COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF BANACH-SPACE-VALUED RANDOM ELEMENTS*

De Hua Qiu^a, Tien-Chung Hu^b, Manuel Ordóñez Cabrera^c, and Andrei Volodin^d

^a School of Mathematics and Computational Science, Guangdong University of Business Studies, Guangzhou 510320, PR China

^b Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC ^c Department of Mathematical Analysis, University of Seville, Seville 41080, Spain

^d Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada (e-mail: qiudhua@sina.com; tchu@math.nthu.edu.tw; cabrera@us.es; andrei@math.uregina.ca)

Received September 27, 2010; revised June 25, 2012

Abstract. We study the complete convergence for weighted sums of arrays of Banach-space-valued random elements and obtain some new results that extend and improve the related known works in the literature.

MSC: 60B12, 60F05, 60F25, 60G42

Keywords: array of Banach-space-valued random elements, weighted sums, complete convergence

1 INTRODUCTION

The concept of complete convergence of a sequence of random variables was introduced by Hsu and Robbins [8] as follows: A sequence of random variables $\{U_n, n \in \mathbb{N}\}$ (where \mathbb{N} is the set of positive integers) is said to converge completely to a constant C if $\sum_{n=1}^{\infty} \mathbf{P}(|U_n - C| > \epsilon) < \infty$ for all $\epsilon > 0$. In view of the Borel–Cantelli lemma, this implies that $U_n \to C$ almost surely (a.s.). The converse is true if the random variables $\{U_n, n \in \mathbb{N}\}$ are independent.

The way of measuring the rate of convergence considered in our paper originates from the results of [4, 7] and [12].

Theorem A. (See [4, 7].) If $\{X_i, i \ge 1\}$ is a sequence of independent identically distributed random variables and $\theta \ge 1$, then the following two statements are equivalent:

(a) $\mathbf{E}|X_1|^{\theta} < \infty$ and $\mathbf{E}(X_1) = 0$, (b) $\sum_{n=1}^{\infty} n^{\theta-2} \mathbf{P}(|\sum_{i=1}^n X_i| > \epsilon n) < \infty$ for all $\epsilon > 0$.

0363-1672/12/5203-0316 © 2012 Springer Science+Business Media, Inc.

^{*} The research of T.-C. Hu is partially supported by the National Science Council, grant NSC 99-218-M-007-001-my2. The research of M. Ordóñez Cabrera is partially supported by the Plan Andaluz de Investigacion de la Junta de Andalucia FQM-127 and grant P08-FQM-03543, and by MEC grant MTM2009-10696-C02-01. The research of A. Volodin is partially supported by the National Science and Engineering Research Council of Canada.

This result was extended to Banach space setting by Norvaiša [12] as follows.

Theorem B. (See [12].) If $\{X_i, i \ge 1\}$ is a sequence of independent identically distributed random elements taking values in a real separable Banach space $(B, \|\cdot\|)$, number $\theta \ge 1$, $\mathbf{E} \|X_1\|^{\theta} < \infty$, and $\mathbf{E}(X_1) = 0$. The following two statements are equivalent:

(a)
$$\sum_{n=1}^{\infty} n^{\theta-2} \mathbf{P}(\|\sum_{i=1}^{n} X_i\| > \epsilon n) < \infty$$
 for all $\epsilon > 0$,
(b) $\lim_{n \to \infty} \mathbf{E} \|\sum_{i=1}^{n} X_i\|/n = 0$.

Also, a characterization of statement (b) in terms of probabilistic geometry of the Banach space B is provided by Norvaiša [12]. Many other authors have devoted their study to complete convergence (see [2, 3, 5, 9, 10, 13, 14, 15]).

In the following, we assume that $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ is an array of random elements in a separable real Banach space $(B, \|\cdot\|)$ and $\{a_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ is an array of real constants. Denote

$$S_n \equiv \sum_{j=1}^{\infty} a_{nj} X_{nj}.$$

In the following, we assume that the series S_n converges almost surely if the almost sure convergence does not automatically follow from the hypotheses.

Hu et al. [9] obtained the following result.

Theorem C. (See [9].) Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of rowwise independent random elements stochastically dominated by a random variable X (the technical definitions are given in the next section). Assume that

$$\sup_{j \ge 1} |a_{nj}| = O(n^{-\gamma}) \quad \text{for some } \gamma > 0 \tag{1.1}$$

and

$$\sum_{j=1}^{\infty} |a_{nj}| = O(n^{\alpha}) \quad \textit{for some } \alpha < \gamma$$

If

$$\mathbf{E}|X|^{1+(1+\alpha+\beta)/\gamma} < \infty \quad \text{for some } \beta \in (-1, \gamma - \alpha - 1]$$

and

 $S_n \xrightarrow{\mathbf{P}} 0,$

then

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P} (\|S_n\| > \epsilon) < \infty \quad \text{for all } \epsilon > 0.$$

The proof of Theorem C in [9] is rather complicated since it uses the Stieltjes integral techniques, summation by parts lemma, and so on. When $\alpha + \beta > -1$, Ahmed et al. [2] established a more general result and with simpler proof than that of Hu et al. [9]. Volodin et al. [15] generalized the result of Ahmed et al. [2]; meanwhile, they studied the special case $\alpha + \beta = -1$ and obtained the following Theorem D. Sung et al. [14] and Chen et al. [5] studied the case of $\beta = -1$ and $\alpha > 0$, and Chen et al. [13] improved the result of Sung et al. [14]. Qiu [13] improved and generalized the corresponding results of Volodin et al. [15] and Chen et al. [5] in the case of $\alpha + \beta > -1$.

However, they did not study the relatively important special case $\alpha + \beta = -1$ (except Volodin et al. [15]). Back et al. [3] established some results for arrays of rowwise negatively dependent random variables that complement the results of Ahmed et al. [2] in the case of real random variables (and not for random elements in Banach spaces). The results of Baek et al. [3] are in the same spirit as those established by Volodin et al. [15] for weighted sums of arrays of Banach-space-valued random elements.

Theorem D. (See [15].) Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of rowwise independent random elements stochastically dominated by a random variable X. Assume that (1.1) holds and

$$\sum_{j=1}^{\infty} |a_{nj}|^{\theta} = O(n^{\alpha}) \quad \text{for some } 0 < \theta \leq 2 \text{ and any } \alpha \text{ such that } \theta + \frac{\alpha}{\gamma} < 2$$

Let $\beta = -1 - \alpha$ and fix $\delta > \theta$ such that $\theta + \alpha/\gamma < \delta \leq 2$. If

$$\mathbf{E}|X|^{\delta} < \infty \quad and \quad S_n \xrightarrow{\mathbf{P}} 0,$$

then

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P} \big(\|S_n\| > \epsilon \big) < \infty \quad \text{for all } \epsilon > 0.$$

We assume in Theorem D that the series S_n converges a.s. when $\theta > 1$, since the a.s. convergence does not automatically follow from the hypotheses. In this paper, we assume without explicit mention that each series S_n converges a.s. if the almost sure convergence does not automatically follow from the hypotheses. Note also that if $\beta < -1$, then the conclusions of Theorems C and D, as well as the results of the present article, hold automatically, and hence, they are of interest only for $\beta \ge -1$. If $\beta \ge -1$, then $\beta = -1 - \alpha$ implies that $\alpha \le 0$. In this paper, we improve Theorem D in three directions, namely:

- (i) The moment condition in our results is strictly weaker than in Theorem D. (ii) $W_{i}^{T} = 0$ to 0 to 1 the second strictly $V_{i}^{T} = 0$ for $V_{i}^{T} = 0$.
- (ii) When $0 < \theta < 1$, the assumptions of rowwise independence of $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ and $S_n \xrightarrow{\mathbf{P}} 0$ in Theorem D are removed.
- (iii) In Theorem 2, we deal with the case $\theta > 2$.

2 PRELIMINARIES

Let $\{\Omega, \mathcal{F}, \mathbf{P}\}\$ be a probability space, and let B be a separable real Banach space with norm $\|\cdot\|$. A random element is defined to be an \mathcal{F} -measurable mapping of Ω into B equipped with the Borel σ -algebra (that is, the σ -algebra generated by the open sets determined by $\|\cdot\|$). The expected value of a B-valued random element X is defined to be the Bochner integral and denoted by $\mathbf{E}X$.

Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of random elements (not necessarily rowwise independent and identically distributed) taking values in *B*. The array of random elements $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ is said to be stochastically dominated by a random variable *X* if there exists a constant *D* such that

$$\sup_{j \in \mathbb{N}, n \in \mathbb{N}} \mathbf{P}(\|X_{nj}\| > x) \leq D\mathbf{P}(|X| > x) \quad \text{for all } x > 0.$$

In this case, we write $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Let $\{a_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of real constants (called weights). Consider the sequence of weighted sums $S_n \equiv \sum_{j=1}^{\infty} a_{nj}X_{nj}, n \in \mathbb{N}$.

Let $1 \leq p \leq 2$, and let $\{\theta_n, n \in \mathbb{N}\}$ be independent and identically distributed stable random variables, each with characteristic function $\phi(t) = \exp(-|t|^p), -\infty < t < \infty$. The separable real Banach space *B* is said to be of stable type *p* if $\sum_{n=1}^{\infty} \theta_n v_n$ converges almost surely whenever $\{v_n, n \in \mathbb{N}\} \subseteq B$ with $\sum_{n=1}^{\infty} \|v_n\|^p < \infty$. Equivalent characterizations of a Banach space being of stable type *p*, properties of stable type *p* Banach spaces, and various relationships between the conditions "Rademacher type *p*" and "stable type *p*" can be found in Adler et al. [1].

Next, we present some lemmas that will be used to prove our main results.

Lemma 1. (See [6].) For every $p \ge 2$, there exists a positive constant C_p depending only on p such that, for any sequence $\{X_n, n \in \mathbb{N}\}$ of independent B-valued random elements with $X_n \in L^p$, $n \in \mathbb{N}$, the following inequality holds:

$$\mathbf{E}\left\|\left\|\sum_{j=1}^{n} X_{j}\right\| - \mathbf{E}\left\|\sum_{j=1}^{n} X_{j}\right\|\right\|^{p} \leq C_{p}\left\{\left(\sum_{j=1}^{n} \mathbf{E}\|X_{j}\|^{2}\right)^{p/2} + \sum_{j=1}^{n} \mathbf{E}\|X_{j}\|^{p}\right\}.$$

The next lemma is well known, and its proof is left as an easy exercise for the interested reader.

Lemma 2. Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of random variables with $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Then there exists a constant C such that, for all q > 0 and x > 0,

(i) $\mathbf{E} \|X_{nj}\|^q I(\|X_{nj}\| \le x) \le C\{\mathbf{E} |X|^q I(|X| \le x) + x^q \mathbf{P}(|X| > x)\},\$ (ii) $\mathbf{E} \|X_{nj}\|^q I(\|X_{nj}\| > x) \le C \mathbf{E} |X|^q I(|X| > x).$

Lemma 3. (See [11, Lemma 6.5].) Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of symmetric *B*-valued random elements. Let $\{\xi_n, n \in \mathbb{N}\}$ and $\{\zeta_n, n \ge 1\}$ be real random variables such that $\xi_n = \phi_n(X_n)$, where $\phi_n : B \to \mathbb{R}$ are symmetric (even), and similarly for ζ_n . If $|\xi_n| \le |\zeta_n|$ a.s. for every *n*, then

$$\mathbf{P}\left(\left\|\sum_{n}\xi_{n}X_{n}\right\| > x\right) \leqslant 2\mathbf{P}\left(\left\|\sum_{n}\zeta_{n}X_{n}\right\| > x\right) \quad \text{for all } x > 0$$

In particular, this inequality applies to the case where $\xi_n = I(X_n \in A_n) \leq 1 \equiv \zeta_n$ with the sets A_n symmetric in B (for example, $A_n = \{ ||X_n|| \leq a_n \}$).

Lemma 4. (See [10].) Let $\{X_{nj}, 1 \leq j \leq k_n, n \in \mathbb{N}\}$ be an array of rowwise independent symmetric random elements. Suppose that there exists $\delta > 0$ such that $||X_{nj}|| \leq \delta$ a.s. for all $1 \leq j \leq k_n$, $n \in \mathbb{N}$. If $\sum_{j=1}^{k_n} X_{nj} \xrightarrow{\mathbf{P}} 0$, then $\mathbf{E} || \sum_{j=1}^{k_n} X_{nj} || \to 0$ as $n \to \infty$.

Lemma 5. (See [1].) Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of rowwise independent mean-zero random elements in a stable type $p (1 Banach space B. Suppose that <math>\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Moreover, assume that

$$\sup_{n \ge 1} \sum_{j=1}^{\infty} |a_{nj}|^p < \infty \quad and \quad \sup_{j \ge 1} |a_{nj}| = o(1).$$

If $\lim_{t\to\infty} t^p \mathbf{P}(|X| > t) = 0$, then $S_n \xrightarrow{\mathbf{P}} 0$.

Throughout this paper, C always stands for a positive constant which may differ from one place to another, the symbol [x] denotes the greatest integer less than or equal to x, and the symbol $\sharp A$ denotes the number of elements of a finite set A.

3 MAIN RESULTS AND PROOFS

With the preliminary results accounted for, we can formulate and prove the main results of this paper.

Theorem 1. Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of random elements with $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Assume that (1.1) holds and

$$\sum_{j=1}^{\infty} |a_{nj}|^{\theta} = O(n^{\alpha}) \quad \text{for some } 0 < \theta < 1 \text{ and some } \alpha.$$
(3.1)

Lith. Math. J., 52(3):316-325, 2012.

Let $\beta = -1 - \alpha$. If

$$\mathbf{E}(|X|^{\theta}\log(1+|X|)) < \infty,$$

then

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P} (\|S_n\| > \epsilon) < \infty \quad \text{for all } \epsilon > 0.$$
(3.2)

Proof. From (1.1) and (3.1), without loss of generality, we can assume that

$$\sup_{j \ge 1} |a_{nj}| = n^{-\gamma}, \tag{3.3}$$

$$\sum_{j=1}^{\infty} |a_{nj}|^{\theta} = n^{\alpha}.$$
(3.4)

Let $Y_{nj} = a_{nj}X_{nj}I(||a_{nj}X_{nj}|| \leq 1), j \in \mathbb{N}, n \in \mathbb{N}$. Then

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P} \left(\|S_n\| > \epsilon \right) \leqslant \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{P} \left(\|a_{nk} X_{nk}\| > 1 \right) + \sum_{n=1}^{\infty} n^{\beta} \mathbf{P} \left(\left\| \sum_{k=1}^{\infty} Y_{nk} \right\| > \epsilon \right) := I_1 + I_2.$$

Therefore, in order to prove (3.2), it suffices to show that $I_1 < \infty$ and $I_2 < \infty$. Since $\alpha + \beta = -1$ and $\theta > 0$, by Lemma 2, (3.3), and (3.4) we have

$$I_{1} \leqslant \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E} \|a_{nk} X_{nk}\|^{\theta} I(\|a_{nk} X_{nk}\| > 1) \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E} |a_{nk} X|^{\theta} I(|X| > |a_{nk}|^{-1})$$

$$\leqslant C \sum_{n=1}^{\infty} n^{-1} \mathbf{E} |X|^{\theta} I(|X| > n^{\gamma}) = C \sum_{n=1}^{\infty} n^{-1} \sum_{j=n}^{\infty} \mathbf{E} |X|^{\theta} I(j^{\gamma} < |X| \leqslant (j+1)^{\gamma})$$

$$= C \sum_{j=1}^{\infty} \mathbf{E} |X|^{\theta} I(j^{\gamma} < |X| \leqslant (j+1)^{\gamma}) \sum_{n=1}^{j} n^{-1} \leqslant C \sum_{j=1}^{\infty} \log j \mathbf{E} |X|^{\theta} I(j^{\gamma} < |X| \leqslant (j+1)^{\gamma})$$

$$\leqslant C \mathbf{E} (|X|^{\theta} \log(1+|X|)) < \infty.$$
(3.5)

Let $I_{nk} = \{i: (nk)^{\gamma} \leq |a_{ni}|^{-1} < (n(k+1))^{\gamma}\}, k \in \mathbb{N}, n \in \mathbb{N}$. Then $\bigcup_{k=1}^{\infty} I_{nk} = \mathbb{N}$ for all $n \in \mathbb{N}$. Choose t such that $\theta < t < 1$. By the Markov inequality, Lemma 2, and (3.5) we have

$$I_{2} \leq C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E} ||Y_{nk}||^{t} \leq C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \left\{ \mathbf{E} |a_{nk}X|^{t} I(|X| \leq |a_{nk}|^{-1}) + \mathbf{P}(|X| > |a_{nk}|^{-1}) \right\}$$

$$\leq C + C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} (\sharp I_{nk})(nk)^{-\gamma t} \mathbf{E} |X|^{t} I(|X| < (n(k+1))^{\gamma})$$

$$\leq C + C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} (\sharp I_{nk})(nk)^{-\gamma t} \sum_{i=1}^{n(k+1)} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma})$$

320

Complete convergence

$$\leq C + C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} (\sharp I_{nk}) (nk)^{-\gamma t} \sum_{i=1}^{2n} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma}) + C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=2}^{\infty} (\sharp I_{nk}) (nk)^{-\gamma t} \sum_{i=2n+1}^{n(k+1)} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma}) := C + I_{3} + I_{4}.$$
(3.6)

Since $t > \theta$ and $\gamma > 0$, we have $k^{\gamma(t-\theta)} > j^{\gamma(t-\theta)}$ for all k > j, where $j, k \in \mathbb{N}$. By (3.4) we have

$$n^{\alpha} = \sum_{i=1}^{\infty} |a_{ni}|^{\theta} = \sum_{k=1}^{\infty} \sum_{i \in I_{nk}} |a_{ni}|^{\theta} \ge \sum_{k=1}^{\infty} (\sharp I_{nk}) (n(k+1))^{-\gamma \theta}$$
$$\ge \sum_{k=j}^{\infty} (\sharp I_{nk}) (n(k+1))^{-\gamma t} (n(j+1))^{\gamma(t-\theta)} > 2^{-\gamma t} \sum_{k=j}^{\infty} (\sharp I_{nk}) (nk)^{-\gamma t} (nj)^{\gamma(t-\theta)}.$$

Hence,

$$\sum_{k=j}^{\infty} (\sharp I_{nk}) (nk)^{-\gamma t} \leqslant C n^{\alpha - \gamma (t-\theta)} j^{-\gamma (t-\theta)} \quad \text{for all } j \in \mathbb{N}.$$
(3.7)

By (3.7) we can get that

$$I_{3} \leq C \sum_{n=1}^{\infty} n^{\beta} n^{\alpha - \gamma(t-\theta)} \sum_{i=1}^{2n} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma})$$

$$\leq C \sum_{n=1}^{\infty} n^{-1-\gamma(t-\theta)} + C \sum_{n=1}^{\infty} n^{-1-\gamma(t-\theta)} \sum_{i=2}^{2n} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma})$$

$$\leq C + C \sum_{i=2}^{\infty} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma}) \sum_{n=[i/2]}^{\infty} n^{-1-\gamma(t-\theta)}$$

$$\leq C + C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \mathbf{E} |X|^{t} I((i-1)^{\gamma} \leq |X| < i^{\gamma})$$

$$\leq C + C \sum_{i=2}^{\infty} i^{\gamma\theta} \mathbf{E} I((i-1)^{\gamma} \leq |X| < i^{\gamma}) \leq C + C \mathbf{E} |X|^{\theta} < \infty$$

and

$$I_4 \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{i=2n+1}^{\infty} \sum_{k=[i/n-1]}^{\infty} (\sharp I_{nk})(nk)^{-\gamma t} \mathbf{E} |X|^t I((i-1)^{\gamma} \leqslant |X| < i^{\gamma})$$
$$\leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{i=2n+1}^{\infty} n^{\alpha-\gamma(t-\theta)} \left(\frac{i}{n}\right)^{-\gamma(t-\theta)} \mathbf{E} |X|^t I((i-1)^{\gamma} \leqslant |X| < i^{\gamma})$$

Lith. Math. J., 52(3):316-325, 2012.

$$\leq C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \mathbf{E} |X|^t I((i-1)^{\gamma} \leq |X| < i^{\gamma}) \sum_{n=1}^{[i/2]} n^{-1}$$
$$\leq C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \log i \mathbf{E} |X|^t I((i-1)^{\gamma} \leq |X| < i^{\gamma}) \leq C \mathbf{E} (|X|^{\theta} \log(1+|X|)) < \infty.$$

Therefore, (3.2) holds. \Box

Remark 1. If we compare Theorem 1 with Theorem D in the case $0 < \theta \leq 1$, then we see that neither the assumption of rowwise independence of $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ nor $S_n \xrightarrow{\mathbf{P}} 0$ is required. In addition, the moment condition in Theorem 1 is strictly weaker than in Theorem D.

Theorem 2. Let $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of rowwise independent random elements with $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Assume that (1.1) holds and

$$\sum_{j=1}^{\infty} |a_{nj}|^{\theta} = O(n^{\alpha}) \quad \text{for some } \theta \ge 1 \text{ and some } \alpha.$$

Moreover, assume that $\sum_{j=1}^{\infty} a_{nj}^2 = O(n^{\eta})$ for some $\eta < 0$ when $\theta \ge 2$. Let $\beta = -1 - \alpha$. If

$$\mathbf{E}(|X|^{\theta}\log(1+|X|)) < \infty \quad and \quad S_n \xrightarrow{\mathbf{P}} 0,$$

then (3.2) holds.

Proof. Since $S_n \xrightarrow{\mathbf{P}} 0$, by the standard argument we may assume that random variables $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ are symmetric. The assumption of a.s. convergence of $\sum_{j=1}^{\infty} a_{nj}X_{nj}$ for every n implies that there exists a positive integer k_n such that

$$\mathbf{P}\left(\left\|\sum_{j=k_n+1}^{\infty} a_{nj} X_{nj}\right\| > \frac{\epsilon}{2}\right) < \frac{1}{n^{2+\beta}} \quad \text{for all } n \ge 1.$$

Therefore, in order to prove (3.2), we only need to prove that

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\| \sum_{j=1}^{k_n} a_{nj} X_{nj} \right\| > \frac{\epsilon}{2} \right) < \infty.$$

Let Y_{nj} be as in Theorem 1. Then

$$\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{j=1}^{k_{n}} a_{nj} X_{nj}\right\| > \frac{\epsilon}{2}\right)$$

$$\leq \sum_{n=1}^{\infty} n^{\beta} \sum_{j=1}^{\infty} \mathbf{P}\left(\left\|a_{nj} X_{nj}\right\| > 1\right) + \sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{j=1}^{k_{n}} Y_{nj}\right\| > \frac{\epsilon}{2}\right) := I_{5} + I_{6}.$$

Similarly to the proof of (3.5) in Theorem 1, we have $I_5 < \infty$. Therefore, in order to prove (3.2), we only need to prove that $I_6 < \infty$. Since $S_n \xrightarrow{\mathbf{P}} 0$, by Lemma 3 we can get that $\sum_{j=1}^{\infty} Y_{nj} \xrightarrow{\mathbf{P}} 0$. Hence, $\sum_{j=1}^{k_n} Y_{nj} \xrightarrow{\mathbf{P}} 0$.

Since $||Y_{nj}|| \leq 1$ for all $j \in \mathbb{N}$, $n \in \mathbb{N}$, by Lemma 4 we have

$$\mathbf{E} \left\| \sum_{j=1}^{k_n} Y_{nj} \right\| \to 0$$

Thus, in order to prove that $I_6 < \infty$, we only need to prove that

$$I_6^* = \sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\| \left\| \sum_{j=1}^{k_n} Y_{nj} \right\| - \mathbf{E} \left\| \sum_{j=1}^{k_n} Y_{nj} \right\| \right\| > \frac{\epsilon}{4} \right) < \infty.$$

Case 1: $1 \le \theta < 2$. Letting t = 2 in (3.6) of Theorem 1, by Lemmas 1 and 2 we have

$$I_6^* \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{j=1}^{k_n} \mathbf{E} \|Y_{nj}\|^2 < \infty.$$

Thus, (3.2) holds.

Case 2: $\theta \ge 2$. Taking v such that $v > \max\{\theta, -2(1+\beta)/\eta\}$, by Lemma 1 we have

$$I_{6}^{*} \leqslant C \sum_{n=1}^{\infty} n^{\beta} \left\{ \left(\sum_{j=1}^{k_{n}} \mathbf{E} \| Y_{nj} \|^{2} \right)^{\nu/2} + \sum_{j=1}^{k_{n}} \mathbf{E} \| Y_{nj} \|^{\nu} \right\} := I_{7} + I_{8}$$

By Lemma 2 we have

$$I_{7} \leq C \sum_{n=1}^{\infty} n^{\beta} \left(\sum_{j=1}^{k_{n}} \mathbf{P} \left(|a_{nj}X| > 1 \right) + \sum_{j=1}^{k_{n}} \mathbf{E} |a_{nj}X|^{2} I \left(|a_{nj}X| \leq 1 \right) \right)^{\nu/2}$$

$$\leq C \sum_{n=1}^{\infty} n^{\beta} \left(\sum_{j=1}^{k_{n}} \mathbf{E} |a_{nj}X|^{2} \right)^{\nu/2} \leq C \sum_{n=1}^{\infty} n^{\beta} \left(\sum_{j=1}^{\infty} |a_{nj}|^{2} \right)^{\nu/2} \leq C \sum_{n=1}^{\infty} n^{\beta+\nu\eta/2} < \infty.$$

Similarly to the proof of $I_2 < \infty$ in Theorem 1, we have $I_8 < \infty$. Thus, (3.2) holds. \Box

Remark 2. (i) The moment condition in Theorem 2 is strictly weaker than in Theorem D for $1 \le \theta < 2$. (ii) If $\beta < -1$, then obviously $\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}(||S_n|| > \epsilon) < \infty$ for all $\epsilon > 0$. If $\beta \ge -1$, then $\beta = -1 - \alpha$ implies that $\alpha \le 0$, and thus, by the conditions $\theta = 2$ and $\theta + \alpha/\gamma < \delta \le 2$ in Theorem D, we can get that $\alpha < 0$. Hence, we have $\sum_{j=1}^{\infty} a_{nj}^2 = O(n^{\alpha})$ for $\alpha < 0$. However, the case $\theta > 2$ is not considered in Theorem D.

Corollary 1. Suppose that B is of stable type p for some $1 . Let <math>\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\}$ be an array of mean-zero rowwise independent random elements with $\{X_{nj}, j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Assume that (1.1) holds and

$$\sum_{j=1}^{\infty} |a_{nj}|^{\theta} = O(n^{\alpha}) \quad \text{for some } 1 < \theta \leq p \text{ and some } \alpha.$$
(3.8)

Let $\beta = -1 - \alpha$. If

$$\mathbf{E}(|X|^{\theta}\log(1+|X|)) < \infty,$$

then (3.2) holds.

Lith. Math. J., 52(3):316-325, 2012.

Proof. If $\beta < -1$, then (3.2) clearly holds, and hence, it is of interest only for $\beta \ge -1$. If $\beta \ge -1$, then $\beta = -1 - \alpha$ implies that $\alpha \le 0$, and by (3.8) we can get that

$$\sup_{n \ge 1} \sum_{j=1}^{\infty} |a_{nj}|^{\theta} < \infty.$$

Since $\mathbf{E}(|X|^{\theta} \log(1+|X|)) < \infty$, we have

$$\lim_{t \to \infty} t^{\theta} \mathbf{P} \big(|X| > t \big) = 0.$$

Therefore, in order to prove (3.2), by Theorem 2 we only need to check that $S_n \xrightarrow{\mathbf{P}} 0$. Since *B* is of stable type *p* for some $1 and <math>\theta \leq p$, *B* is of stable type θ . By Lemma 5 the convergence in probability holds. \Box

Remark 3. The moment condition in Corollary 1 is strictly weaker than in Theorem 3.3 of Volodin et al. [15].

Remark 4 and open problem. The authors believe that Theorems 1 and 2 can be further improved in the direction of relaxing the moment conditions. Namely, we guess that the assumption $\mathbf{E}(|X|^{\theta} \log(1+|X|)) < \infty$ can be weakened to $\mathbf{E}|X|^{\theta} < \infty$. Despite our efforts to solve this problem, it is still an *open problem*. We would also like to mention that this logarithmic term appears only in the somewhat peculiar case $\alpha + \beta = -1$.

Acknowledgment. The authors would like to thank the referee for helpful comments that helped to improve the presentation.

REFERENCES

- 1. A. Adler, M. Ordóñez Cabrera, A. Rosalsky, and A. Volodin, Degenerate weak convergence of row sums for arrays of random elements in stable type *p* Banach spaces, *Bull. Inst. Math., Acad. Sin.*, **27**:187–212, 1999.
- S.E. Ahmed, R. Giuliano Antonini, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements with application to moving average processes, *Stat. Probab. Lett.*, 58(2):185–194, 2002.
- 3. J.I. Baek and S.T. Park, Convergence of weighted sums for arrays of negatively dependent random variables and its applications, *J. Theor. Probab.*, **23**(2):362–377, 2010.
- 4. L.E. Baum and M. Katz, Convergence rates in the law of large numbers, *Trans. Am. Math. Soc.*, **120**(1):108–123, 1965.
- 5. P.Y. Chen, S.H. Sung, and A.I. Volodin, Rate of complete convergence for arrays of Banach-space-valued random elements, *Sib. Adv. Math.*, **16**(3):1–14, 2006.
- 6. A. de Acosta, Inequalities for *B*-valued random vectors with applications to the strong law of large numbers, *Ann. Probab.*, **9**:157–161, 1981.
- 7. C.C. Heyde and V.K. Rohatgi, A pair of complementary theorems on convergence rates in the law of large numbers, *Proc. Cambridge Philos. Soc.*, **63**(1):73–82, 1967.
- 8. P.L. Hsu and H. Robbins, Complete convergence and the law of large numbers, *Proc. Natl. Acad. Sci. USA*, **33**:25–31, 1947.
- 9. T.-C. Hu, D. Li, A. Rosalsky, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements, *Theory Probab. Appl.*, **47**(3):455–468, 2002.

- 10. T.-C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, *Stoch. Anal. Appl.*, **17**(6):963–992, 1999.
- 11. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
- 12. R. Norvaiša, Law of large numbers for identically distributed Banach-valued random variables, *Lith. Math. J.*, **23**(3):290–296, 1983.
- 13. D.H. Qiu, Convergence rates for weighted sums of arrays of Banach-space-valued random elements, *Acta Math. Sin., Chin. Ser.*, **52**(4):651–660, 2009.
- 14. S.H. Sung and A.I. Volodin, On the rate of complete convergence for weighted sums of arrays of random elements, *J. Korean Math. Soc.*, **43**(4):815–828, 2006.
- 15. A. Volodin, R. Giuliano Antonini, and T.-C. Hu, A note on the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements, *Lobachevskii J. Math.*, **15**:21–33, 2004.