥
∑n

j=1 Vj

n

∥∥∥∥
p

= 1
np

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

≤ C
�∑

m=n

1
mp+1

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

�by (13)�

≤ C
�∑

m=n

1
mp+1

E

∥∥∥∥
m∑
j=1

Vj

∥∥∥∥
p

�by Lemma 2�

→ 0 �by (12)��

Then by the Markov inequality
∑n

j=1 Vj/n
P→ 0, and so (11) holds

by Proposition 2, thereby completing the proof of the implication
(�iv�
⇒ �i�). �

Remark 2. (i) If bn ↑, there is a trade-off between the Rademacher type
and the condition (8); the larger is p, the stronger is the condition on
the Banach space � whereas the condition (8) is weaker for larger p. To
see that (8) becomes weaker as p increases, note that if 1 ≤ p1 < p2 ≤ 2,
then

bp2n

�∑
j=n

1
b
p2
j

= bp1n

�∑
j=n

bp2−p1
n

b
p2−p1
j b

p1
j

≤ bp1n

�∑
j=n

1
b
p1
j

�since bj ↑�

and so if (8) holds with p = p1, then (8) also holds with p = p2.

(ii) If bpn/n ↑, it follows from Lemma 1 that (8) is equivalent to the
structurally simpler condition (2).
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(iii) For bn = nr , n ≥ 1 of Marcinkiewicz-Zygmund growth where
r > 1/p, the condition (8) automatically holds. This is easy to verify
directly, but it also follows from Remark 2(ii) with k = 2.

The following corollary follows from Proposition 1 and the
implication (�i� 
⇒ �iv�) of Theorem 2.

Corollary 1. Let �Vn� n ≥ 1� be a sequence of independent mean 0 random
elements in a real separable Rademacher type p �1 ≤ p ≤ 2� Banach space
and suppose that

∑�
n=1 E�Vn�p/np < �. Then

∑n
j=1 Vj

n
→ 0 a.s. and

∑n
j=1 Vj

n
p+1
p

c��p−→ 0� (14)

Note that the second half of (14) is the assertion that

�∑
n=1

1
n
E

∥∥∥∥
∑n

j=1 Vj

n

∥∥∥∥
p

< �

and this implies (5) by the Markov inequality.
The last theorem to be presented shows that the limit law (10)

ensures that the SLLN
∑n

j=1 Vj/n → 0 a.s. holds. We emphasize that we
are not assuming that the Banach space is of Rademacher type p for
some 1<p≤ 2.

Theorem 3. Let �Vn� n ≥ 1� be a sequence of independent random elements
in a real separable Banach space. If (10) holds for some 1 ≤ p ≤ 2, then
the SLLN

∑n
j=1 Vj

n
→ 0 a.s. (15)

obtains.

Proof. Note that (10) is tantamount to

�∑
n=1

1
np+1

E

∥∥∥∥
n∑

j=1

Vj

∥∥∥∥
p

=
�∑
n=1

1
n
E

∥∥∥∥
∑n

j=1 Vj

n

∥∥∥∥
p

< �� (16)

Proceeding as in the proof of Theorem 2, we get from (16) that

∑n
j=1 Vj

n

P→ 0�
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Moreover, it follows from (16) and the Markov inequality that for
arbitrary � > 0

�∑
n=1

1
n
P

{∥∥∥∥
2n∑

j=n+1

Vj

∥∥∥∥ > n�

}

≤ 2
(
4
�

)p �∑
n=1

1
2n

E

∥∥∥∥
∑2n

j=1 Vj

2n

∥∥∥∥
p

+
(
2
�

)p �∑
n=1

1
n
E

∥∥∥∥
∑n

j=1 Vj

n

∥∥∥∥
p

< ��

The conclusion (15) then follows from Proposition 3. �

Remark 3. It follows from the proof of Theorem 3 that its hypotheses
also entail ∑n

j=1 Vj

n

�p−→ 0�

4. SOME INTERESTING EXAMPLES

We close by presenting four illustrative examples. We recall that 
p
(where p ≥ 1) is the real separable Banach space of absolute pth power
summable real sequences v = �vi� i ≥ 1� with norm �v� = �

∑�
i=1 vip�1/p.

It is well known that 
p is of Rademacher type 2 ∧ p and that if 1 ≤ p1 <
p2 ≤ 2, then 
p1 is not of Rademacher type p2. The element of 
p having
1 in its nth position and 0 elsewhere will be denoted by v�n�, n ≥ 1. Define
a sequence �Vn� n ≥ 1� of independent mean 0 random elements in 
p by
requiring the �Vn� n ≥ 1� to be independent with

P�Vn = v�n�� = P�Vn = −v�n�� = 1
2
� n ≥ 1� (17)

This sequence of random elements will be used in Examples 1 and 3.
By Theorem 2, if a real separable Banach space is not of

Rademacher type p where 1 < p ≤ 2, then there exists a sequence of
independent mean 0 random elements for which (9) holds but (10) fails.
Example 1 exhibits such a sequence of random elements in the Banach
space 
1. This example will also demonstrate that, in general, Tn

c→ 0 and

Tn

�p−→ 0 do not ensure that Tn

c��p−→ 0.

Example 1. Let 1 < p ≤ 2 and consider the Banach space 
1 (which is
not of Rademacher type p) and the sequence �Vn� n ≥ 1� of independent
mean 0 random elements in 
1 as in (17). Then (9) holds but

�∑
n=1

E

∥∥∥∥
∑n

j=1 Vj

n
p+1
p

∥∥∥∥
p

=
�∑
n=1

np

np+1
=

�∑
n=1

1
n
= � (18)
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and so (10) fails. Moreover, since for all � > 0 and all large n

P

{∥∥∑n
j=1 Vj

∥∥
n

p+1
p

> �

}
= 0�

it follows that
∑n

j=1 Vj/n
p+1
p

c→ 0. Now by the computation in (18) we
have

E

∥∥∥∥
∑n

j=1 Vj

n
p+1
p

∥∥∥∥
p

= 1
n
→ 0

and so
∑n

j=1 Vj/n
p+1
p

�p−→ 0. Consequently,

Tn

c→ 0 and Tn

�p−→ 0 �
⇒ Tn

c��p−→ 0�

In the previous example, the Banach space under consideration was
not of Rademacher type r for any 1 < r ≤ 2 and we showed for the
sequence of random elements �Tn� n ≥ 1� under consideration that for all
1 < p ≤ 2,

Tn

c→ 0� Tn

�p−→ 0� Tn

c��p�−→ 0� (19)

(It is clear that (19) also holds for all 0 < p ≤ 1.) In the next example,
we exhibit a sequence of random elements �Tn� n ≥ 1� in a Banach space
which is of Rademacher type r for all 1 < r ≤ 2 and such that (19) holds
for all 0 < p ≤ 2.

Example 2. Let � = R which is of Rademacher type r for all 1 ≤ r ≤ 2.
Let �Vn� n ≥ 1� be a symmetric Bernoulli sequence, and set Tn =

∑n
j=1

Vj/n, n ≥ 1. Since EV1 = 0 and EV 2
1 = 1, by the celebrated theorem of

Hsu and Robbins [6] Tn

c→ 0. We also have

ET 2
n =

∑n
j=1 EV

2
j

n2
= 1

n
→ 0

and so Tn

�p−→ 0 for all 0 < p ≤ 2. Now by the Lévy central limit theorem√
nTn

d→ N�0� 1� and since E�
√
nTn�

2 = 1, n ≥ 1, it follows from the
moment convergence theorem (see, e.g., Chow and Teicher [3], p. 277)
that for all 0 < p ≤ 2,

E√nTnp → EZp < �
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where Z denotes a random variable with the N�0� 1� distribution. Thus
for all 0 < p ≤ 2

ETnp ∼
C

np/2
≥ C

n

and so

�∑
n=1

ETnp = ��

Thus for all 0 < p ≤ 2,

Tn

c��p�−→ 0�

The third example shows that Theorem 1 is sharp in that it can fail
if (6) is weakened to

E�Vn�p
�∑
j=n

b
−p
j → 0� (20)

Example 3. Let 1 ≤ p ≤ 2 and consider the Rademacher type p Banach
space 
p and the sequence �Vn� n ≥ 1� of independent mean 0 random
elements in 
p as in (17). Let bn = n2/p, n ≥ 1. Then

∑�
n=1 b

−p
n < �. Now

E�Vn�p
∑�

j=n b
−p
j ∼ n−1 whence (6) fails but (20) holds. Finally, note that

�∑
n=1

E

∥∥∥∥
∑n

j=1 Vj

bn

∥∥∥∥
p

=
�∑
n=1

�n1/p�p

n2
=

�∑
n=1

1
n
= �

and so (7) fails.
The last example shows that the converse of Theorem 3 is not valid

even for a sequence �Vn� n ≥ 1� of independent mean 0 random elements
in a Rademacher type 2 Banach space where E�Vn�2 < � for all n ≥ 1.

Example 4. Let � = R, which is of Rademacher type r for all 1 ≤ r ≤ 2.
Set

a1 = 1� an = n4
n−1∑
i=1

ai� n ≥ 2�

Let �Xn� n ≥ 1� be a sequence of independent random variables and
�An� n ≥ 1� be a sequence of independent events where

P�Xn = an� = P�Xn = −an� =
1
2
� n ≥ 1� P�An� =

1
n2

� n ≥ 1�
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and the sequences �Xn� n ≥ 1� and �IAn
� n ≥ 1� are independent. Set Vn =

XnIAn
, n ≥ 1. Then �Vn� n ≥ 1� is a sequence of independent mean 0

�2 random variables. Note that Vn is equivalent to 0 in the sense of
Khintchine since

∑�
n=1 P�An� < � and so (15) holds. We now verify that

(10) fails for all 1 ≤ p ≤ 2. Note that for all n ≥ 2,

n∑
j=1

Vj =
n−1∑
j=1

XjIAj
+ XnIAn

where

−an

n4
≤

n−1∑
j=1

XjIAj
≤ an

n4
a.s.

Hence for all n ≥ 1 and 1 ≤ p ≤ 2,∣∣∣∣
n∑

j=1

Vj

∣∣∣∣ ≥ an

2
IAn

a.s.

Thus
�∑
n=1

1
np+1

E

∣∣∣∣
n∑

j=1

Vj

∣∣∣∣
p

≥
�∑
n=2

ap
n

np+12p
P�An�

=
�∑
n=2

n4p
(∑n−1

i=1 ai

)p
2pnp+3

=
�∑
n=2

n3p−3

2p

( n−1∑
i=1

ai

)p

≥
�∑
n=2

1
2p

( n−1∑
i=1

ai

)p

= �
and so (10) fails.

Remark 4. In view of Theorem 3, Example 4 demonstrates that the
implication (�i� 
⇒ �iv�) in Theorem 2 is a bona fide improvement of
the implication (�i� 
⇒ �ii�) in Proposition 1.
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