On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables

Oleg Klesov ${ }^{\text {a }}$, Andrew Rosalsky ${ }^{\mathrm{b}, *}$, Andrei I. Volodin ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Prospekt Peremogy 37, 02056 Kiev, Ukraine
${ }^{\mathrm{b}}$ Department of Statistics, University of Florida, Gainesville, FL 32611, USA
${ }^{\mathrm{c}}$ Department of Mathematics and Statistics, University of Regina, Regina, Sask., Canada S4S 0A2

Received 12 July 2004
Available online 20 November 2004

Abstract

For a sequence of lower negatively dependent nonnegative random variables $\left\{X_{n}, n \geqslant 1\right\}$, conditions are provided under which $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} X_{j} / b_{n}=\infty$ almost surely where $\left\{b_{n}, n \geqslant 1\right\}$ is a nondecreasing sequence of positive constants. The results are new even when they are specialized to the case of nonnegative independent and identically distributed summands and $b_{n}=n^{r}, n \geqslant 1$ where $r>0$. (C) 2004 Elsevier B.V. All rights reserved.

MSC: primary 60F15 Keywords: Sums of lower negatively dependent random variables; Nonnegative random variables; Sums of independent and identically distributed random variables; Almost sure growth rate

1. Introduction

Throughout this paper, let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of nonnegative random variables defined on a probability space (Ω, \mathscr{F}, P). Their partial sums will be denoted, as usual, by $S_{n}=\sum_{j=1}^{n} X_{j}$, $n \geqslant 1$. It is well known that if the random variables $\left\{X_{n}, n \geqslant 1\right\}$ are independent and identically

[^0]distributed (i.i.d.) with $E X_{1}=\infty$, then
$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\infty \quad \text { almost surely (a.s.). }
$$

In this paper, we study the almost sure growth rate of S_{n}; more specifically, we provide conditions under which

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{b_{n}}=\infty \quad \text { a.s. }
$$

where $\left\{b_{n}, n \geqslant 1\right\}$ is a nondecreasing sequence of positive constants. In fact, we examine this problem in more generality than the case of i.i.d. summands. In the main results, Theorems 1 and 2, the summands $\left\{X_{n}, n \geqslant 1\right\}$ do not need to be independent or identically distributed but, nevertheless, they are new results in the i.i.d. case. In Theorems 1 and 2, it is assumed that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of random variables which are lower negatively dependent. This is the assertion that for all $n \geqslant 1$ and all $x_{1}, \ldots, x_{n} \in \mathbb{R}$,

$$
\begin{equation*}
P\left\{X_{1} \leqslant x_{1}, \ldots, X_{n} \leqslant x_{n}\right\} \leqslant \prod_{j=1}^{n} P\left\{X_{j} \leqslant x_{j}\right\} . \tag{1.1}
\end{equation*}
$$

If for all $n>m \geqslant 1$ and all $x_{1}, x_{2} \in \mathbb{R}$

$$
P\left\{X_{m} \leqslant x_{1}, X_{n} \leqslant x_{2}\right\} \leqslant P\left\{X_{m} \leqslant x_{1}\right\} \cdot P\left\{X_{n} \leqslant x_{2}\right\}
$$

then $\left\{X_{n}, n \geqslant 1\right\}$ is said to be a sequence of pairwise lower negatively dependent random variables. Of course, (1.1) is automatic if the $\left\{X_{n}, n \geqslant 1\right\}$ are independent. A sequence of lower negatively dependent random variables $\left\{Y_{n}, n \geqslant 1\right\}$ (not necessarily nonnegative) obeys the strong law of large numbers (SLLN) $\sum_{j=1}^{n} Y_{j} / b_{n} \rightarrow 0$ a.s. under suitable conditions; see for example Matuła (1992), Kim and Baek (1999) (wherein $b_{n}=n, n \geqslant 1$), Amini and Bozorgnia (2000) (wherein $b_{n}=n^{r}, n \geqslant 1$ with $r>\frac{1}{2}$), Kim and Kim (2001), and Taylor et al. (2002). In Kim and Kim (2001) the norming sequence $\left\{b_{n}, n \geqslant 1\right\}$ is very rapidly growing in that it satisfies the condition $\sum_{j=n}^{\infty} b_{j}^{-2}=\mathcal{O}\left(b_{n}^{-2}\right)$ and for this reason their assertion that their Theorem 1 extends Theorem 6 of Adler et al. (1992) (from the independent case to the pairwise lower negatively dependent case) is incorrect.

2. Mainstream

The key lemma for proving Theorem 1 will now be established.
Lemma 1. Let $\left\{S_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of nonnegative random variables, let $\left\{b_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of positive constants, and let $\left\{a_{n}, n \geqslant 1\right\}$ be a sequence of positive constants. Suppose that there exists a strictly increasing sequence of positive integers $\{m(k), k \geqslant 1\}$ and a constant $M<\infty$ such that

$$
\begin{equation*}
b_{m(k+1)} \leqslant M b_{m(k)}, \quad k \geqslant 1 \tag{2.1}
\end{equation*}
$$

and for some $\varepsilon>0$

$$
\begin{equation*}
\min _{m(k)+1 \leqslant n \leqslant m(k+1)} a_{n} \geqslant \frac{\varepsilon}{m(k+1)-m(k)}, \quad k \geqslant 1 . \tag{2.2}
\end{equation*}
$$

If for some $0<c_{0} \leqslant \infty$ and all $0<c<c_{0}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} P\left\{S_{n} \leqslant c b_{n}\right\}<\infty, \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{S_{n}}{b_{n}} \geqslant \frac{c_{0}}{M^{2}} \quad \text { a.s. } \tag{2.4}
\end{equation*}
$$

Proof. For arbitrary $0<c<c_{0}$,

$$
\begin{align*}
\infty & >\sum_{k=1}^{\infty} \sum_{n=m(k)+1}^{m(k+1)} a_{n} P\left\{S_{n} \leqslant c b_{n}\right\} \quad(\text { by }(2.3)) \tag{2.3}\\
& \geqslant \sum_{k=1}^{\infty} \frac{\varepsilon}{m(k+1)-m(k)} P\left\{S_{m(k+1)} \leqslant c b_{m(k)}\right\}(m(k+1)-m(k))
\end{align*}
$$

$$
\text { (by (2.2), } S_{n} \uparrow \text {, and } b_{n} \uparrow \text {) }
$$

$$
\begin{equation*}
\geqslant \varepsilon \sum_{k=1}^{\infty} P\left\{S_{m(k+1)} \leqslant \frac{c}{M} b_{m(k+1)}\right\} \tag{2.1}
\end{equation*}
$$

and hence

$$
\sum_{k=1}^{\infty} P\left\{S_{m(k)} \leqslant c b_{m(k)}\right\}<\infty
$$

for all $0<c<\frac{c_{0}}{M}$. Then by the Borel-Cantelli lemma

$$
P\left\{S_{m(k)} \leqslant c b_{m(k)} \text { i.o. }(k)\right\}=0
$$

for all $0<c<\frac{c_{0}}{M}$. Hence

$$
\liminf _{k \rightarrow \infty} \frac{S_{m(k)}}{b_{m(k)}} \geqslant c \quad \text { a.s. }
$$

for all $0<c<\frac{c_{0}}{M}$. Letting $c \uparrow \frac{c_{0}}{M}$ yields

$$
\liminf _{k \rightarrow \infty} \frac{S_{m(k)}}{b_{m(k)}} \geqslant \frac{c_{0}}{M} \quad \text { a.s. }
$$

Then for $n \geqslant m(1)+1$, writing $m(k)+1 \leqslant n \leqslant m(k+1)$ where $k=k(n) \geqslant 1$ and recalling that $0 \leqslant S_{n} \uparrow, 0<b_{n} \uparrow$, and (2.1), we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{S_{n}}{b_{n}} & \geqslant \liminf _{n \rightarrow \infty} \frac{S_{m(k(n))}}{b_{m(k(n)+1)}} \\
& \geqslant \liminf _{n \rightarrow \infty} \frac{S_{m(k n))}}{M b_{m(k(n))}} \\
& \geqslant \liminf _{k \rightarrow \infty} \frac{S_{m(k)}}{M b_{m(k)}} \\
& \geqslant \frac{c_{0}}{M^{2}} \quad \text { a.s. } \quad \square
\end{aligned}
$$

Corollary 1. Let $\left\{S_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of nonnegative random variables and let $r>0$. If for some $0<c_{0} \leqslant \infty$ and all $0<c<c_{0}$

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left\{S_{n} \leqslant c n^{r}\right\}<\infty
$$

then

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{n^{r}} \geqslant c_{0} \quad \text { a.s. }
$$

Proof. Let $\delta>0$ and $\theta>1$ be arbitrary and let $m(k)=\left[\theta^{k}\right], k \geqslant 1$. Let $b_{n}=n^{r}, n \geqslant 1$. Set $M=$ $(1+\delta) \theta^{r}$. Then $b_{m(k+1)} \leqslant M b_{m(k)}$ for all large k. Set $a_{n}=1 / n, n \geqslant 1$. Now for some $\varepsilon>0$ and large k

$$
\min _{m(k)+1 \leqslant n \leqslant m(k+1)} a_{n} \geqslant \frac{\varepsilon}{m(k+1)-m(k)} .
$$

It is clear that the sequences $\left\{b_{n}, n \geqslant 1\right\},\{m(k), k \geqslant 1\}$, and $\left\{a_{n}, n \geqslant 1\right\}$ can be redefined for small values of n and k so that (2.1), (2.2), and (2.3) (for all $0<c<c_{0}$) hold with M and ε as above. Hence by Lemma 1

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{n^{r}} \geqslant \frac{c_{0}}{(1+\delta)^{2} \theta^{2 r}} \quad \text { a.s. }
$$

Letting $\delta \downarrow 0$ and $\theta \downarrow 1$ yields the conclusion (2.4).
The next corollary of Lemma 1 was originally due to Gut et al. (1997) when $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. nonnegative random variables and $b_{n}=n^{r}, n \geqslant 1$ with $r \geqslant 1$ but the proof of it provided by them is incorrect. However, a valid proof of their result can be given using the method of proof of another result by Gut et al. (1997). It should be noted that the faster $b_{n} \uparrow \infty$ in Corollary 2, the stronger is the assumption (2.6) but so is the conclusion (2.7).
Corollary 2. Let $\left\{S_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of nonnegative random variables and let $\left\{b_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of positive constants such that

$$
\begin{equation*}
b_{2 n}=\mathcal{O}\left(b_{n}\right) . \tag{2.5}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left\{S_{n} \leqslant c b_{n}\right\}<\infty \tag{2.6}
\end{equation*}
$$

for all $0<c<\infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{b_{n}}=\infty \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

Proof. Let $m(k)=2^{k}, k \geqslant 1, \varepsilon=\frac{1}{2}$, and $a_{n}=1 / n, n \geqslant 1$. It follows from (2.5) that (2.1) holds for some constant $M<\infty$. Moreover, (2.2) is immediate. Taking $c_{0}=\infty$, the conclusion (2.7) follows directly from Lemma 1.

Theorem 1 may now be presented. Its proof was inspired by that of a classical result of Derman and Robbins (1955) showing that for i.i.d. summands $\left\{Y_{n}, n \geqslant 1\right\}$ with $E Y_{1}^{+}=E Y_{1}^{-}=\infty$ that $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} Y_{j} / n=\infty$ a.s. can prevail.

Theorem 1. Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of lower negatively dependent nonnegative random variables. Let $\left\{b_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of positive constants and let $\left\{a_{n}, n \geqslant 1\right\}$ be a sequence of positive constants. Suppose that there exists a strictly increasing sequence of positive integers $\{m(k), k \geqslant 1\}$ such that $b_{m(k+1)}=\mathcal{O}\left(b_{m(k)}\right)$ and (2.2) holds for some $\varepsilon>0$. Furthermore, suppose that for all $0<c<\infty$

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \prod_{j=1}^{n} P\left\{X_{j} \leqslant c b_{n}\right\}<\infty . \tag{2.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{b_{n}}=\infty \quad \text { a.s. } \tag{2.9}
\end{equation*}
$$

Proof. Since $b_{m(k+1)}=\mathcal{O}\left(b_{m(k)}\right)$, there exists a constant $M<\infty$ such that (2.1) holds. Let $0<c<\infty$ be arbitrary and set $c_{0}=\infty$. Then for $n \geqslant 1$,

$$
\begin{aligned}
P\left\{S_{n} \leqslant c b_{n}\right\} & \leqslant P\left\{X_{1} \leqslant c b_{n}, \ldots, X_{n} \leqslant c b_{n}\right\} \text { (since the } X_{j} \text { are nonnegative) } \\
& \leqslant \prod_{j=1}^{n} P\left\{X_{j} \leqslant c b_{n}\right\} \quad \text { by (1.1)) }
\end{aligned}
$$

and hence

$$
\sum_{n=1}^{\infty} a_{n} P\left\{S_{n} \leqslant c b_{n}\right\} \leqslant \sum_{n=1}^{\infty} a_{n} \prod_{j=1}^{n} P\left\{X_{j} \leqslant c b_{n}\right\}<\infty \quad \text { (by (2.8)). }
$$

The conclusion (2.9) follows immediately from Lemma 1 noting that $0 \leqslant S_{n} \uparrow$.

The next theorem is in effect a special case of Theorem 1. Theorem 2 can of course also be proved in a similar manner to that of Theorem 1 by using Corollary 2 instead of Lemma 1.

Theorem 2. Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of lower negatively dependent nonnegative random variables and suppose that the nonnegative function $h(x)$ on $[0, \infty)$ is such that

$$
\begin{equation*}
P\left\{X_{n}>x\right\} \geqslant h(x) \quad \text { for all } n \geqslant 1 \text { and } x \geqslant 0 . \tag{2.10}
\end{equation*}
$$

Let $\left\{b_{n}, n \geqslant 1\right\}$ be a nondecreasing sequence of positive constants satisfying (2.5). Suppose that for all $0<c<\infty$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(1-h\left(c b_{n}\right)\right)^{n}}{n}<\infty \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{b_{n}}=\infty \quad \text { a.s. } \tag{2.12}
\end{equation*}
$$

Proof. Let $m(k)=2^{k}, k \geqslant 1, \varepsilon=\frac{1}{2}$, and $a_{n}=1 / n, n \geqslant 1$. Then $b_{m(k+1)}=\mathcal{O}\left(b_{m(k)}\right)$ and (2.2) holds as was noted in the proof of Corollary 2. Note that for all $0<c<\infty$

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} \prod_{j=1}^{n} P\left\{X_{j} \leqslant c b_{n}\right\} & =\sum_{n=1}^{\infty} \frac{1}{n} \prod_{j=1}^{n}\left(1-P\left\{X_{j}>c b_{n}\right\}\right) \\
& \leqslant \sum_{n=1}^{\infty} \frac{\left(1-h\left(c b_{n}\right)\right)^{n}}{n}(\text { by }(2.10)) \\
& <\infty \quad(\text { by }(2.11)) .
\end{aligned}
$$

The conclusion (2.12) follows directly from Theorem 1.
We now obtain the following corollary of Theorem 2. It should be noted that (2.13) and (2.14) ensure that $E X_{n}^{1 / r}=\infty, n \geqslant 1$. Moreover, the larger r is taken in Corollary 3, the more stringent are the hypotheses but the conclusion (2.15) is also stronger.

Corollary 3. Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of lower negatively dependent nonnegative random variables. Let $r>0$ and suppose there exists a nonnegative function $g(x)$ on $[0, \infty)$ such that

$$
\begin{equation*}
x^{1 / r} P\left\{X_{n}>x\right\} \geqslant g(x) \text { for all } n \geqslant 1 \text { and } x \geqslant 0 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \log x=\mathrm{o}(g(x)) \quad \text { as } x \rightarrow \infty \tag{2.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{r}}=\infty \quad \text { a.s. } \tag{2.15}
\end{equation*}
$$

Proof. We will apply Theorem 2 with the function $h(x)$ defined by $h(0)=0, h(x)=g(x) / x^{1 / r}, x>0$ and with $b_{n}=n^{r}, n \geqslant 1$. By (2.14) we can write $g(x)=G(x) \log \log x$ where $G(x) \rightarrow \infty$ as $x \rightarrow \infty$. For $0<c<\infty$ and all large n

$$
\begin{aligned}
\frac{\left(1-h\left(c n^{r}\right)\right)^{n}}{n} & \leqslant \frac{\left(\exp \left\{-\frac{g\left(c n^{r}\right)}{\left(c n^{r}\right)^{1 / r}}\right\}\right)^{n}}{n} \quad\left(\text { by the elementary inequality } 1-x \leqslant e^{-x}\right) \\
& =\frac{1}{n} \exp \left\{-\frac{g\left(c n^{r}\right)}{c^{1 / r}}\right\} \\
& =\frac{1}{n} \exp \left\{-\frac{G\left(c n^{r}\right) \log \log \left(c n^{r}\right)}{c^{1 / r}}\right\} \\
& \leqslant \frac{1}{n} \exp \{-2 \log \log n\} \\
& =\frac{1}{n(\log n)^{2}}
\end{aligned}
$$

and hence

$$
\sum_{n=1}^{\infty} \frac{\left(1-h\left(c n^{r}\right)\right)^{n}}{n}<\infty
$$

The conclusion (2.15) follows immediately from Theorem 2.
The fourth corollary is in effect a special case of Corollary 3.
Corollary 4. Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of identically distributed lower negatively dependent (a fortiori, i.i.d.) nonnegative random variables. Let $r>0$ and suppose that

$$
\begin{equation*}
\frac{x^{1 / r} P\left\{X_{1}>x\right\}}{\log \log x} \rightarrow \infty \quad \text { as } x \rightarrow \infty \tag{2.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{r}}=\infty \quad \text { a.s. } \tag{2.17}
\end{equation*}
$$

Proof. Let $g(x)=x^{1 / r} P\left\{X_{1}>x\right\}, x \geqslant 0$. Then (2.13) holds since the $\left\{X_{n}, n \geqslant 1\right\}$ are identically distributed, and (2.14) holds by (2.16). The conclusion (2.17) then follows immediately from Corollary 3.

The following example demonstrates that Corollary 4 is sharp and hence so are Corollary 3 and Theorems 1 and 2.

Example 1. Let $r \geqslant 1$ and let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of identically distributed lower negatively dependent random variables where

$$
P\left\{X_{1}>x\right\}=\frac{e^{e / r}(\log \log x)^{2}}{x^{1 / r}}, \quad x \geqslant e^{e} .
$$

Then (2.16) holds whence (2.17) follows from Corollary 4. We will now show that for arbitrary $\varepsilon>0$, the SLLN

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{n^{r+\varepsilon}}=0 \quad \text { a.s. } \tag{2.18}
\end{equation*}
$$

holds. Note that

$$
\begin{align*}
E X_{1}^{1 /(r+\varepsilon)} & =\text { Const. }+\int_{e^{e}}^{\infty} e^{e / r} x^{\frac{1}{1+\varepsilon}}-1 \frac{(\log \log x)^{2}}{x^{1 / r}} \mathrm{~d} x \\
& =\text { Const. }+\int_{e^{e}}^{\infty} e^{e / r} \frac{(\log \log x)^{2}}{x^{1+\frac{1}{r}-\frac{1}{r+\varepsilon}}} \mathrm{d} x \\
& <\infty \tag{2.19}
\end{align*}
$$

It is well known (see, e.g., Sawyer, 1966; Chatterji, 1969/1970; or Martikainen and Petrov, 1980) that the famous Marcinkiewicz-Zygmund SLLN holds irrespective of the joint distributions of the identically distributed summands $\left\{Y_{n}, n \geqslant 1\right\}$ when $E\left|Y_{1}\right|^{p}<\infty$, where $0<p<1$. Hence (2.18) follows from (2.19) and the Marcinkiewicz-Zygmund SLLN.

Remark 1. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. nonnegative random variables with

$$
\begin{equation*}
P\left\{X_{1}>x\right\} \sim \frac{c \log \log x}{x^{1 / r}} v(x) \quad \text { as } x \rightarrow \infty \tag{2.20}
\end{equation*}
$$

where c and r are positive constants and $v(x)$ is a positive function. If $v(x) \rightarrow \infty$ as $x \rightarrow \infty$, then $S_{n} / n^{r} \rightarrow \infty$ a.s. by Corollary 4. But if $v(x) \rightarrow \infty$ as $x \rightarrow \infty$, then $\lim \inf _{n \rightarrow \infty} S_{n} / n^{r}<\infty$ a.s. can prevail. This follows by taking $v(x)=(\log \log x)^{-1 / r}, x \geqslant e^{e}$ where $r>1$ and applying Theorem 5 of Erickson (1976) which establishes that $\lim \inf _{n \rightarrow \infty} S_{n} / n^{r}=b$ a.s. for some constant $0<b<\infty$.

Remark 2. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. nonnegative random variables satisfying (2.20) with $v(x) \equiv 1$. If $0<r \leqslant 1$, then $\lim _{n \rightarrow \infty} S_{n} / n^{r}=\infty$ a.s. by the Kolmogorov SLLN. An interesting question which we are unable to resolve is whether or not $\lim _{n \rightarrow \infty} S_{n} / n^{r}=\infty$ a.s. when $r>1$. However, it follows from the ensuing theorem that $\lim \inf _{n \rightarrow \infty} S_{n} / n^{r} \geqslant c^{r}$ a.s. It is interesting to notice that the lower bound c^{r} depends on the distribution of X_{1}. In addition, since $\sum_{n=1}^{\infty} P\left\{X_{n}>M n^{r}\right\}=\infty$ for all $0<M<\infty$, it follows from the Borel-Cantelli lemma that

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{n^{r}} \geqslant \lim \sup _{n \rightarrow \infty} \frac{X_{n}}{n^{r}}=\infty \quad \text { a.s. }
$$

Theorem 3. Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of identically distributed lower negatively dependent (a fortiori, i.i.d.) nonnegative random variables. Suppose that

$$
\begin{equation*}
P\left\{X_{1}>x\right\} \geqslant \frac{C(x) \log \log x}{x^{1 / r}}, \quad x>e, \tag{2.21}
\end{equation*}
$$

where $\lim _{x \rightarrow \infty} C(x)=c \in(0, \infty)$ and $r>0$. Then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{S_{n}}{n^{r}} \geqslant c^{r} \quad \text { a.s. } \tag{2.22}
\end{equation*}
$$

Proof. Let $c_{0}=c^{r}$. Now for all $0<\gamma<c_{0}$,

$$
\lim _{n \rightarrow \infty} \frac{C\left(\gamma n^{r}\right)}{\gamma^{1 / r}}=\frac{c}{\gamma^{1 / r}}>1
$$

and so $C\left(\gamma n^{r}\right) / \gamma^{1 / r} \geqslant 1+\delta$ for some $\delta>0$ and large n. Thus for all $0<\gamma<c_{0}$ and all large n

$$
P\left\{S_{n} \leqslant \gamma n^{r}\right\} \leqslant P\left\{X_{1} \leqslant \gamma n^{r}, \ldots, X_{n} \leqslant \gamma n^{r}\right\}
$$

(since the X_{j} are nonnegative)

$$
\begin{aligned}
\leqslant & \left(1-\frac{C\left(\gamma n^{r}\right) \log \log \left(\gamma n^{r}\right)}{\gamma^{1 / r} n}\right)^{n} \quad(\text { by }(1.1) \text { and }(2.21)) \\
\leqslant & \exp \left\{-\frac{C\left(\gamma n^{r}\right)}{\gamma^{1 / r}} \log \log \left(\gamma n^{r}\right)\right\} \\
& \left(\text { since }\left(1-\frac{x}{n}\right)^{n} \leqslant e^{-x} \text { for } 0<x<n\right) \\
= & \left(\log \left(\gamma n^{r}\right)\right)^{-C\left(\gamma n^{r}\right) / \gamma^{1 / r}} \\
\leqslant & \left(\log \left(\gamma n^{r}\right)\right)^{-1-\delta} \leqslant \frac{2}{r^{1+\delta}(\log n)^{1+\delta}} .
\end{aligned}
$$

Consequently,

$$
\sum_{n=1}^{\infty} a_{n} P\left\{S_{n} \leqslant \gamma n^{r}\right\}<\infty
$$

The conclusion (2.22) follows immediately from Corollary 1.

Remark 3. Corollary 4 may be contrasted with the following result of Rosalsky (1993) concerning the growth rate of sums of identically distributed strictly positive random variables irrespective of their joint distributions.

Theorem 4 (Rosalsky, 1993). Let $S_{n}=\sum_{j=1}^{n} X_{j}, n \geqslant 1$ where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of identically distributed random variables with $X_{1}>0$ a.s. and let $\left\{b_{n}, n \geqslant 1\right\}$ be a sequence of positive constants with $\lim \inf _{n \rightarrow \infty}\left(b_{n} / n\right)=0$. Then

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{b_{n}}=\infty \quad \text { a.s. }
$$

irrespective of the joint distributions of the $\left\{X_{n}, n \geqslant 1\right\}$.

References

Adler, A., Rosalsky, A., Taylor, R.L., 1992. Some strong laws of large numbers for sums of random elements. Bull. Inst. Math. Acad. Sinica 20, 335-357.
Amini, M., Bozorgnia, A., 2000. Negatively dependent bounded random variable probability inequalities and the strong law of large numbers. J. Appl. Math. Stochastic Anal. 13, 261-267.
Chatterji, S.D., 1969/1970. A general strong law. Invent. Math. 9, 235-245.
Derman, C., Robbins, H., 1955. The strong law of large numbers when the first moment does not exist. Proc. Nat. Acad. Sci. U.S.A. 41, 586-587.
Erickson, K.B., 1976. Recurrence sets of normed random walk in R^{d}. Ann. Probab. 4, 802-828.
Gut, A., Klesov, O., Steinebach, J., 1997. Equivalences in strong limit theorems for renewal counting processes. Statist. Probab. Lett. 35, 381-394.
Kim, T.-S., Baek, J.I., 1999. The strong laws of large numbers for weighted sums of pairwise quadrant dependent random variables. J. Korean Math. Soc. 36, 37-49.
Kim, T.-S., Kim, H.-C., 2001. On the law of large numbers for weighted sums of pairwise negative quadrant dependent random variables. Bull. Korean Math. Soc. 38, 55-63.
Martikainen, A.I., Petrov, V.V., 1980. On a theorem of Feller. Teor. Veroyatnost. i Primenen. 25, 194-197 (in Russian) (English translation: Theory Probab. Appl. 25, 191-193).
Matuła, P., 1992. A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15, 209-213.
Rosalsky, A., 1993. On the almost certain limiting behavior of normed sums of identically distributed positive random variables. Statist. Probab. Lett. 16, 65-70.
Sawyer, S., 1966. Maximal inequalities of weak type. Ann. of Math. (2) 84, 157-174.
Taylor, R.L., Patterson, R.F., Bozorgnia, A., 2002. A strong law of large numbers for arrays of rowwise negatively dependent random variables. Stochastic Anal. Appl. 20, 643-656.

[^0]: *Corresponding author. Tel.: + 13523921941 ext:225; fax: + 13523925175 .
 E-mail address: rosalsky@stat.ufl.edu (A. Rosalsky).

