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ON THE COMPLETE CONVERGENCE FOR ARRAYS OF

ROWWISE EXTENDED NEGATIVELY DEPENDENT

RANDOM VARIABLES

Dehua Qiu, Pingyan Chen, Rita Giuliano Antonini, and Andrei Volodin

Abstract. A general result for the complete convergence of arrays of
rowwise extended negatively dependent random variables is derived. As
its applications eight corollaries for complete convergence of weighted
sums for arrays of rowwise extended negatively dependent random vari-
ables are given, which extend the corresponding known results for inde-
pendent case.

1. Introduction

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins ([5]) as follows. A sequence {Un, n ≥ 1} of
random variables converges completely to the constant θ if

∞
∑

n=1

P{|Un − θ| > ǫ} <∞ for all ǫ > 0.

Moreover, they proved that the sequence of arithmetic means of independent
identically distribution (i.i.d.) random variables converges completely to the
expected value if the variance of the summands is finite. This result has been
generalized and extended in several directions, see Gut ([3], [4]), Hu et al. ([7],
[8]), Chen et al. ([2]), Sung ([14], [15], [17]), Zarei and Jabbari ([20]), Baek et

al. ([1]). In particular, Sung ([14]) obtained the following two Theorems A and
B.

Theorem A. Let {Xn, n ≥ 1} be a sequence of independent zero-mean random

variables which are stochastically dominated by a random variable X, i.e.,

P (|Xn| > x) ≤ CP (|X | > x) for all x ≥ 0 and n ≥ 1,
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where C is a positive constant. Assume that E|X |γ <∞, where γ = p(t+ β +
1) ≥ 1 and p > 0. Let {bni, i ≥ 1, n ≥ 1} be an array of real numbers satisfying

(1.1) sup
n,i

|bni| <∞,

∞
∑

i=1

|bni|q = O(nβ) for some q < γ.

Assume that
∑∞

i=1 bniXni is finite a.s. for any n ≥ 1.
(i) If 1 ≤ γ < 2, then

(1.2)

∞
∑

n=1

ntP

(

n−1/p

∣

∣

∣

∣

∣

∞
∑

i=1

bniXi

∣

∣

∣

∣

∣

> ε

)

<∞ for all ε > 0.

(ii) If γ ≥ 2, and

(1.3)
∞
∑

i=1

b2ni = O(nα) for some α < 2/p,

then (1.2) holds.

Theorem B. Let {Xn, n ≥ 1} be a sequence of independent zero-mean random

variables which are stochastically dominated by a random variable X satisfying

E|X |γ log(1 + |X |) <∞,

where γ = p(t + β + 1) ≥ 1 and p > 0. Let {bni, i ≥ 1, n ≥ 1} be an array of

real numbers satisfying

(1.4) sup
n,i

|bni| <∞,

∞
∑

i=1

|bni|p(t+β+1) = O(nβ).

Assume that
∑∞

i=1 bniXni is finite a.s. for any n ≥ 1.
(i) If 1 ≤ γ < 2, then (1.2) holds.
(ii) If γ ≥ 2, and {bni, i ≥ 1, n ≥ 1} satisfies (1.3), then (1.2) holds.

Baek et al. ([1]) announced the following complete convergence result.

Theorem C. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise pairwise zero-

mean ND random variables which are stochastically dominated by a random

variable X, i.e.,

P (|Xni| > x) ≤ CP (|X | > x) for all x ≥ 0 and all i ≥ 1 and n ≥ 1,

where C is a positive constant. Assume that t ≥ −1 and p > 0 and that

{ani, i ≥ 1, n ≥ 1} is an array of real numbers satisfying

(1.5) sup
i≥1

|ani| = O(n−µ) for some µ > 0

and

(1.6)

∞
∑

i=1

|ani| = O(nτ ) for some τ ∈ [0, µ).
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(i) If τ + t+ 1 > 0 and there exists some δ > 0 such that (τ/µ) + 1 < δ ≤
2, γ = max{1 + (1 + τ + t)/µ, δ}, and E|X |γ <∞, then

(1.7)

∞
∑

n=1

ntP

(
∣

∣

∣

∣

∣

∞
∑

i=1

aniXni

∣

∣

∣

∣

∣

> ε

)

<∞ for all ε > 0.

(ii) If τ + t+ 1 = 0 and E(|X | log |X |) <∞, then (1.7) holds.

Remark 1. There is a question in the proofs of I∗2 < ∞ of Theorem C(i) in
Baek et al. ([1]). The Rosenthal inequality plays a key role in this proof, but it
is still an open problem to obtain Rosenthal inequality for pairwise negatively
dependent random variables. Clearly Theorem C(i) holds if {Xni, i ≥ 1, n ≥ 1}
is an array of rowwise negatively dependent random variables.

Liu ([11]) introduced the following dependence structure.

Definition 1. Random variables Y1, Y2, . . . are said to be extended negatively

dependent (END) if there exists a constant M > 0 such that for each n ≥ 2,
the following two inequalities hold:

P{Y1 ≤ y1, . . . , Yn ≤ yn} ≤M

n
∏

i=1

P{Yi ≤ yi}

and

P{Y1 > y1, . . . , Yn > yn} ≤M

n
∏

i=1

P{Yi > yi}

for every sequence {y1, . . . , yn} of real numbers.

Random variables {Xni, i ≥ 1, n ≥ 1} are said to be an array of rowwise

END random variables if for each n ≥ 1, {Xni, i ≥ 1} is END.
In the case M = 1 the notion of END random variables reduces to the well-

known notion of so-called negatively dependent (ND) random variables which
was introduced by Lehmann ([10]) (cf. also Joag-Dev and Proschan ([9])). As it
is mentioned in Liu ([11]), the END structure is substantially more comprehen-
sive than the ND structure in that it can reflect not only a negative dependence
structure but also a positive one, to some extent. Liu ([11]) pointed out that
the END random variables can be taken as negatively or positively dependent
and provided some interesting examples to support this idea. Joag-Dev and
Proschan ([9]) also pointed out that negatively associated (NA) random vari-
ables must be ND and ND is not necessarily NA, thus NA random variables
are END. A great numbers of articles for NA random variables have appeared
in literature. But very few papers are written for END random variables. For
example, for END random variables with heavy tails Liu ([11]) obtained the pre-
cise large deviations and Liu ([12]) studied sufficient and necessary conditions
for moderate deviations, and Wang et al. ([19]) studied complete convergence
for weighted sums and arrays of rowwise END.
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In this paper, we obtain a complete convergence for weighted sums of END
random variables under general conditions inspiring by Sung ([15]) and Sung
et al. ([16]). As its applications eight corollaries of the complete convergence
of weighted sums for arrays of rowwise END random variables are given, which
extend and improve Theorems A, B and C for t > −1 and some other known
results.

Throughout this paper, C will represent positive constants which their value
may change from one place to another. For x ≥ 0 the symbol [x] denotes
the greatest integer in x, log x = max{1, lnx}, where lnx denotes the natural
logarithm.

2. Lemmata

In order to prove our main result, we need the following lemmas. The first
lemma was obtained in Liu ([12]).

Lemma 1. Let {Yn, n ≥ 1} be a sequence of END random variables.

1) If {fn, n ≥ 1} is a sequence of monotone increasing (or all monotone

decreasing) functions, then {fn(Yn), n ≥ 1} is a sequence of END random

variables.

2) There exists a constantM such that E(
∏n

j=1 Y
+
j ) ≤M

∏n
j=1 EY

+
j , n ≥ 2,

where EY + = E(max{Y, 0}).
Lemma 2. Let X1, X2, . . . , Xn be END random variables such that

|Xk| ≤ bk, 1 ≤ k ≤ n.

Then for any t > 0,

E exp

(

t
n
∑

k=1

Xk

)

≤M exp

{

t
n
∑

k=1

EXk +
t2

2

n
∑

k=1

etbkEX2
k

}

.

Proof. By Lemma 1 for any t > 0, {exp(tXk), 1 ≤ k ≤ n} is nonnegative END,
thus, we have

E exp

(

t

n
∑

k=1

Xk

)

≤M

n
∏

k=1

EetXk .

Since

EetXk = E

(

1 + tXk +
1

2!
t2X2

k +
1

3!
t3X3

k + · · ·
)

≤ 1 + tEXk +
t2EX2

k

2

(

1 +
tbk
3

+
t2b2k
3 · 4 + · · ·

)

≤ 1 + tEXk +
t2EX2

k

2
etbk

≤ exp

(

tEXk +
t2

2
etbkEX2

k

)

.
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Therefore

E exp

(

t

n
∑

k=1

Xk

)

≤M exp

{

t

n
∑

k=1

EXk +
t2

2

n
∑

k=1

etbkEX2
k

}

.
�

3. Main results

With the preliminaries accounted for, the main theorem can now be pre-
sented.

Theorem 1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise END random

variables, where {kn, n ≥ 1} is a sequence of positive integers. Let {an, n ≥
1} and {dn, n ≥ 1} be sequences of positive constants with limn→∞ dn = 0.
Suppose that

(i)
∑∞

n=1 an
∑kn

i=1 P (|Xni| > ǫ) <∞ for all ε > 0,

(ii)
∑∞

n=1 an

(

∑kn

i=1 P (|Xni| > dn)
)q1

<∞ for some q1 > 0,

(iii) 1
dn

∑kn

i=1E|Xni|2I(|Xni| ≤ dn) → 0 as n→ ∞,

(iv)
∑kn

i=1EXniI(|Xni| ≤ dn) → 0 as n→ ∞,
(v)

∑∞

n=1 an exp(−q2/dn) <∞ for some q2 > 0.

Then

(3.1)

∞
∑

n=1

anP

(
∣

∣

∣

∣

∣

kn
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

<∞ for all ε > 0.

Proof. Let N1 = {n :
∑kn

i=1 P (|Xni| > dn) > 1} and N2 = {n :
∑kn

i=1 P (|Xni| >
dn) ≤ 1}. By (ii),

∑

n∈N1

an <
∑

n∈N1

an

(

kn
∑

i=1

P (|Xni| > dn)

)q1

≤
∞
∑

n=1

an

(

kn
∑

i=1

P (|Xni| > dn)

)q1

<∞.

Note that for any ǫ > 0,

∞
∑

n=1

anP

(∣

∣

∣

∣

∣

kn
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

≤
∑

n∈N1

an +
∑

n∈N2

anP

(∣

∣

∣

∣

∣

kn
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

.

Hence in order to prove (3.1), it is enough to show that

∑

n∈N2

anP

(∣

∣

∣

∣

∣

kn
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

<∞.

So without loss of generality, we assume that

(3.2)

kn
∑

i=1

P (|Xni| > dn) ≤ 1 for all n ≥ 1.
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Define for all ε > 0 and 1 ≤ i ≤ kn, n ≥ 1,

X
(1)
ni = −dnI(Xni < −dn) +XniI(|Xni| ≤ dn) + dnI(Xni > dn),

X
(2)
ni = (Xni + dn)I(Xni <

−ε
3([q1] + 1)

) + (Xni − dn)I(Xni >
ε

3([q1] + 1)
),

X
(3)
ni = Xni −X

(1)
ni −X

(2)
ni .

To prove (3.1), it is enough to prove that

(3.3)

∞
∑

n=1

anP

(∣

∣

∣

∣

∣

kn
∑

i=1

X
(l)
ni

∣

∣

∣

∣

∣

> ε/3

)

<∞, l = 1, 2, 3.

First we prove that (3.3) holds for l = 1. Clearly {X(1)
ni , 1 ≤ i ≤ kn, n ≥ 1} is

an array of rowwise END random variables by Lemma 1. Applying Markov’s

inequality and Lemma 2 to {X(1)
ni , 1 ≤ i ≤ kn, n ≥ 1} for each fixed n ≥ 1 and

t > 0, we have

P

(

kn
∑

i=1

X
(1)
ni > ε/3

)

≤ exp(− tε
3
)E exp(t

kn
∑

i=1

X
(1)
ni )

≤ M exp

{

− tε
3
+ t

kn
∑

i=1

EX
(1)
ni +

t2

2
etdn

kn
∑

i=1

E(X
(1)
ni )

2

}

.

From the definition of X
(1)
ni , we have, by (iv) and (3.2),

∣

∣

∣

∣

∣

kn
∑

i=1

EX
(1)
ni

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

kn
∑

i=1

EXniI(|Xni| ≤ dn)

∣

∣

∣

∣

∣

+ dn

kn
∑

i=1

P (|Xni| > dn) → 0

as n→ ∞. By (iii) and (3.2), we obtain

kn
∑

i=1

E(X
(1)
ni )

2 ≤
kn
∑

i=1

EX2
niI(|Xni| ≤ dn) + d2n

kn
∑

i=1

P (|Xni| > dn) = o(dn).

Therefore, by putting t = 6q2/(dnε) and the above arguments, for sufficiently
large n, we obtain

P

(

kn
∑

i=1

X
(1)
ni > ε/3

)

≤M exp(−q2/dn).

Thus using (v), we get

∞
∑

n=1

anP

(

kn
∑

i=1

X
(1)
ni > ε/3

)

≤ C +M

∞
∑

n=1

an exp(−q2/dn) <∞.
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If we consider −X(1)
ni instead of X

(1)
ni in the arguments above, in a similar

manner we obtain
∞
∑

n=1

anP

(

kn
∑

i=1

−X(1)
ni > ε/3

)

≤ C +M
∞
∑

n=1

an exp(−q2/dn) <∞.

Therefore, (3.3) holds for l = 1.
Next we prove (3.3) holds for l = 2. Note that

P

(
∣

∣

∣

∣

∣

kn
∑

i=1

X
(2)
ni

∣

∣

∣

∣

∣

> ε/3

)

≤ P

(

kn
⋃

i=1

(

X
(2)
ni 6= 0

)

)

≤
kn
∑

i=1

P

(

|Xni| >
ε

3([q1] + 1)

)

.

Thus, (3.3) holds for l = 2 by (i).
Finally, we prove (3.3) holds for l = 3. For sufficiently large n such that

dn <
ǫ

3([q1]+1) , from the definition of X
(3)
ni , we get: if Xni ≤ dn, then X

(3)
ni ≤ 0;

if Xni > dn, then X
(3)
ni ≤ ǫ

3([q1]+1) . So we have by (3.2) that

P

(

kn
∑

i=1

X
(3)
ni > ε/3

)

≤ P (there are at least [q1]+1 values of i∈{1, 2, . . . , kn} such that Xni > dn)

≤
∑

1≤i1<···<i[q1]+1≤kn

P (Xni1 > dn, . . . , Xni[q1]+1
> dn)

≤ M
∑

1≤i1<···<i[q1]+1≤kn

P (Xni1 > dn) · · ·P (Xni[q1]+1
> dn)

≤ M

(

kn
∑

i=1

P (Xni > dn)

)[q1]+1

≤M

(

kn
∑

i=1

P (Xni > dn)

)q1

.

Therefore
∑∞

n=1 anP
(

∑kn

i=1X
(3)
ni > ε/3

)

<∞ by (ii). In a similar manner, we

have
∑∞

n=1 anP
(

∑kn

i=1 −X
(3)
ni > ε/3

)

<∞. Thus (3.3) holds for l = 3. �

By Markov’s inequality and Theorem 1, we have the following corollary at
once.

Corollary 1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1}, {kn, n ≥ 1}, {an, n ≥ 1}, and
{dn, n ≥ 1} be as in Theorem 1 except that (ii) is replaced by (ii)’:

(ii)’
∑∞

n=1 an

(

d−q
n

∑kn

i=1 E|Xni|q
)q1

for some q > 0 and q1 > 0.

Then (3.1) holds.

Now let {kn, n ≥ 1} be a strictly increasing subsequence of positive integers
and {bn, n ≥ 1} a positive monotone increasing subsequence of real numbers
with 0 < bn ↑ ∞. Following Gut ([3]), we define

ψ(x) = Card{n : bkn
≤ x} for x > 0, ψ(0) = 0.
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Set M(x) =
∑[x]

n=1 kn for x ≥ 0. We have:

Corollary 2. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise zero-mean

END random variables which are weakly mean dominated by a random variable

X, i.e.,

(3.4)
1

kn

kn
∑

i=1

P (|Xni| > x) ≤ C1P (|X | > x) for all x ≥ 0 and n ≥ 1,

where C1 is a positive constant. Let bn = φ(n) for n ≥ 1, where φ is a positive

nondecreasing function satisfying

(3.5)
φ(x)√
x log x

→ ∞ as x→ ∞.

Assume that for some C2 > 0,M(ψ(2x)) ≤ C2M(ψ(x)) for all x ≥ 0. If
EM(ψ(|X |)) <∞, E|X |p <∞ for some p > 2, then

∞
∑

n=1

P

(
∣

∣

∣

∣

∣

kn
∑

i=1

Xni

∣

∣

∣

∣

∣

> εφ(kn)

)

<∞ for all ε > 0.

Proof. We will apply Corollary 1 with an = 1, dn = 1/ logn, n ≥ 1 and Xni

replaced by Xni/φ(kn), 1 ≤ i ≤ kn, n ≥ 1. Clearly, Conditions (i), (ii)’, (iii)
and (v) can be shown to hold in the same way as in the proof of Corollary 1 of
Sung ([15]). We shall prove that Condition (iv) holds. As EXni = 0, and by
(3.4) and (3.5) we have
∣

∣

∣

∣

∣

kn
∑

i=1

E
Xni

φ(kn)
I

(∣

∣

∣

∣

Xni

φ(kn)

∣

∣

∣

∣

≤ 1

logn

)

∣

∣

∣

∣

∣

≤
kn
∑

i=1

E

∣

∣

∣

∣

Xni

φ(kn)

∣

∣

∣

∣

I

(∣

∣

∣

∣

Xni

φ(kn)

∣

∣

∣

∣

>
1

logn

)

≤ logn

kn
∑

i=1

E

∣

∣

∣

∣

Xni

φ(kn)

∣

∣

∣

∣

2

≤ C1
kn logn

φ2(kn)
E|X |2 → 0

as n→ ∞. �

Corollary 3. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise zero-mean END

random variables which are stochastically dominated by a random variable X
satisfying E|X |γ <∞, where γ = p(t+ β + 1) ≥ 1 and t > −1 and p > 0. Let

{bni, i ≥ 1, n ≥ 1} be an array of real numbers satisfying (1.1). Assume that
∑∞

i=1 bniXni is finite a.s. for any n ≥ 1.
(i) If 1 ≤ γ < 2, then (1.2) holds.
(ii) If γ ≥ 2 and

(3.6)

∞
∑

i=1

b2ni = o

(

n2/p

logn

)

,

then (1.2) holds.
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Proof. Since
∑∞

i=1 bniXni is finite a.s., there exists positive integer kn such that

P (n−1/p|
∑∞

i=kn+1 bniXni| > ǫ/2) < 1/n(t+2) for all n ≥ 1 and for all ε > 0.
Therefore in order to prove (1.2), we only need to prove that

(3.7)

∞
∑

n=1

ntP

(

n−1/p

∣

∣

∣

∣

∣

kn
∑

i=1

bniXi

∣

∣

∣

∣

∣

> ε/2

)

<∞.

Without loss of generality, we may assume that |bni| ≤ 1 (for all i ≥ 1, n ≥ 1)
and

∑∞

i=1 |bni|q ≤ nβ (for all n ≥ 1) by (1.1) and bni > 0 (for all i ≥ 1, n ≥ 1).
Hence

(3.8)

∞
∑

i=1

bq+θ
ni ≤ nβ for all θ ≥ 0.

We will apply Corollary 1 with an = nt, n ≥ 1 and dn = (logn)−1 and Xni

replaced by n−1/pbniXni (1 ≤ i ≤ kn, n ≥ 1). Taking δ > 0 such that γ − δ ≥ q
and γ − δ > 0, we get by the stochastic domination hypothesis and (3.8) that

∞
∑

n=1

nt
kn
∑

i=1

P

(
∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

> ε

)

≤ C
∞
∑

n=1

nt
∞
∑

i=1

E

∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

γ−δ

I

(∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

> ε

)

≤ C

∞
∑

n=1

nt
∞
∑

i=1

E

∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

γ−δ

I(|Xni| > εn1/p)

≤ C

∞
∑

n=1

n−1+δ/pE|X |γ−δI(|X | > εn1/p)

= C

∞
∑

n=1

n−1+δ/p
∞
∑

j=n

E|X |γ−δI(εj1/p < |X | ≤ ε(j + 1)1/p)

= C
∞
∑

j=1

E|X |γ−δI(εj1/p < |X | ≤ ε(j + 1)1/p)

j
∑

n=1

n−1+δ/p

≤ C
∞
∑

j=1

jδ/pE|X |γ−δI(εj1/p < |X | ≤ ε(j + 1)1/p)

≤ CE|X |γ <∞.

Thus condition (i) of Corollary 1 holds.
Taking q1 ≥ 2, we also have by the stochastic domination hypothesis and

(3.8) and t > −1 that

∞
∑

n=1

nt

(

(log n)γ
kn
∑

i=1

E

∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

γ
)q1

≤ C

∞
∑

n=1

nt

(

E|X |γ(logn)γ
kn
∑

i=1

∣

∣

∣

∣

bni
n1/p

∣

∣

∣

∣

γ
)q1
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≤ C

∞
∑

n=1

nt
(

(logn)γn−(t+1)
)q1

≤ C
∞
∑

n=1

n−(t+1)q1+t(logn)γq1 <∞.

Thus condition (ii)’ of Corollary 1 holds.
We have by the stochastic domination hypothesis, (3.6), (3.8) and t > −1

that

logn

kn
∑

i=1

E

∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

2

I

(∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

≤ 1

logn

)

≤
{

(log n)−1+γn−γ/p
∑kn

i=1 E |bniXni|γ 1 ≤ γ < 2

n−2/p logn
∑kn

i=1E |bniXni|2 γ ≥ 2

≤
{

Cn−(t+1)(log n)−1+γ 1 ≤ γ < 2

Cn−2/p logn
∑∞

i=1 b
2
ni γ ≥ 2

→ 0 as n→ ∞.

Therefore condition (iii) of Corollary 1 holds.
By EXni = 0, γ ≥ 1, t > −1, the stochastic domination hypothesis, and

(3.8), we obtain
∣

∣

∣

∣

∣

kn
∑

i=1

E
bniXni

n1/p
I

(
∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

≤ 1/ logn

)

∣

∣

∣

∣

∣

≤
kn
∑

i=1

E

∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

I

(
∣

∣

∣

∣

bniXni

n1/p

∣

∣

∣

∣

> 1/ logn

)

≤ (logn)γ−1n−γ/p
kn
∑

i=1

E |bniXni|γ

≤ C(log n)γ−1n−(t+1) → 0 as n→ ∞.

Thus condition (iv) of Corollary 1 holds. Condition (v) of Corollary 1 holds if
we take q2 = t+ 2. Therefore all conditions of Corollary 1 are satisfied and so
(3.7) holds from Corollary 1. �

Corollary 4. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise zero-mean END

random variables which are stochastically dominated by a random variable X
satisfying E|X |γ log |X | < ∞, where γ = p(t + β + 1) ≥ 1 and t > −1 and

p > 0. Let {bni, i ≥ 1, n ≥ 1} be an array of real numbers satisfying (1.4).
Assume that

∑∞

i=1 bniXni is finite a.s. for any n ≥ 1.
(i) If 1 ≤ γ < 2, then (1.2) holds.
(ii) If γ ≥ 2, and {bni, i ≥ 1, n ≥ 1} satisfies (3.6), then (1.2) holds.

Proof. The proof is similar to that of Corollary 3 and is omitted. �
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Remark 2. 1) If 0 < q ≤ 1 in Corollary 3, then
∑∞

i=1 bniXni is finite a.s. for
∀n ≥ 1.

2) For t > −1, Corollary 3 and Corollary 4 extends Theorem A and Theorem
B from sequence of independent random variables on arrays of rowwise END
random variables respectively. Moreover, condition (3.6) in Corollary 3 and
Corollary 4 is weaker than the condition (1.3) of Theorem A and Theorem B
when γ ≥ 2.

3) Let bni = anin
µ, µ = 1/p, thus, from (1.5) and (1.6), we obtain supn,i |bni|

<∞,
∑∞

i=1 |bni| = O(nµ+τ ). Let β = µ+τ, then 1+(1+τ+t)/µ = p(t+β+1) >

1,
∑∞

i=1 b
2
ni = O(nµ+τ ) = O(nτ+1/p), 0 ≤ τ < 1/p. Therefore all the conditions

of Corollary 3 and Corollary 4 are satisfied. So Corollary 3 and Corollary 4
extend and improve Theorem C when t > −1.

Corollary 5. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise zero-mean

END random variables which are stochastically dominated by a random variable

X satisfying E|X |2p < ∞ for some p ≥ 1. Let {cni, 1 ≤ i ≤ n, n ≥ 1} be an

array of constants satisfying

(3.9) max
1≤i≤n

|cni| = O

(

1

n1/p

)

and

(3.10)

n
∑

i=1

c2ni = o

(

1

logn

)

.

Then
∞
∑

n=1

P

(∣

∣

∣

∣

∣

n
∑

i=1

cniXni

∣

∣

∣

∣

∣

> ε

)

<∞ for any ε > 0.

Proof. We apply Corollary 3 with t = 0, β = 1, q = p, and for n ≥ 1

bni =

{

cnin
1/p 1 ≤ i ≤ n

0 i > n.

By (3.9) and (3.10), we obtain

sup
n,i

|bni| <∞,

∞
∑

i=1

|bni|p = O(n),

and (3.6) holds. Therefore all conditions of Corollary 3 are satisfied and Corol-
lary 5 follows from Corollary 3. �

Remark 3. Corollary 5 extends Theorem 4.1.3. of Stout ([13]) on sequence
of independent random variables to arrays of rowwise END random variables.
Furthermore, Corollary 5 generalizes and improves Theorem 2.1 of Zarei and
Jabbari ([20]), and extends the result of Taylor et al. ([18]).
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Corollary 6. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise zero-mean END

random variables which are stochastically dominated by a random variable X
satisfying E|X |p < ∞ for some p > 2. Let {bni, i ≥ 1, n ≥ 1} be an array of

constants satisfying (3.6) and
∞
∑

i=1

|bni|q = O(1) for some 2 ≤ q < p.

Assume that
∑∞

i=1 bniXni is finite a.s. for any n ≥ 1. Then

∞
∑

n=1

P

(

n−1/p

∣

∣

∣

∣

∣

∞
∑

i=1

bniXni

∣

∣

∣

∣

∣

> ε

)

<∞ for all ε > 0.

Proof. Let t = 0 and β = 0. Clearly supn,i |bni| < ∞. Thus the result follows
from Corollary 3(ii). �

Corollary 7. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise zero-mean END

random variables which are stochastically dominated by a random variable X
satisfying E|X |2 log |X | < ∞. Let {bni, i ≥ 1, n ≥ 1} be an array of constants

satisfying
∞
∑

i=1

b2ni = O(1).

Assume that
∑∞

i=1 bniXni is finite a.s. for any n ≥ 1. Then

∞
∑

n=1

P

(

n−1/2

∣

∣

∣

∣

∣

∞
∑

i=1

bniXni

∣

∣

∣

∣

∣

> ε

)

<∞ for all ε > 0.

Proof. Let t = 0, β = 0, and p = 2. Clearly supn,i |bni| < ∞. Thus the result
follows from Corollary 4(ii). �

Remark 4. Corollary 6 and Corollary 7 extend Corollary 1 and Corollary 2 of
Sung ([14]) for sequence of independent random variables to arrays of rowwise
END random variables respectively. Moreover, (3.6) in Corollary 6 of this
paper is weaker than the condition

∑∞

i=1 b
2
ni = O(nα) for some α < 2/p from

Corollary 1 of Sung ([14]).

Corollary 8. Let {Xn,−∞ < n < ∞} be a sequence of zero-mean END

random variables which are stochastically dominated by a random variable X
satisfying E|X |p(t+2) < ∞ for some 0 < p < 2, p(t + 2) > 1, and t > −1. Let
{an,−∞ < n <∞} be a sequence of real numbers such that

∑∞

n=−∞ |an| <∞.

Set ani =
∑i+n

j=i+1 aj for each i and n. Then

∞
∑

n=1

ntP

(

n−1/p

∣

∣

∣

∣

∣

∞
∑

i=−∞

aniXi

∣

∣

∣

∣

∣

> ǫ

)

<∞ for all ǫ > 0.

Proof. The proof is similar to that of Corollary 3 of Sung ([14]) and is omitted.
�



ON THE COMPLETE CONVERGENCE 391

Remark 5. Corollary 8 extends Corollary 3 of Sung ([14]) for independent
random variables to arrays of rowwise END random variables when t > −1.
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