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Abstract

For a sequence of dependent square-integrable random variables and a sequence of positive constants {bn, n ≥ 1}, conditions
are provided under which the series

∑n
i=1(Xi − E Xi )/bi converges almost surely as n → ∞ and {Xn, n ≥ 1} obeys the strong

law of large numbers limn→∞

∑n
i=1(Xi − E Xi )/bn = 0 almost surely. The hypotheses stipulate that two series converge, where

the convergence of the first series involves the growth rates of {Var Xn, n ≥ 1} and {bn, n ≥ 1} and the convergence of the second
series involves the growth rate of {supn≥1 |Cov (Xn, Xn+k)|, k ≥ 1}.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of square-integrable random variables defined on a probability space (Ω ,F, P)

and let {bn, n ≥ 1} be a sequence of positive constants. The random variables {Xn, n ≥ 1} are not assumed to be
independent. We assume that there exists a sequence of constants {ρk, k ≥ 1} such that

sup
n≥1

|Cov (Xn, Xn+k)| ≤ ρk, k ≥ 1 (1.1)

and we provide conditions on the growth rates of {Var Xn, n ≥ 1}, {bn, n ≥ 1} and {ρk, k ≥ 1} under which (i) the
series

n∑
i=1

(X i − E X i )/bi converges almost surely (a.s.) as n → ∞ (1.2)
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and (ii) {Xn, n ≥ 1} obeys the strong law of large numbers (SLLN)

lim
n→∞

n∑
i=1

(X i − E X i )/bn = 0 a.s. (1.3)

The history and literature on the SLLN problem for dependent summands is not nearly as extensive and complete
as it is for the case of independent summands. It appears that the best result establishing a SLLN for a sequence
of correlated random variables satisfying (1.1) and Var Xn = O(1) is that of Lyons (1988) wherein bn ≡ n. We
point out that Lyons (1988) did not provide conditions for a series of correlated random variables to converge a.s.; he
only treated the SLLN problem. The only SLLN result for correlated summands that we are aware of satisfying (1.1)
without assuming that Var Xn = O(1) is due to Hu et al. (2005) where again bn ≡ n. This result established a link
between the Golden Ratio ϕ and the SLLN. Other results on the SLLN problem for a sequence of correlated random
variables are those of Chandra (1991), Gapos̆kin (1975), Móricz (1977, 1985), Serfling (1970b, 1980).

In the current work, the main result, Theorem 1, provides conditions under which (1.2) and (1.3) hold with
{bn, n ≥ 1} being more general than only bn ≡ n in that n = O(bn) where again it is not assumed that Var Xn = O(1).
The proof of Theorem 1 is classical in nature and is based on the general “method of subsequences”. This method was
apparently developed initially by Rajchman (1932) (see Chung (1974), p. 103) and has since been used by numerous
other authors. However, the key inequality used in our proof is a much more recent result due to Serfling (1970a).

The plan of the paper is as follows. In Section 2, a lemma which is used in the proof of Theorem 1 is presented.
Theorem 1 is stated and proved in Section 3. In Section 4, Theorem 1 is compared with a well-known result.

2. Preliminaries

Throughout this paper, the symbol C denotes a generic constant (0 < C < ∞) which is not necessarily the same
one in each appearance. For x ≥ 1, the natural (base e) logarithm of x and the logarithm of x to the base 2 will be
denoted, respectively, by log x and Log x . We note that for all x ≥ 1, Log x = C log x where C = 1/ log 2.

The following lemma is used in the proof of Theorem 1.

Lemma 1. Let {Xn, n ≥ 1} be a sequence of square-integrable random variables and suppose that there exists a
sequence of constants {ρk, k ≥ 1} such that

sup
n≥1

|Cov (Xn, Xn+k)| ≤ ρk, k ≥ 1. (2.1)

Let {bn, n ≥ 1} be a sequence of positive constants such that

n = O(bn). (2.2)

Then for all n ≥ 0, m ≥ n + 2, and 0 ≤ q < 1,

E

(
m∑

i=n+1

X i − E X i

bi

)2

≤

m∑
i=n+1

Var X i

b2
i

+
C

n1−q

m−n−1∑
k=1

ρk

kq

where C is a constant independent of n and m.

Proof. For all n ≥ 0, m ≥ n + 2, and 0 ≤ q < 1,

E

(
m∑

i=n+1

X i − E X i

bi

)2

=

m∑
i=n+1

Var (X i )

b2
i

+ 2
m−1∑

i=n+1

m∑
j=i+1

Cov (X i , X j )

bi b j

≤

m∑
i=n+1

Var X i

b2
i

+ C
m−1∑

i=n+1

m∑
j=i+1

ρ j−i

i j
(by (2.1) and (2.2))

=

m∑
i=n+1

Var X i

b2
i

+ C
m−1∑

i=n+1

m∑
j=i+1

ρ j−i

j − i

(
1
i

−
1
j

)
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=

m∑
i=n+1

Var X i

b2
i

+ C
m−n−1∑

k=1

ρk

k

(
m−k∑

l=n+1

1
l

−

m∑
l=n+k+1

1
l

)

≤

m∑
i=n+1

Var X i

b2
i

+ C
m−n−1∑

k=1

ρk

k

(
n+k∑

l=n+1

1
l

)

≤

m∑
i=n+1

Var X i

b2
i

+ C
m−n−1∑

k=1

ρk

k
log

(
n + k

n

)

≤

m∑
i=n+1

Var X i

b2
i

+
C

n1−q

m−n−1∑
k=1

ρk

kq (2.3)

since log(1 + x) ≤ x1−q/(1 − q) for all x ≥ 0.

3. The main result

With the preliminaries accounted for, the main result may be stated and proved. We note that the condition (3.2)
is indeed stronger than that the condition

∑
∞

k=1 ρk/k < ∞ of Lyons (1988). However, as we remarked in Section 1,
Lyons (1988) treated the case Var Xn = O(1) and bn ≡ n to prove a SLLN and he did not establish a result along the
lines of (3.3). We also note that the condition (3.1) is automatic if

Var Xn

b2
n

= O
(

1

n(log n)3(log log n)1+ε

)
for some ε > 0.

For example, suppose that Var Xn ∼ n/(log n)2. If bn ∼ n log n, then (2.2) and (3.1) hold whereas if bn ∼ n, then
(2.2) holds but (3.1) fails.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of square-integrable random variables and suppose that there exists a
sequence of constants {ρk, k ≥ 1} such that (2.1) holds. Let {bn, n ≥ 1} be a sequence of positive constants satisfying
(2.2). Suppose that

∞∑
n=1

(Var Xn)(log n)2

b2
n

< ∞ (3.1)

and
∞∑

k=1

ρk

kq < ∞ for some 0 ≤ q < 1. (3.2)

Then
n∑

i=1

X i − E X i

bi
converges a.s. as n → ∞ (3.3)

and if bn ↑, the SLLN

lim
n→∞

n∑
i=1

(X i − E X i )

bn
= 0 a.s. (3.4)

obtains.

Proof. Note at the outset that (2.2) ensures that limn→∞ bn = ∞. Thus if bn ↑, then the conclusion (3.4) follows
immediately from (3.3) and the Kronecker lemma. To prove (3.3), note that for all n ≥ 1,

sup
m>n

E

(
m∑

i=1

X i − E X i

bi
−

n∑
i=1

X i − E X i

bi

)2

= sup
m>n

E

(
m∑

i=n+1

X i − E X i

bi

)2
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≤ sup
m>n

(
m∑

i=n+1

Var X i

b2
i

+
C

n1−q

m−n−1∑
k=1

ρk

kq

)
(by Lemma 1)

=

∞∑
i=n+1

Var X i

b2
i

+
C

n1−q

∞∑
k=1

ρk

kq

= o(1) as n → ∞ (by (3.1) and (3.2), and q < 1).

Then by the Cauchy Convergence Criterion (see, e.g., Chow and Teicher (1997, p. 99)), there exists a random variable
S on (Ω ,F, P) with E S2 < ∞ such that

n∑
i=1

X i − E X i

bi

L2
→ S.

Thus for all n ≥ 1,

m∑
i=1

X i − E X i

bi
−

2n∑
i=1

X i − E X i

bi

L2
→ S −

2n∑
i=1

X i − E X i

bi
as m → ∞

whence (see, e.g., Chow and Teicher (1997, p. 101))

E

(
S −

2n∑
i=1

X i − E X i

bi

)2

= lim
m→∞

E

(
m∑

i=1

X i − E X i

bi
−

2n∑
i=1

X i − E X i

bi

)2

= lim
m→∞

E

(
m∑

i=2n+1

X i − E X i

bi

)2

≤ lim
m→∞

(
m∑

i=2n+1

Var X i

b2
i

+
C

2n(1−q)

m−2n
−1∑

k=1

ρk

kq

)
(by Lemma 1)

≤

∞∑
i=2n

Var X i

b2
i

+
C

2n(1−q)

∞∑
k=1

ρk

kq . (3.5)

Next, it will be shown that

2n∑
i=1

X i − E X i

bi
→ S a.s. (3.6)

For arbitrary ε > 0,

∞∑
n=1

P

{∣∣∣∣∣ 2n∑
i=1

X i − E X i

bi
− S

∣∣∣∣∣ > ε

}
≤

1

ε2

∞∑
n=1

E

(
2n∑

i=1

X i − E X i

bi
− S

)2

(by the Markov inequality)

≤
1

ε2

∞∑
n=1

(
∞∑

i=2n

Var X i

b2
i

+
C

2n(1−q)

∞∑
k=1

ρk

kq

)
(by (3.5))

= C
∞∑

i=2

[Log i]∑
n=1

Var X i

b2
i

+ C

(
∞∑

n=1

1

2n(1−q)

)(
∞∑

k=1

ρk

kq

)

≤ C
∞∑

i=2

(Var X i ) log i

b2
i

+ C
∞∑

k=1

ρk

kq (since q < 1)

< ∞ (by (3.1) and (3.2)).

Then by Borel–Cantelli lemma and the arbitrariness of ε > 0, (3.6) follows.
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We will now verify that

max
2n−1<k≤2n

∣∣∣∣∣∣
k∑

i=1

X i − E X i

bi
−

2n−1∑
i=1

X i − E X i

bi

∣∣∣∣∣∣ → 0 a.s. as n → ∞. (3.7)

For a ≥ 0 and n ≥ 1, let the joint distribution function of Xa+1, . . . , Xa+n be denoted by Fa,n . Define a functional g
on {Fa,n : a ≥ 0, n ≥ 1} by

g(Fa,n) =

a+n∑
i=a+1

Var X i

b2
i

+ 2
a+n−1∑
i=a+1

a+n∑
j=i+1

|Cov (X i , X j )|

bi b j
, a ≥ 0, n ≥ 1

where the second term is interpreted as 0 if n = 1. Then for a ≥ 0, k ≥ 1, and m ≥ 1,

g(Fa,k) + g(Fa+k,m) =

a+k∑
i=a+1

Var X i

b2
i

+ 2
a+k−1∑
i=a+1

a+k∑
j=i+1

|Cov (X i , X j )|

bi b j

+

a+k+m∑
i=a+k+1

VarX i

b2
i

+ 2
a+k+m−1∑
i=a+k+1

a+k+m∑
j=i+1

|Cov (X i , X j )|

bi b j

≤

a+k+m∑
i=a+1

Var X i

b2
i

+ 2
a+k+m−1∑

i=a+1

a+k+m∑
j=i+1

|Cov (X i , X j )|

bi b j

= g(Fa,k+m).

Moreover, it follows from (2.3) that for all a ≥ 0 and n ≥ 1,

E

(
a+n∑

i=a+1

X i − E X i

bi

)2

≤ g(Fa,n).

Then by Serfling’s (1970a) generalization of the Rademacher–Menchoff fundamental maximal inequality for the
partial sums of orthogonal random variables (see also Stout (1974), Sections 2.3 and 2.4), for all a ≥ 0 and n ≥ 1,

E

(
max

1≤k≤n

∣∣∣∣∣ a+k∑
i=a+1

X i − E X i

bi

∣∣∣∣∣
)2

≤ (Log2n)2g(Fa,n). (3.8)

Thus for arbitrary ε > 0,

∞∑
n=1

P

 max
2n−1<k≤2n

∣∣∣∣∣∣
k∑

i=1

X i − E X i

bi
−

2n−1∑
i=1

X i − E X i

bi

∣∣∣∣∣∣ > ε


≤ 1 +

1

ε2

∞∑
n=2

E

 max
2n−1<k≤2n

∣∣∣∣∣∣
k∑

i=1

X i − E X i

bi
−

2n−1∑
i=1

X i − E X i

bi

∣∣∣∣∣∣
2

(by the Markov inequality)

= 1 +
1

ε2

∞∑
n=2

E

 max
2n−1<k≤2n

∣∣∣∣∣∣
k∑

i=2n−1+1

X i − E X i

bi

∣∣∣∣∣∣
2

= 1 +
1

ε2

∞∑
n=2

E

 max
1≤k≤2n−1

∣∣∣∣∣∣
2n−1

+k∑
i=2n−1+1

X i − E X i

bi

∣∣∣∣∣∣
2

≤ 1 +
1

ε2

∞∑
n=2

(Log(2 · 2n−1))2g(F2n−1,2n−1) (by (3.8))
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≤ 1 + C
∞∑

n=2

(Log2n−1)2

 2n∑
i=2n−1+1

Var X i

b2
i

+ 2
2n

−1∑
i=2n−1+1

2n∑
j=i+1

|Cov (X i , X j )|

bi b j


≤ 1 + C

∞∑
n=2

2n∑
i=2n−1+1

(Var X i )(Log i)2

b2
i

+ C
∞∑

n=2

n2
2n

−1∑
i=2n−1+1

2n∑
j=i+1

ρ j−i

i j
(by (2.1) and (2.2))

≤ 1 + C
∞∑

i=1

(Var X i )(log i)2

b2
i

+ C
∞∑

n=2

n2

(2n−1)1−q

2n−1
−1∑

k=1

ρk

kq (by arguing as in the proof of Lemma 1)

≤ 1 + C
∞∑

i=1

(Var X i )(log i)2

b2
i

+ C

(
∞∑

n=2

n2

(2n−1)1−q

)(
∞∑

k=1

ρk

kq

)
< ∞

by (3.1) and (3.2), q < 1, and

n2

(2n−1)1−q
= O

((
1

2
1−q

2

)n)
.

Then by the Borel–Cantelli lemma and the arbitrariness of ε > 0, (3.7) follows.
Next, for k ≥ 2, let n ≥ 1 be such that 2n−1 < k ≤ 2n . Then∣∣∣∣∣ k∑

i=1

X i − E X i

bi
− S

∣∣∣∣∣ ≤

∣∣∣∣∣∣
k∑

i=1

X i − E X i

bi
−

2n−1∑
i=1

X i − E X i

bi

∣∣∣∣∣∣+
∣∣∣∣∣∣
2n−1∑
i=1

X i − E X i

bi
− S

∣∣∣∣∣∣
≤ max

2n−1< j≤2n

∣∣∣∣∣∣
j∑

i=1

X i − E X i

bi
−

2n−1∑
i=1

X i − E X i

bi

∣∣∣∣∣∣+
∣∣∣∣∣∣
2n−1∑
i=1

X i − E X i

bi
− S

∣∣∣∣∣∣
→ 0 a.s. as k → ∞

by (3.6) and (3.7) thereby proving that

lim
k→∞

k∑
i=1

X i − E X i

bi
= S a.s.

and hence (3.3) is established.

4. Concluding comments

To conclude, we compare Theorem 1 with a well-known result. The following proposition is essentially Corollary
2.4.1 of Stout (1974, p. 28).

Proposition 1. Let {Xn, n ≥ 1} be a sequence of square-integrable random variables and suppose that there exists a
sequence of constants {rk, k ≥ 1} such that

sup
n≥1

|Cov (Xn, Xn+k)|

(Var Xn · Var Xn+k)1/2 ≤ rk, k ≥ 1.

Let {bn, n ≥ 1} be a sequence of positive constants. If
∞∑

n=1

(Var Xn)(log n)2

b2
n

< ∞

and
∞∑

k=1

rk < ∞, (4.1)
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then
n∑

i=1

X i − E X i

bi
converges a.s. as n → ∞.

To compare Theorem 1 with Proposition 1, observe that condition (2.2) is not needed in Proposition 1. In general,
the conditions (3.2) and (4.1) are not comparable; however, if Var Xn = O(1), then (3.2) is weaker than (4.1).
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