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Abstract

For a sequence of lower negatively dependent nonnegative random variables fX n; nX1g; conditions are
provided under which limn!1

Pn
j¼1 X j=bn ¼ 1 almost surely where fbn; nX1g is a nondecreasing sequence

of positive constants. The results are new even when they are specialized to the case of nonnegative
independent and identically distributed summands and bn ¼ nr; nX1 where r40:
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1. Introduction

Throughout this paper, let fX n; nX1g be a sequence of nonnegative random variables defined
on a probability space ðO;F;PÞ: Their partial sums will be denoted, as usual, by Sn ¼

Pn
j¼1X j;

nX1: It is well known that if the random variables fX n; nX1g are independent and identically
see front matter r 2004 Elsevier B.V. All rights reserved.
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distributed (i.i.d.) with EX 1 ¼ 1; then

lim
n!1

Sn

n
¼ 1 almost surely ða:s:Þ:

In this paper, we study the almost sure growth rate of Sn; more specifically, we provide conditions
under which

lim
n!1

Sn

bn

¼ 1 a:s:;

where fbn; nX1g is a nondecreasing sequence of positive constants. In fact, we examine this
problem in more generality than the case of i.i.d. summands. In the main results, Theorems 1 and
2, the summands fX n; nX1g do not need to be independent or identically distributed but,
nevertheless, they are new results in the i.i.d. case. In Theorems 1 and 2, it is assumed that
fX n; nX1g is a sequence of random variables which are lower negatively dependent. This is the
assertion that for all nX1 and all x1; . . . ;xn 2 R;

PfX 1px1; . . . ;X npxngp
Yn

j¼1

PfX jpxjg: (1.1)

If for all n4mX1 and all x1; x2 2 R

PfX mpx1;X npx2gpPfX mpx1g 	 PfX npx2g;

then fX n; nX1g is said to be a sequence of pairwise lower negatively dependent random
variables. Of course, (1.1) is automatic if the fX n; nX1g are independent. A sequence of lower
negatively dependent random variables fY n; nX1g (not necessarily nonnegative) obeys the strong

law of large numbers (SLLN)
Pn

j¼1 Y j=bn ! 0 a.s. under suitable conditions; see for example
Matu"a (1992), Kim and Baek (1999) (wherein bn ¼ n; nX1), Amini and Bozorgnia (2000)
(wherein bn ¼ nr; nX1 with r41

2
), Kim and Kim (2001), and Taylor et al. (2002). In Kim and Kim

(2001) the norming sequence fbn; nX1g is very rapidly growing in that it satisfies the conditionP1

j¼n b
2
j ¼ Oðb
2n Þ and for this reason their assertion that their Theorem 1 extends Theorem 6 of

Adler et al. (1992) (from the independent case to the pairwise lower negatively dependent case) is
incorrect.
2. Mainstream

The key lemma for proving Theorem 1 will now be established.

Lemma 1. Let fSn; nX1g be a nondecreasing sequence of nonnegative random variables, let

fbn; nX1g be a nondecreasing sequence of positive constants, and let fan; nX1g be a sequence of
positive constants. Suppose that there exists a strictly increasing sequence of positive integers

fmðkÞ; kX1g and a constant Mo1 such that

bmðkþ1ÞpMbmðkÞ; kX1 (2.1)
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and for some �40

min
mðkÞþ1pnpmðkþ1Þ

anX
�

mðk þ 1Þ 
 mðkÞ
; kX1: (2.2)

If for some 0oc0p1 and all 0ococ0

X1
n¼1

anPfSnpcbngo1; (2.3)

then

lim inf
n!1

Sn

bn

X
c0

M2
a:s: (2.4)

Proof. For arbitrary 0ococ0;

14
X1
k¼1

Xmðkþ1Þ

n¼mðkÞþ1

anPfSnpcbng ðby ð2:3ÞÞ

X

X1
k¼1

�

mðk þ 1Þ 
 mðkÞ
PfSmðkþ1ÞpcbmðkÞg mðk þ 1Þ 
 mðkÞð Þ

ðby ð2:2Þ;Sn "; and bn "Þ

X�
X1
k¼1

P Smðkþ1Þp
c

M
bmðkþ1Þ

n o
ðby ð2:1ÞÞ

and hence

X1
k¼1

PfSmðkÞpcbmðkÞgo1

for all 0oco c0
M
: Then by the Borel–Cantelli lemma

PfSmðkÞpcbmðkÞ i:o: ðkÞg ¼ 0

for all 0oco c0
M
: Hence

lim inf
k!1

SmðkÞ

bmðkÞ

Xc a:s:

for all 0oco c0
M
: Letting c " c0

M
yields

lim inf
k!1

SmðkÞ

bmðkÞ

X
c0

M
a:s:
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Then for nXmð1Þ þ 1; writing mðkÞ þ 1pnpmðk þ 1Þ where k ¼ kðnÞX1 and recalling that
0pSn "; 0obn "; and (2.1), we have

lim inf
n!1

Sn

bn

X lim inf
n!1

SmðkðnÞÞ

bmðkðnÞþ1Þ

X lim inf
n!1

SmðkðnÞÞ

MbmðkðnÞÞ

X lim inf
k!1

SmðkÞ

MbmðkÞ

X
c0

M2
a:s: &

Corollary 1. Let fSn; nX1g be a nondecreasing sequence of nonnegative random variables and let

r40: If for some 0oc0p1 and all 0ococ0

X1
n¼1

1

n
PfSnpcnrgo1;

then

lim inf
n!1

Sn

nr
Xc0 a:s:

Proof. Let d40 and y41 be arbitrary and let mðkÞ ¼ ½yk
�; kX1: Let bn ¼ nr; nX1: Set M ¼

ð1þ dÞyr: Then bmðkþ1ÞpMbmðkÞ for all large k. Set an ¼ 1=n; nX1:Now for some �40 and large k

min
mðkÞþ1pnpmðkþ1Þ

anX
�

mðk þ 1Þ 
 mðkÞ
:

It is clear that the sequences fbn; nX1g; fmðkÞ; kX1g; and fan; nX1g can be redefined for small
values of n and k so that (2.1), (2.2), and (2.3) (for all 0ococ0) hold with M and � as above.
Hence by Lemma 1

lim inf
n!1

Sn

nr
X

c0

ð1þ dÞ2y2r
a:s:

Letting d # 0 and y # 1 yields the conclusion (2.4). &

The next corollary of Lemma 1 was originally due to Gut et al. (1997) when Sn ¼
Pn

j¼1 X j; nX1
where fX n; nX1g is a sequence of i.i.d. nonnegative random variables and bn ¼ nr; nX1 with rX1
but the proof of it provided by them is incorrect. However, a valid proof of their result can be
given using the method of proof of another result by Gut et al. (1997). It should be noted that the
faster bn " 1 in Corollary 2, the stronger is the assumption (2.6) but so is the conclusion (2.7).

Corollary 2. Let fSn; nX1g be a nondecreasing sequence of nonnegative random variables and let
fbn; nX1g be a nondecreasing sequence of positive constants such that

b2n ¼ OðbnÞ: (2.5)
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If

X1
n¼1

1

n
PfSnpcbngo1 (2.6)

for all 0oco1; then

lim
n!1

Sn

bn

¼ 1 a:s: (2.7)

Proof. Let mðkÞ ¼ 2k; kX1; � ¼ 1
2
; and an ¼ 1=n; nX1: It follows from (2.5) that (2.1) holds for

some constant Mo1:Moreover, (2.2) is immediate. Taking c0 ¼ 1; the conclusion (2.7) follows
directly from Lemma 1. &

Theorem 1 may now be presented. Its proof was inspired by that of a classical result of Derman
and Robbins (1955) showing that for i.i.d. summands fY n; nX1g with EYþ

1 ¼ EY

1 ¼ 1 that

limn!1

Pn
j¼1 Y j=n ¼ 1 a.s. can prevail.

Theorem 1. Let Sn ¼
Pn

j¼1 X j; nX1 where fX n; nX1g is a sequence of lower negatively dependent
nonnegative random variables. Let fbn; nX1g be a nondecreasing sequence of positive constants and

let fan; nX1g be a sequence of positive constants. Suppose that there exists a strictly increasing
sequence of positive integers fmðkÞ; kX1g such that bmðkþ1Þ ¼ OðbmðkÞÞ and (2.2) holds for some �40:
Furthermore, suppose that for all 0oco1

X1
n¼1

an

Yn

j¼1

PfX jpcbngo1: (2.8)

Then

lim
n!1

Sn

bn

¼ 1 a:s: (2.9)

Proof. Since bmðkþ1Þ ¼ OðbmðkÞÞ; there exists a constant Mo1 such that (2.1) holds. Let 0oco1

be arbitrary and set c0 ¼ 1: Then for nX1;

PfSnpcbngpPfX 1pcbn; . . . ;X npcbng ðsince the X j are nonnegativeÞ

p
Yn

j¼1

PfX jpcbng ðby ð1:1ÞÞ

and hence

X1
n¼1

anPfSnpcbngp
X1
n¼1

an

Yn

j¼1

PfX jpcbngo1 ðby ð2:8ÞÞ:

The conclusion (2.9) follows immediately from Lemma 1 noting that 0pSn " : &
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The next theorem is in effect a special case of Theorem 1. Theorem 2 can of course also be
proved in a similar manner to that of Theorem 1 by using Corollary 2 instead of Lemma 1.

Theorem 2. Let Sn ¼
Pn

j¼1X j; nX1 where fX n; nX1g is a sequence of lower negatively dependent
nonnegative random variables and suppose that the nonnegative function hðxÞ on ½0;1Þ is such that

PfX n4xgXhðxÞ for all nX1 and xX0: (2.10)

Let fbn; nX1g be a nondecreasing sequence of positive constants satisfying (2.5). Suppose that for all

0oco1

X1
n¼1

ð1
 hðcbnÞÞ
n

n
o1: (2.11)

Then

lim
n!1

Sn

bn

¼ 1 a:s: (2.12)

Proof. Let mðkÞ ¼ 2k; kX1; � ¼ 1
2
; and an ¼ 1=n; nX1: Then bmðkþ1Þ ¼ OðbmðkÞÞ and (2.2) holds as

was noted in the proof of Corollary 2. Note that for all 0oco1

X1
n¼1

an

Yn

j¼1

PfX jpcbng ¼
X1
n¼1

1

n

Yn

j¼1

ð1
 PfX j4cbngÞ

p
X1
n¼1

ð1
 hðcbnÞÞ
n

n
ðby ð2:10ÞÞ

o1 ðby ð2:11ÞÞ:

The conclusion (2.12) follows directly from Theorem 1. &

We now obtain the following corollary of Theorem 2. It should be noted that (2.13) and (2.14)
ensure that EX 1=r

n ¼ 1; nX1: Moreover, the larger r is taken in Corollary 3, the more stringent
are the hypotheses but the conclusion (2.15) is also stronger.
Corollary 3. Let Sn ¼
Pn

j¼1 X j; nX1 where fX n; nX1g is a sequence of lower negatively dependent

nonnegative random variables. Let r40 and suppose there exists a nonnegative function gðxÞ on
½0;1Þ such that

x1=rPfX n4xgXgðxÞ for all nX1 and xX0 (2.13)

and

log log x ¼ oðgðxÞÞ as x ! 1: (2.14)

Then

lim
n!1

Sn

nr
¼ 1 a:s: (2.15)
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Proof. We will apply Theorem 2 with the function hðxÞ defined by hð0Þ ¼ 0; hðxÞ ¼ gðxÞ=x1=r; x40
and with bn ¼ nr; nX1: By (2.14) we can write gðxÞ ¼ GðxÞ log log x where GðxÞ ! 1 as x ! 1:
For 0oco1 and all large n

ð1
 hðcnrÞÞ
n

n
p

exp 

gðcnrÞ

ðcnrÞ
1=r

n o� �n

n
ðby the elementary inequality 1
 xpe
xÞ

¼
1

n
exp 


gðcnrÞ

c1=r

� 	

¼
1

n
exp 


GðcnrÞ log logðcnrÞ

c1=r

� 	

p
1

n
exp 
2 log log n


 �

¼
1

nðlog nÞ2

and hence

X1
n¼1

ð1
 hðcnrÞÞ
n

n
o1:

The conclusion (2.15) follows immediately from Theorem 2. &

The fourth corollary is in effect a special case of Corollary 3.

Corollary 4. Let Sn ¼
Pn

j¼1 X j; nX1 where fX n; nX1g is a sequence of identically distributed lower
negatively dependent (a fortiori, i.i.d.) nonnegative random variables. Let r40 and suppose that

x1=rPfX 14xg

log log x
! 1 as x ! 1: (2.16)

Then

lim
n!1

Sn

nr
¼ 1 a:s: (2.17)

Proof. Let gðxÞ ¼ x1=rPfX 14xg; xX0: Then (2.13) holds since the fX n; nX1g are identically
distributed, and (2.14) holds by (2.16). The conclusion (2.17) then follows immediately from
Corollary 3. &

The following example demonstrates that Corollary 4 is sharp and hence so are Corollary 3 and
Theorems 1 and 2.

Example 1. Let rX1 and let fX n; nX1g be a sequence of identically distributed lower negatively
dependent random variables where

PfX 14xg ¼
ee=rðlog log xÞ2

x1=r
; xXee:
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Then (2.16) holds whence (2.17) follows from Corollary 4. We will now show that for arbitrary
�40; the SLLN

lim
n!1

Sn

nrþ�
¼ 0 a:s: (2.18)

holds. Note that

EX
1=ðrþ�Þ
1 ¼ Const:þ

Z 1

ee

ee=rx
1

rþ�
1
ðlog log xÞ2

x1=r
dx

¼ Const:þ

Z 1

ee

ee=r ðlog log xÞ2

x1þ
1
r

 1

rþ�

dx

o1: ð2:19Þ

It is well known (see, e.g., Sawyer, 1966; Chatterji, 1969/1970; or Martikainen and Petrov, 1980)
that the famous Marcinkiewicz–Zygmund SLLN holds irrespective of the joint distributions of
the identically distributed summands fY n; nX1g when EjY 1j

po1; where 0opo1: Hence (2.18)
follows from (2.19) and the Marcinkiewicz–Zygmund SLLN.
Remark 1. Suppose that fX n; nX1g is a sequence of i.i.d. nonnegative random variables with

PfX 14xg �
c log log x

x1=r
vðxÞ as x ! 1; (2.20)

where c and r are positive constants and vðxÞ is a positive function. If vðxÞ ! 1 as x ! 1; then
Sn=nr ! 1 a.s. by Corollary 4. But if vðxÞQ1 as x ! 1; then lim infn!1 Sn=nro1 a.s.
can prevail. This follows by taking vðxÞ ¼ ðlog log xÞ
1=r; xXee where r41 and applying
Theorem 5 of Erickson (1976) which establishes that lim infn!1Sn=nr ¼ b a.s. for some constant
0obo1:
Remark 2. Suppose that fX n; nX1g is a sequence of i.i.d. nonnegative random variables satisfying
(2.20) with vðxÞ � 1: If 0orp1; then limn!1 Sn=nr ¼ 1 a.s. by the Kolmogorov SLLN. An
interesting question which we are unable to resolve is whether or not limn!1 Sn=nr ¼ 1 a.s. when
r41: However, it follows from the ensuing theorem that lim infn!1 Sn=nr

Xcra.s. It is interesting
to notice that the lower bound cr depends on the distribution of X 1: In addition, sinceP1

n¼1 PfX n4Mnrg ¼ 1 for all 0oMo1; it follows from the Borel–Cantelli lemma that

lim sup
n!1

Sn

nr
X lim sup

n!1

X n

nr
¼ 1 a:s:

Theorem 3. Let Sn ¼
Pn

j¼1 X j; nX1 where fX n; nX1g is a sequence of identically distributed lower

negatively dependent (a fortiori, i.i.d.) nonnegative random variables. Suppose that

PfX 14xgX
CðxÞ log log x

x1=r
; x4e; (2.21)
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where limx!1 CðxÞ ¼ c 2 ð0;1Þ and r40: Then

lim inf
n!1

Sn

nr
Xcr a:s: (2.22)

Proof. Let c0 ¼ cr: Now for all 0ogoc0;

lim
n!1

CðgnrÞ

g1=r
¼

c

g1=r
41

and so CðgnrÞ=g1=r
X1þ d for some d40 and large n. Thus for all 0ogoc0 and all large n

PfSnpgnrgpPfX 1pgnr; . . . ;X npgnrg

ðsince the X j are nonnegativeÞ

p 1

CðgnrÞ log logðgnrÞ

g1=rn

 �n

ðby ð1:1Þ and ð2:21ÞÞ

p exp 

CðgnrÞ

g1=r
log logðgnrÞ

� 	

since 1

x

n

� �n

pe
x for 0oxon
� �

¼ ðlogðgnrÞÞ

CðgnrÞ=g1=r

pðlogðgnrÞÞ

1
dp

2

r1þdðlog nÞ1þd :

Consequently,

X1
n¼1

anPfSnpgnrgo1:

The conclusion (2.22) follows immediately from Corollary 1. &
Remark 3. Corollary 4 may be contrasted with the following result of Rosalsky (1993) concerning
the growth rate of sums of identically distributed strictly positive random variables irrespective of
their joint distributions.
Theorem 4 (Rosalsky, 1993). Let Sn ¼
Pn

j¼1 X j; nX1 where fX n; nX1g is a sequence of identically
distributed random variables with X 140 a.s. and let fbn; nX1g be a sequence of positive constants

with lim infn!1ðbn=nÞ ¼ 0: Then

lim sup
n!1

Sn

bn

¼ 1 a:s:

irrespective of the joint distributions of the fX n; nX1g:
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