COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF BANACH-SPACE-VALUED RANDOM ELEMENTS*

De Hua Qiu ${ }^{\text {a }}$, Tien-Chung Hu ${ }^{\text {b }}$, Manuel Ordóñez Cabrera ${ }^{\text {c }}$, and Andrei Volodin ${ }^{\text {d }}$
${ }^{\text {a }}$ School of Mathematics and Computational Science, Guangdong University of Business Studies, Guangzhou 510320, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
${ }^{\text {c }}$ Department of Mathematical Analysis, University of Seville, Seville 41080, Spain
${ }^{d}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
(e-mail: qiudhua@sina.com; tchu@math.nthu.edu.tw; cabrera@us.es; andrei@math.uregina.ca)

Received September 27, 2010; revised June 25, 2012

Abstract

We study the complete convergence for weighted sums of arrays of Banach-space-valued random elements and obtain some new results that extend and improve the related known works in the literature.

MSC: 60B12, 60F05, 60F25, 60G42
Keywords: array of Banach-space-valued random elements, weighted sums, complete convergence

1 INTRODUCTION

The concept of complete convergence of a sequence of random variables was introduced by Hsu and Robbins [8] as follows: A sequence of random variables $\left\{U_{n}, n \in \mathbb{N}\right\}$ (where \mathbb{N} is the set of positive integers) is said to converge completely to a constant C if $\sum_{n=1}^{\infty} \mathbf{P}\left(\left|U_{n}-C\right|>\epsilon\right)<\infty$ for all $\epsilon>0$. In view of the BorelCantelli lemma, this implies that $U_{n} \rightarrow C$ almost surely (a.s.). The converse is true if the random variables $\left\{U_{n}, n \in \mathbb{N}\right\}$ are independent.

The way of measuring the rate of convergence considered in our paper originates from the results of $[4,7]$ and [12].

Theorem A. (See $[4,7]$.) If $\left\{X_{i}, i \geqslant 1\right\}$ is a sequence of independent identically distributed random variables and $\theta \geqslant 1$, then the following two statements are equivalent:
(a) $\mathbf{E}\left|X_{1}\right|^{\theta}<\infty$ and $\mathbf{E}\left(X_{1}\right)=0$,
(b) $\sum_{n=1}^{\infty} n^{\theta-2} \mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>\epsilon n\right)<\infty$ for all $\epsilon>0$.

[^0]This result was extended to Banach space setting by Norvaiša [12] as follows.
Theorem B. (See [12].) If $\left\{X_{i}, i \geqslant 1\right\}$ is a sequence of independent identically distributed random elements taking values in a real separable Banach space $(B,\|\cdot\|)$, number $\theta \geqslant 1, \mathbf{E}\left\|X_{1}\right\|^{\theta}<\infty$, and $\mathbf{E}\left(X_{1}\right)=0$. The following two statements are equivalent:
(a) $\sum_{n=1}^{\infty} n^{\theta-2} \mathbf{P}\left(\left\|\sum_{i=1}^{n} X_{i}\right\|>\epsilon n\right)<\infty$ for all $\epsilon>0$,
(b) $\lim _{n \rightarrow \infty} \mathbf{E}\left\|\sum_{i=1}^{n} X_{i}\right\| / n=0$.

Also, a characterization of statement (b) in terms of probabilistic geometry of the Banach space B is provided by Norvaiša [12]. Many other authors have devoted their study to complete convergence (see [2, 3, $5,9,10,13,14,15]$).

In the following, we assume that $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ is an array of random elements in a separable real Banach space $(B,\|\cdot\|)$ and $\left\{a_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ is an array of real constants. Denote

$$
S_{n} \equiv \sum_{j=1}^{\infty} a_{n j} X_{n j}
$$

In the following, we assume that the series S_{n} converges almost surely if the almost sure convergence does not automatically follow from the hypotheses.

Hu et al. [9] obtained the following result.
Theorem C. (See [9].) Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of rowwise independent random elements stochastically dominated by a random variable X (the technical definitions are given in the next section). Assume that

$$
\begin{equation*}
\sup _{j \geqslant 1}\left|a_{n j}\right|=O\left(n^{-\gamma}\right) \quad \text { for some } \gamma>0 \tag{1.1}
\end{equation*}
$$

and

$$
\sum_{j=1}^{\infty}\left|a_{n j}\right|=O\left(n^{\alpha}\right) \quad \text { for some } \alpha<\gamma
$$

If

$$
\mathbf{E}|X|^{1+(1+\alpha+\beta) / \gamma}<\infty \quad \text { for some } \beta \in(-1, \gamma-\alpha-1]
$$

and

$$
S_{n} \xrightarrow{\mathbf{P}} 0,
$$

then

$$
\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|S_{n}\right\|>\epsilon\right)<\infty \quad \text { for all } \epsilon>0
$$

The proof of Theorem C in [9] is rather complicated since it uses the Stieltjes integral techniques, summation by parts lemma, and so on. When $\alpha+\beta>-1$, Ahmed et al. [2] established a more general result and with simpler proof than that of Hu et al. [9]. Volodin et al. [15] generalized the result of Ahmed et al. [2]; meanwhile, they studied the special case $\alpha+\beta=-1$ and obtained the following Theorem D. Sung et al. [14] and Chen et al. [5] studied the case of $\beta=-1$ and $\alpha>0$, and Chen et al. [13] improved the result of Sung et al. [14]. Qiu [13] improved and generalized the corresponding results of Volodin et al. [15] and Chen et al. [5] in the case of $\alpha+\beta>-1$.

However, they did not study the relatively important special case $\alpha+\beta=-1$ (except Volodin et al. [15]). Baek et al. [3] established some results for arrays of rowwise negatively dependent random variables that
complement the results of Ahmed et al. [2] in the case of real random variables (and not for random elements in Banach spaces). The results of Baek et al. [3] are in the same spirit as those established by Volodin et al. [15] for weighted sums of arrays of Banach-space-valued random elements.
Theorem D. (See [15].) Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of rowwise independent random elements stochastically dominated by a random variable X. Assume that (1.1) holds and

$$
\sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}=O\left(n^{\alpha}\right) \quad \text { for some } 0<\theta \leqslant 2 \text { and any } \alpha \text { such that } \theta+\frac{\alpha}{\gamma}<2
$$

Let $\beta=-1-\alpha$ and fix $\delta>\theta$ such that $\theta+\alpha / \gamma<\delta \leqslant 2$. If

$$
\mathbf{E}|X|^{\delta}<\infty \quad \text { and } \quad S_{n} \xrightarrow{\mathbf{P}} 0,
$$

then

$$
\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|S_{n}\right\|>\epsilon\right)<\infty \quad \text { for all } \epsilon>0
$$

We assume in Theorem D that the series S_{n} converges a.s. when $\theta>1$, since the a.s. convergence does not automatically follow from the hypotheses. In this paper, we assume without explicit mention that each series S_{n} converges a.s. if the almost sure convergence does not automatically follow from the hypotheses. Note also that if $\beta<-1$, then the conclusions of Theorems \mathbf{C} and D , as well as the results of the present article, hold automatically, and hence, they are of interest only for $\beta \geqslant-1$. If $\beta \geqslant-1$, then $\beta=-1-\alpha$ implies that $\alpha \leqslant 0$.

In this paper, we improve Theorem D in three directions, namely:
(i) The moment condition in our results is strictly weaker than in Theorem D.
(ii) When $0<\theta<1$, the assumptions of rowwise independence of $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ and $S_{n} \xrightarrow{\mathbf{P}} 0$ in Theorem D are removed.
(iii) In Theorem 2, we deal with the case $\theta>2$.

2 PRELIMINARIES

Let $\{\Omega, \mathcal{F}, \mathbf{P}\}$ be a probability space, and let B be a separable real Banach space with norm $\|\cdot\|$. A random element is defined to be an \mathcal{F}-measurable mapping of Ω into B equipped with the Borel σ-algebra (that is, the σ-algebra generated by the open sets determined by $\|\cdot\|$). The expected value of a B-valued random element X is defined to be the Bochner integral and denoted by $\mathbf{E} X$.

Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of random elements (not necessarily rowwise independent and identically distributed) taking values in B. The array of random elements $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ is said to be stochastically dominated by a random variable X if there exists a constant D such that

$$
\sup _{j \in \mathbb{N}, n \in \mathbb{N}} \mathbf{P}\left(\left\|X_{n j}\right\|>x\right) \leqslant D \mathbf{P}(|X|>x) \quad \text { for all } x>0
$$

In this case, we write $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\} \prec X$. Let $\left\{a_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of real constants (called weights). Consider the sequence of weighted sums $S_{n} \equiv \sum_{j=1}^{\infty} a_{n j} X_{n j}, n \in \mathbb{N}$.

Let $1 \leqslant p \leqslant 2$, and let $\left\{\theta_{n}, n \in \mathbb{N}\right\}$ be independent and identically distributed stable random variables, each with characteristic function $\phi(t)=\exp \left(-|t|^{p}\right),-\infty<t<\infty$. The separable real Banach space B is said to be of stable type p if $\sum_{n=1}^{\infty} \theta_{n} v_{n}$ converges almost surely whenever $\left\{v_{n}, n \in \mathbb{N}\right\} \subseteq B$ with $\sum_{n=1}^{\infty}\left\|v_{n}\right\|^{p}<\infty$. Equivalent characterizations of a Banach space being of stable type p, properties of stable type p Banach spaces, and various relationships between the conditions "Rademacher type p " and "stable type p " can be found in Adler et al. [1].

Next, we present some lemmas that will be used to prove our main results.

Lemma 1. (See [6].) For every $p \geqslant 2$, there exists a positive constant C_{p} depending only on p such that, for any sequence $\left\{X_{n}, n \in \mathbb{N}\right\}$ of independent B-valued random elements with $X_{n} \in L^{p}, n \in \mathbb{N}$, the following inequality holds:

$$
\mathbf{E}\left|\left\|\sum_{j=1}^{n} X_{j}\right\|-\mathbf{E}\left\|\sum_{j=1}^{n} X_{j}\right\|\right|^{p} \leqslant C_{p}\left\{\left(\sum_{j=1}^{n} \mathbf{E}\left\|X_{j}\right\|^{2}\right)^{p / 2}+\sum_{j=1}^{n} \mathbf{E}\left\|X_{j}\right\|^{p}\right\} .
$$

The next lemma is well known, and its proof is left as an easy exercise for the interested reader.
Lemma 2. Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of random variables with $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\} \prec X$. Then there exists a constant C such that, for all $q>0$ and $x>0$,
(i) $\mathbf{E}\left\|X_{n j}\right\|^{q} I\left(\left\|X_{n j}\right\| \leqslant x\right) \leqslant C\left\{\mathbf{E}|X|^{q} I(|X| \leqslant x)+x^{q} \mathbf{P}(|X|>x)\right\}$,
(ii) $\mathbf{E}\left\|X_{n j}\right\|^{q} I\left(\left\|X_{n j}\right\|>x\right) \leqslant C \mathbf{E}|X|^{q} I(|X|>x)$.

Lemma 3. (See [11, Lemma 6.5].) Let $\left\{X_{n}, n \in \mathbb{N}\right\}$ be a sequence of symmetric B-valued random elements. Let $\left\{\xi_{n}, n \in \mathbb{N}\right\}$ and $\left\{\zeta_{n}, n \geqslant 1\right\}$ be real random variables such that $\xi_{n}=\phi_{n}\left(X_{n}\right)$, where $\phi_{n}: B \rightarrow \mathbb{R}$ are symmetric (even), and similarly for ζ_{n}. If $\left|\xi_{n}\right| \leqslant\left|\zeta_{n}\right|$ a.s. for every n, then

$$
\mathbf{P}\left(\left\|\sum_{n} \xi_{n} X_{n}\right\|>x\right) \leqslant 2 \mathbf{P}\left(\left\|\sum_{n} \zeta_{n} X_{n}\right\|>x\right) \quad \text { for all } x>0 .
$$

In particular, this inequality applies to the case where $\xi_{n}=I\left(X_{n} \in A_{n}\right) \leqslant 1 \equiv \zeta_{n}$ with the sets A_{n} symmetric in B (for example, $A_{n}=\left\{\left\|X_{n}\right\| \leqslant a_{n}\right\}$).

Lemma 4. (See [10].) Let $\left\{X_{n j}, 1 \leqslant j \leqslant k_{n}, n \in \mathbb{N}\right\}$ be an array of rowwise independent symmetric random elements. Suppose that there exists $\delta>0$ such that $\left\|X_{n j}\right\| \leqslant \delta$ a.s. for all $1 \leqslant j \leqslant k_{n}, n \in \mathbb{N}$. If $\sum_{j=1}^{k_{n}} X_{n j} \xrightarrow{\mathbf{P}} 0$, then $\mathbf{E}\left\|\sum_{j=1}^{k_{n}} X_{n j}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 5. (See [1].) Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of rowwise independent mean-zero random elements in a stable type $p(1<p<2)$ Banach space B. Suppose that $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\} \prec X$. Moreover, assume that

$$
\sup _{n \geqslant 1} \sum_{j=1}^{\infty}\left|a_{n j}\right|^{p}<\infty \quad \text { and } \quad \sup _{j \geqslant 1}\left|a_{n j}\right|=o(1) \text {. }
$$

If $\lim _{t \rightarrow \infty} t^{p} \mathbf{P}(|X|>t)=0$, then $S_{n} \xrightarrow{\mathbf{P}} 0$.
Throughout this paper, C always stands for a positive constant which may differ from one place to another, the symbol $[x]$ denotes the greatest integer less than or equal to x, and the symbol $\sharp A$ denotes the number of elements of a finite set A.

3 MAIN RESULTS AND PROOFS

With the preliminary results accounted for, we can formulate and prove the main results of this paper.
Theorem 1. Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of random elements with $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\} \prec X$. Assume that (1.1) holds and

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}=O\left(n^{\alpha}\right) \quad \text { for some } 0<\theta<1 \text { and some } \alpha . \tag{3.1}
\end{equation*}
$$

Let $\beta=-1-\alpha$. If

$$
\mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty,
$$

then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|S_{n}\right\|>\epsilon\right)<\infty \quad \text { for all } \epsilon>0 \tag{3.2}
\end{equation*}
$$

Proof. From (1.1) and (3.1), without loss of generality, we can assume that

$$
\begin{align*}
& \sup _{j \geqslant 1}\left|a_{n j}\right|=n^{-\gamma} \tag{3.3}\\
& \sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}=n^{\alpha} . \tag{3.4}
\end{align*}
$$

Let $Y_{n j}=a_{n j} X_{n j} I\left(\left\|a_{n j} X_{n j}\right\| \leqslant 1\right), j \in \mathbb{N}, n \in \mathbb{N}$. Then

$$
\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|S_{n}\right\|>\epsilon\right) \leqslant \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{P}\left(\left\|a_{n k} X_{n k}\right\|>1\right)+\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{k=1}^{\infty} Y_{n k}\right\|>\epsilon\right):=I_{1}+I_{2}
$$

Therefore, in order to prove (3.2), it suffices to show that $I_{1}<\infty$ and $I_{2}<\infty$. Since $\alpha+\beta=-1$ and $\theta>0$, by Lemma 2, (3.3), and (3.4) we have

$$
\begin{align*}
I_{1} & \leqslant \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E}\left\|a_{n k} X_{n k}\right\|^{\theta} I\left(\left\|a_{n k} X_{n k}\right\|>1\right) \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E}\left|a_{n k} X\right|^{\theta} I\left(|X|>\left|a_{n k}\right|^{-1}\right) \\
& \leqslant C \sum_{n=1}^{\infty} n^{-1} \mathbf{E}|X|^{\theta} I\left(|X|>n^{\gamma}\right)=C \sum_{n=1}^{\infty} n^{-1} \sum_{j=n}^{\infty} \mathbf{E}|X|^{\theta} I\left(j^{\gamma}<|X| \leqslant(j+1)^{\gamma}\right) \\
& =C \sum_{j=1}^{\infty} \mathbf{E}|X|^{\theta} I\left(j^{\gamma}<|X| \leqslant(j+1)^{\gamma}\right) \sum_{n=1}^{j} n^{-1} \leqslant C \sum_{j=1}^{\infty} \log j \mathbf{E}|X|^{\theta} I\left(j^{\gamma}<|X| \leqslant(j+1)^{\gamma}\right) \\
& \leqslant C \mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty . \tag{3.5}
\end{align*}
$$

Let $I_{n k}=\left\{i:(n k)^{\gamma} \leqslant\left|a_{n i}\right|^{-1}<(n(k+1))^{\gamma}\right\}, k \in \mathbb{N}, n \in \mathbb{N}$. Then $\bigcup_{k=1}^{\infty} I_{n k}=\mathbb{N}$ for all $n \in \mathbb{N}$. Choose t such that $\theta<t<1$. By the Markov inequality, Lemma 2, and (3.5) we have

$$
\begin{aligned}
I_{2} & \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty} \mathbf{E}\left\|Y_{n k}\right\|^{t} \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty}\left\{\mathbf{E}\left|a_{n k} X\right|^{t} I\left(|X| \leqslant\left|a_{n k}\right|^{-1}\right)+\mathbf{P}\left(|X|>\left|a_{n k}\right|^{-1}\right)\right\} \\
& \leqslant C+C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \mathbf{E}|X|^{t} I\left(|X|<(n(k+1))^{\gamma}\right) \\
& \leqslant C+C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \sum_{i=1}^{n(k+1)} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leqslant C+C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=1}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \sum_{i=1}^{2 n} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
&+C \sum_{n=1}^{\infty} n^{\beta} \sum_{k=2}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \sum_{i=2 n+1}^{n(k+1)} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
&:=C+I_{3}+I_{4} . \tag{3.6}
\end{align*}
$$

Since $t>\theta$ and $\gamma>0$, we have $k^{\gamma(t-\theta)}>j^{\gamma(t-\theta)}$ for all $k>j$, where $j, k \in \mathbb{N}$. By (3.4) we have

$$
\begin{aligned}
n^{\alpha} & =\sum_{i=1}^{\infty}\left|a_{n i}\right|^{\theta}=\sum_{k=1}^{\infty} \sum_{i \in I_{n k}}\left|a_{n i}\right|^{\theta} \geqslant \sum_{k=1}^{\infty}\left(\sharp I_{n k}\right)(n(k+1))^{-\gamma \theta} \\
& \geqslant \sum_{k=j}^{\infty}\left(\sharp I_{n k}\right)(n(k+1))^{-\gamma t}(n(j+1))^{\gamma(t-\theta)}>2^{-\gamma t} \sum_{k=j}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t}(n j)^{\gamma(t-\theta)} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{k=j}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \leqslant C n^{\alpha-\gamma(t-\theta)} j^{-\gamma(t-\theta)} \quad \text { for all } j \in \mathbb{N} \text {. } \tag{3.7}
\end{equation*}
$$

By (3.7) we can get that

$$
\begin{aligned}
I_{3} & \leqslant C \sum_{n=1}^{\infty} n^{\beta} n^{\alpha-\gamma(t-\theta)} \sum_{i=1}^{2 n} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
& \leqslant C \sum_{n=1}^{\infty} n^{-1-\gamma(t-\theta)}+C \sum_{n=1}^{\infty} n^{-1-\gamma(t-\theta)} \sum_{i=2}^{2 n} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
& \leqslant C+C \sum_{i=2}^{\infty} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \sum_{n=[i / 2]}^{\infty} n^{-1-\gamma(t-\theta)} \\
& \leqslant C+C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
& \leqslant C+C \sum_{i=2}^{\infty} i^{\gamma \theta} \mathbf{E} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \leqslant C+C \mathbf{E}|X|^{\theta}<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
I_{4} & \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{i=2 n+1}^{\infty} \sum_{k=[i / n-1]}^{\infty}\left(\sharp I_{n k}\right)(n k)^{-\gamma t} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \\
& \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{i=2 n+1}^{\infty} n^{\alpha-\gamma(t-\theta)}\left(\frac{i}{n}\right)^{-\gamma(t-\theta)} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \sum_{n=1}^{[i / 2]} n^{-1} \\
& \leqslant C \sum_{i=2}^{\infty} i^{-\gamma(t-\theta)} \log i \mathbf{E}|X|^{t} I\left((i-1)^{\gamma} \leqslant|X|<i^{\gamma}\right) \leqslant C \mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty .
\end{aligned}
$$

Therefore, (3.2) holds.
Remark 1. If we compare Theorem 1 with Theorem D in the case $0<\theta<{ }_{\mathrm{P}} 1$, then we see that neither the assumption of rowwise independence of $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ nor $S_{n} \xrightarrow{\mathbf{P}} 0$ is required. In addition, the moment condition in Theorem 1 is strictly weaker than in Theorem D.

Theorem 2. Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of rowwise independent random elements with $\left\{X_{n j}\right.$, $j \in \mathbb{N}, n \in \mathbb{N}\} \prec X$. Assume that (1.1) holds and

$$
\sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}=O\left(n^{\alpha}\right) \quad \text { for some } \theta \geqslant 1 \text { and some } \alpha
$$

Moreover, assume that $\sum_{j=1}^{\infty} a_{n j}^{2}=O\left(n^{\eta}\right)$ for some $\eta<0$ when $\theta \geqslant 2$. Let $\beta=-1-\alpha$. If

$$
\mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty \quad \text { and } \quad S_{n} \xrightarrow{\mathbf{P}} 0,
$$

then (3.2) holds.
Proof. Since $S_{n} \xrightarrow{\mathbf{P}} 0$, by the standard argument we may assume that random variables $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ are symmetric. The assumption of a.s. convergence of $\sum_{j=1}^{\infty} a_{n j} X_{n j}$ for every n implies that there exists a positive integer k_{n} such that

$$
\mathbf{P}\left(\left\|\sum_{j=k_{n}+1}^{\infty} a_{n j} X_{n j}\right\|>\frac{\epsilon}{2}\right)<\frac{1}{n^{2+\beta}} \quad \text { for all } n \geqslant 1
$$

Therefore, in order to prove (3.2), we only need to prove that

$$
\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{j=1}^{k_{n}} a_{n j} X_{n j}\right\|>\frac{\epsilon}{2}\right)<\infty
$$

Let $Y_{n j}$ be as in Theorem 1. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{j=1}^{k_{n}} a_{n j} X_{n j}\right\|>\frac{\epsilon}{2}\right) \\
& \quad \leqslant \sum_{n=1}^{\infty} n^{\beta} \sum_{j=1}^{\infty} \mathbf{P}\left(\left\|a_{n j} X_{n j}\right\|>1\right)+\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|\sum_{j=1}^{k_{n}} Y_{n j}\right\|>\frac{\epsilon}{2}\right):=I_{5}+I_{6} .
\end{aligned}
$$

Similarly to the proof of (3.5) in Theorem 1, we have $I_{5}<\infty$. Therefore, in order to prove (3.2), we only need to prove that $I_{6}<\infty$. Since $S_{n} \xrightarrow{\mathbf{P}} 0$, by Lemma 3 we can get that $\sum_{j=1}^{\infty} Y_{n j} \xrightarrow{\mathbf{P}} 0$. Hence, $\sum_{j=1}^{k_{n}} Y_{n j} \xrightarrow{\mathbf{P}} 0$.

Since $\left\|Y_{n j}\right\| \leqslant 1$ for all $j \in \mathbb{N}, n \in \mathbb{N}$, by Lemma 4 we have

$$
\mathbf{E}\left\|\sum_{j=1}^{k_{n}} Y_{n j}\right\| \rightarrow 0
$$

Thus, in order to prove that $I_{6}<\infty$, we only need to prove that

$$
I_{6}^{*}=\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\| \| \sum_{j=1}^{k_{n}} Y_{n j}\|-\mathbf{E}\| \sum_{j=1}^{k_{n}} Y_{n j}\| \|>\frac{\epsilon}{4}\right)<\infty
$$

Case 1: $1 \leqslant \theta<2$. Letting $t=2$ in (3.6) of Theorem 1, by Lemmas 1 and 2 we have

$$
I_{6}^{*} \leqslant C \sum_{n=1}^{\infty} n^{\beta} \sum_{j=1}^{k_{n}} \mathbf{E}\left\|Y_{n j}\right\|^{2}<\infty
$$

Thus, (3.2) holds.
Case 2: $\theta \geqslant 2$. Taking v such that $v>\max \{\theta,-2(1+\beta) / \eta\}$, by Lemma 1 we have

$$
I_{6}^{*} \leqslant C \sum_{n=1}^{\infty} n^{\beta}\left\{\left(\sum_{j=1}^{k_{n}} \mathbf{E}\left\|Y_{n j}\right\|^{2}\right)^{v / 2}+\sum_{j=1}^{k_{n}} \mathbf{E}\left\|Y_{n j}\right\|^{v}\right\}:=I_{7}+I_{8}
$$

By Lemma 2 we have

$$
\begin{aligned}
I_{7} & \leqslant C \sum_{n=1}^{\infty} n^{\beta}\left(\sum_{j=1}^{k_{n}} \mathbf{P}\left(\left|a_{n j} X\right|>1\right)+\sum_{j=1}^{k_{n}} \mathbf{E}\left|a_{n j} X\right|^{2} I\left(\left|a_{n j} X\right| \leqslant 1\right)\right)^{v / 2} \\
& \leqslant C \sum_{n=1}^{\infty} n^{\beta}\left(\sum_{j=1}^{k_{n}} \mathbf{E}\left|a_{n j} X\right|^{2}\right)^{v / 2} \leqslant C \sum_{n=1}^{\infty} n^{\beta}\left(\sum_{j=1}^{\infty}\left|a_{n j}\right|^{2}\right)^{v / 2} \leqslant C \sum_{n=1}^{\infty} n^{\beta+v \eta / 2}<\infty
\end{aligned}
$$

Similarly to the proof of $I_{2}<\infty$ in Theorem 1, we have $I_{8}<\infty$. Thus, (3.2) holds.
Remark 2. (i) The moment condition in Theorem 2 is strictly weaker than in Theorem D for $1 \leqslant \theta<2$.
(ii) If $\beta<-1$, then obviously $\sum_{n=1}^{\infty} n^{\beta} \mathbf{P}\left(\left\|S_{n}\right\|>\epsilon\right)<\infty$ for all $\epsilon>0$. If $\beta \geqslant-1$, then $\beta=-1-\alpha$ implies that $\alpha \leqslant 0$, and thus, by the conditions $\theta=2$ and $\theta+\alpha / \gamma<\delta \leqslant 2$ in Theorem D , we can get that $\alpha<0$. Hence, we have $\sum_{j=1}^{\infty} a_{n j}^{2}=O\left(n^{\alpha}\right)$ for $\alpha<0$. However, the case $\theta>2$ is not considered in Theorem D.
Corollary 1. Suppose that B is of stable type p for some $1<p<2$. Let $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\}$ be an array of mean-zero rowwise independent random elements with $\left\{X_{n j}, j \in \mathbb{N}, n \in \mathbb{N}\right\} \prec X$. Assume that (1.1) holds and

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}=O\left(n^{\alpha}\right) \quad \text { for some } 1<\theta \leqslant p \text { and some } \alpha \tag{3.8}
\end{equation*}
$$

Let $\beta=-1-\alpha$. If

$$
\mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty
$$

then (3.2) holds.

Proof. If $\beta<-1$, then (3.2) clearly holds, and hence, it is of interest only for $\beta \geqslant-1$. If $\beta \geqslant-1$, then $\beta=-1-\alpha$ implies that $\alpha \leqslant 0$, and by (3.8) we can get that

$$
\sup _{n \geqslant 1} \sum_{j=1}^{\infty}\left|a_{n j}\right|^{\theta}<\infty
$$

Since $\mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty$, we have

$$
\lim _{t \rightarrow \infty} t^{\theta} \mathbf{P}(|X|>t)=0
$$

Therefore, in order to prove (3.2), by Theorem 2 we only need to check that $S_{n} \xrightarrow{\mathbf{P}} 0$. Since B is of stable type p for some $1<p<2$ and $\theta \leqslant p, B$ is of stable type θ. By Lemma 5 the convergence in probability holds.

Remark 3. The moment condition in Corollary 1 is strictly weaker than in Theorem 3.3 of Volodin et al. [15].
Remark 4 and open problem. The authors believe that Theorems 1 and 2 can be further improved in the direction of relaxing the moment conditions. Namely, we guess that the assumption $\mathbf{E}\left(|X|^{\theta} \log (1+|X|)\right)<\infty$ can be weakened to $\mathbf{E}|X|^{\theta}<\infty$. Despite our efforts to solve this problem, it is still an open problem. We would also like to mention that this logarithmic term appears only in the somewhat peculiar case $\alpha+\beta=-1$.

Acknowledgment. The authors would like to thank the referee for helpful comments that helped to improve the presentation.

REFERENCES

1. A. Adler, M. Ordóñez Cabrera, A. Rosalsky, and A. Volodin, Degenerate weak convergence of row sums for arrays of random elements in stable type p Banach spaces, Bull. Inst. Math., Acad. Sin., 27:187-212, 1999.
2. S.E. Ahmed, R. Giuliano Antonini, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements with application to moving average processes, Stat. Probab. Lett., 58(2):185-194, 2002.
3. J.I. Baek and S.T. Park, Convergence of weighted sums for arrays of negatively dependent random variables and its applications, J. Theor. Probab., 23(2):362-377, 2010.
4. L.E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Am. Math. Soc., 120(1):108-123, 1965.
5. P.Y. Chen, S.H. Sung, and A.I. Volodin, Rate of complete convergence for arrays of Banach-space-valued random elements, Sib. Adv. Math., 16(3):1-14, 2006.
6. A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probab., 9:157-161, 1981.
7. C.C. Heyde and V.K. Rohatgi, A pair of complementary theorems on convergence rates in the law of large numbers, Proc. Cambridge Philos. Soc., 63(1):73-82, 1967.
8. P.L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33:25-31, 1947.
9. T.-C. Hu, D. Li, A. Rosalsky, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements, Theory Probab. Appl., 47(3):455-468, 2002.
10. T.-C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stoch. Anal. Appl., 17(6):963-992, 1999.
11. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
12. R. Norvaiša, Law of large numbers for identically distributed Banach-valued random variables, Lith. Math. J., 23(3):290-296, 1983.
13. D.H. Qiu, Convergence rates for weighted sums of arrays of Banach-space-valued random elements, Acta Math. Sin., Chin. Ser., 52(4):651-660, 2009.
14. S.H. Sung and A.I. Volodin, On the rate of complete convergence for weighted sums of arrays of random elements, J. Korean Math. Soc., 43(4):815-828, 2006.
15. A. Volodin, R. Giuliano Antonini, and T.-C. Hu, A note on the rate of complete convergence for weighted sums of arrays of Banach-space-valued random elements, Lobachevskii J. Math., 15:21-33, 2004.

[^0]: ${ }^{*}$ The research of T.-C. Hu is partially supported by the National Science Council, grant NSC 99-218-M-007-001-my2. The research of M. Ordóñez Cabrera is partially supported by the Plan Andaluz de Investigacion de la Junta de Andalucia FQM-127 and grant P08-FQM-03543, and by MEC grant MTM2009-10696-C02-01. The research of A. Volodin is partially supported by the National Science and Engineering Research Council of Canada.

