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1. INTRODUCTION

The concept of uniformly smooth space was introduced by Day [2]. Afterwards, many authors
characterized p-smoothness of Banach spaces in various ways. Hoffmann-Jørgensen and Pisier [5]
established an important relation between p-smoothness of a Banach space E and the strong law of
large numbers of E-valued martingales. In Cheng and Gan [1], p-smoothable Banach spaces were
characterized in terms of atomic decompositions for Banach space valued martingales. Gan and Qiu [3]
established a relation between p-smoothness of a Banach space E and the Hájek-Rényi inequality for
E-valued martingales. Recently, Quang and Huan [9] extended the result of Hoffmann-Jørgensen and
Pisier [5] to strong martingale difference arrays.

Móricz [6] introduced the concepts of blockwise independence and blockwise quasiorthogonality.
Móricz [6], Gaposhkin [4], Rosalsky and Thanh [12] showed that some properties of sequences of
independent random variables can be applied to sequences consisting of independent blocks. Quang
and Thanh [11] extended the Kolmogorov strong law of large numbers to blockwise martingale difference
sequences. Thanh [13], Móricz et al. [7] considered dyadic blocks and established some strong laws of
large numbers for random fields.

In this paper, we introduce the concepts of blockwise adapted array, blockwise martingale difference
array, and establish some strong laws of large numbers for blockwise adapted arrays and blockwise
martingale difference arrays, in which the results of Quang and Thanh [10, 11], Quang and Huan [9] will
be generalized. The rest of the paper is organized as follows. Notation, technical definitions, and lemmas
are presented in Section 2. Section 3 is devoted to our main results and their proofs.
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2. PRELIMINARIES

Throughout this paper, the symbol C will denote a generic positive constant which is not necessarily
the same one in each appearance. Let a, b be real numbers, min{a, b} and max{a, b} will be denoted,
respectively, by a ∧ b and a ∨ b, and log(a ∨ 1) will be denoted by log+ a (the logarithms are to the
base 2). The set of all positive integers will be denoted by N, and the set of all non-negative integers
will be denoted by N0. The notation (k, l) � (m,n) means that k � m and l � n, and the notation
(k, l) ≺ (m,n) means that (k, l) � (m,n) and (k, l) �= (m,n).

Let {ω(k), k � 1} and {ν(l), l � 1} be strictly increasing sequences of positive integers with ω(1) =
ν(1) = 1. For (m,n) ∈ N

2
0, (k, l) ∈ N

2, we introduce the following notations:

∆kl = {(i, j) :
(
ω(k), ν(l)

)
� (i, j) ≺

(
ω(k + 1), ν(l + 1)

)
},

∆(mn) = {(i, j) : (2m, 2n) � (i, j) ≺ (2m+1, 2n+1)},
∆(mn)

kl = ∆kl ∩ ∆(mn), Λmn = {(k, l) : ∆(mn)
kl �= ∅},

ϕ(k, l) =
∞∑
i=0

∞∑
j=0

card(Λij)I∆(ij)(k, l), ψ(k, l) = max
(1,1)�(i,j)�(k,l)

ϕ(i, j),

where card(Λij) denotes the cardinality of the set Λij and I∆(ij) denotes the indicator function of the set
∆(ij). It is easy to verify that if ω(k) = 2k−1, ν(l) = 2l−1

(
(k, l) ∈ N

2
)
, then ϕ(i, j) = ψ(i, j) = 1 for all

(i, j) ∈ N
2. Further comments can be found in Quang and Thanh [10].

Let (Ω,F ,P) be a probability space, let E be a real separable Banach space, and let B(E) be the
σ-algebra of all Borel sets in E. Let {Xij , (1, 1) � (m,n) � (i, j) � (M,N) � (∞,∞)} be a double
array of E-valued random elements, and let {Fij , (m,n) � (i, j) � (M,N)} be a double array of non-
decreasing sub-σ-algebras of F related to the partial order � on N

2 such that Xij is Fij/B(E)-
measurable for all (m,n) � (i, j) � (M,N). Then {Xij ,Fij , (m,n) � (i, j) � (M,N)} is said to be an
adapted array.

Let {Xij ,Fij , (m,n) � (i, j) � (M,N)} be an adapted array. For (i, j), (m− 1, n − 1) � (i, j) �
(M − 1, N − 1), we adopt the convention that Fij = {∅,Ω} if i = m− 1 or j = n− 1 and set

F1
i =

N∨
l=n

Fil := σ
( N⋃

l=n

Fil

)
, F2

j =
M∨

k=m

Fkj, F−
ij = F1

i

∨
F2

j .

The adapted array {Xij ,Fij , (m,n) � (i, j) � (M,N)} is said to be a martingale difference array
(respectively, strong martingale difference array) if for all (m,n) � (i, j) � (M,N),

E(Xij|F1
i−1) = E(Xij |F2

j−1) = 0 (respectively, E(Xij |F−
i−1,j−1) = 0).

Clearly, a strong martingale difference array is a martingale difference array, and if {Xij , (m,n) �
(i, j) � (M,N)} is a double array of independent zero mean random elements, then {Xij ,Fij , (m,n) �
(i, j) � (M,N)} is a strong martingale difference array, where Fij is the σ-algebra generated by the
family of random elements {Xkl, (m,n) � (k, l) � (i, j)}.

Let {Xij , (i, j) ∈ N
2} be a double array of E-valued random elements, and let {Fij , (i, j) ∈ N

2}
be a double array of sub-σ-algebras of F . The double array {Xij ,Fij , (i, j) ∈ N

2} is said to be a
blockwise adapted array (respectively, blockwise martingale difference array, blockwise strong
martingale difference array) with respect to the blocks {∆kl, (k, l) ∈ N

2} if for each (k, l) ∈ N
2,

{Xij ,Fij , (i, j) ∈ ∆kl} is an adapted array (respectively, martingale difference array, strong martingale
difference array).

As in Pisier [8], a Banach space E is said to be p-uniformly smooth (1 � p � 2) if

ρ(τ) = sup
{
||x + y|| + ||x− y||

2
− 1, x, y ∈ E, ||x|| = 1, ||y|| = τ

}
= O(τp).

A Banach space E is said to be p-smoothable if there exists an equivalent norm under which E is p-
uniformly smooth.
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It is well known that every real separable Banach space is 1-smoothable and the real line (the same
as any Hilbert space) is 2-smoothable. If a real separable Banach space is p-smoothable for some
1 � p � 2, then it is r-smoothable for all r ∈ [1, p].

A double array of random elements {Xij , (i, j) ∈ N
2} is said to be stochastically dominated by a

random element X if there exists a constant C (0 < C < ∞) such that

P{||Xij || > t} � CP{||X|| > t}, t � 0, (i, j) ∈ N
2. (2.1)

This condition is, of course, automatic with X = X11 and C = 1 if {Xij , (i, j) ∈ N
2} is a double array

of identically distributed random elements.

Lemma 2.1. (Quang and Huan [9]). Let {Xij , (i, j) ∈ N
2} be a double array of (real-valued) ran-

dom variables which are stochastically dominated by a random variableX. If E(|X|q log+ |X|) <
∞, for some q > 0, then

∞∑
i=1

∞∑
j=1

E
(
|Xij |rI(|Xij | > (ij)

1
q )
)

(ij)
r
q

< ∞ for all 0 < r < q, (2.2)

∞∑
i=1

∞∑
j=1

E
(
|Xij |pI(|Xij | � (ij)

1
q )
)

(ij)
p
q

< ∞ for all p > q. (2.3)

The next lemma is a generalization of Lemma 2.1 of Quang and Thanh [10].
Lemma 2.2. Let Φ1(.), Φ2(.) be positive nondecreasing unbounded functions on (0,∞), and let

{xij , (i, j) ∈ N
2
0} be an array of real numbers such that

lim
i∨j→∞

xij = 0.

Then the condition

sup
(m,n)∈N2

0

1
Φ1(2m)Φ2(2n)

m∑
i=0

n∑
j=0

Φ1(2i+1)Φ2(2j+1) � C < ∞ (2.4)

implies

lim
m∨n→∞

1
Φ1(2m)Φ2(2n)

m∑
i=0

n∑
j=0

Φ1(2i+1)Φ2(2j+1)xij = 0.

Proof. For every ε > 0, there exists a positive integer n1 such that for all i ∨ j � n1,

|xij | � ε

2C
. (2.5)

On the other hand, since Φ1(.) and Φ2(.) are positive nondecreasing unbounded functions on (0,∞),
there exists a positive integer m1 > n1 such that for all m ∨ n � m1,∣∣∣∣∣∣

1
Φ1(2m)Φ2(2n)

∑
i∨j<n1,(0,0)�(i,j)�(m,n)

Φ1(2i+1)Φ2(2j+1)xij

∣∣∣∣∣∣ < ε/2. (2.6)

Then by (2.4)–(2.6), we get ∣∣∣∣∣∣
1

Φ1(2m)Φ2(2n)

m∑
i=0

n∑
j=0

Φ1(2i+1)Φ2(2j+1)xij

∣∣∣∣∣∣
�

∣∣∣∣∣∣
1

Φ1(2m)Φ2(2n)

∑
i∨j<n1,(0,0)�(i,j)�(m,n)

Φ1(2i+1)Φ2(2j+1)xij

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
1

Φ1(2m)Φ2(2n)

∑
i∨j�n1,(0,0)�(i,j)�(m,n)

Φ1(2i+1)Φ2(2j+1)xij

∣∣∣∣∣∣ �
ε

2
+ C

ε

2C
= ε.

This completes the proof of the lemma. ✷

Lemma 2.3 (Pisier [8]). Let E be a real separable p-smoothable Banach space (1 � p � 2).

Then, for all r � 1, there exists a positive constantC such that for all martingales
{∑n

i=1 Xi,Fn,

n � 1
}
with values in E, we have

E sup
n�1

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
r

� CE

( ∞∑
n=1

||Xn||p
) r

p

.

The next corollary is an improvement of Lemma 1.1 of Quang and Huan [9].

Lemma 2.4. Let E be a real separable p-smoothable Banach space (1 � p � 2). Then there
exists a positive constant C such that for all martingale difference arrays {Xij ,Fij , (1, 1) �
(i, j) � (m,n)},

E max
(1,1)�(k,l)�(m,n)

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
i=1

l∑
j=1

Xij

∣∣∣∣∣∣
∣∣∣∣∣∣
p

� CE

m∑
i=1

n∑
j=1

||Xij ||p. (2.7)

Proof. We easily obtain (2.7) in the case p = 1. Now we consider the case 1 < p � 2 and m ∧ n � 2.
Set

Skl =
k∑

i=1

l∑
j=1

Xij , Yl = max
1�k�m

||Skl||.

Then for k, l, (1, 1) � (k, l) � (m,n), we have

E(Skl|F2
l−1) = E(Sk,l−1|F2

l−1) +
k∑

i=1

E(Xil|F2
l−1) = Sk,l−1.

This means that for each k (1 � k � m), {Skl,F2
l , 1 � l � n} is a martingale, and so {||Skl||,F2

l , 1 �
l � n} is a nonnegative submartingale. It is easy to show that {Yl,F2

l , 1 � l � n} is a nonnegative
submartingale. Applying Doob’s inequality, we obtain

E max
(1,1)�(k,l)�(m,n)

||Skl||p = E
(

max
1�l�n

Yl

)p � CEY p
n . (2.8)

On the other hand, we have that {Skn,F1
k , 1 � k � m} is a martingale. It follows from Lemma 2.3 that

EY p
n = E max

1�k�m
||Skn||p � C

m∑
k=1

E

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

Xkj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

. (2.9)

For each k (1 � k � m), we again have that
{∑l

j=1 Xkj,F2
l , 1 � l � n

}
is a martingale. Thus,

E

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

Xkj

∣∣∣∣∣∣
∣∣∣∣∣∣
p

� C
n∑

l=1

E||Xkl||p. (2.10)

Combining (2.8)–(2.10) yields (2.7).

Next, if 1 < p � 2 and m ∧ n = 1, then (2.7) follows as in the case 1 < p � 2 and m ∧ n � 2. ✷
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3. MAIN RESULTS

With the preliminaries accounted for, the first main result may be established. The following theorem
extends the Kolmogorov strong law of large numbers to blockwise martingale difference arrays. It also
generalizes some results of Quang and Thanh [10, 11]. The assertion (iii) of Theorem 3.1 is inspired by
Theorem 1 of Móricz et al. [7].

Theorem 3.1. Let E be a real separable Banach space and 1 � p � 2. Then the following four
statements are equivalent:

(i) The Banach space E is p-smoothable.

(ii) For every blockwise martingale difference array {Xij ,Fij , (i, j) ∈ N2} with respect to the
blocks {∆kl, (k, l) ∈ N

2} and for any two functions Φ1(.), Φ2(.) which are positive nondecreasing
unbounded functions on (0,∞) satisfying (2.4), the condition

∞∑
i=1

∞∑
j=1

(
ϕ(i, j)

)p−1(
Φ1(i)Φ2(j)

)p E||Xij ||p < ∞ (3.1)

implies

1
Φ1(m)Φ2(n)

m∑
i=1

n∑
j=1

Xij → 0 a.s. as m ∨ n → ∞. (3.2)

(iii) For every blockwise strong martingale difference array {Xij ,Fij , (i, j) ∈ N
2}with respect

to the blocks {∆kl, (k, l) ∈ N
2} and for any two functions Φ1(.), Φ2(.) which are positive nonde-

creasing unbounded functions on (0,∞) such that

lim sup
m→∞

Φ1(2m+1)
Φ1(2m)

< ∞, lim inf
m→∞

Φ1(2m+1)
Φ1(2m)

> 1, (3.3)

lim sup
n→∞

Φ2(2n+1)
Φ2(2n)

< ∞, lim inf
n→∞

Φ2(2n+1)
Φ2(2n)

> 1, (3.4)

the condition (3.1) implies (3.2).

(iv) For every strong martingale difference array {Xij ,Fij , (i, j) ∈ N
2}, the condition

∞∑
i=1

∞∑
j=1

E||Xij ||p
(ij)p

< ∞

implies

1
mn

m∑
i=1

n∑
j=i

Xij → 0 a.s. as m ∨ n → ∞.

Proof. (i) ⇒ (ii): Assume that the Banach space E is p-smoothable. For (m,n) ∈ N
2
0, (k, l) ∈ Λmn,

we set

r
(m)
k = min{r : r ∈ [ω(k), ω(k + 1)] ∩ [2m, 2m+1]},

s
(n)
l = min{s : s ∈ [ν(l), ν(l + 1)] ∩ [2n, 2n+1]},

γ
(mn)
kl = max

(u,v)∈∆
(mn)
kl

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

u∑
i=r

(m)
k

v∑
j=s

(n)
l

Xij

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

γmn =
1

Φ1(2m+1)Φ2(2n+1)

∑
(k,l)∈Λmn

γ
(mn)
kl .
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Since {Xij ,Fij , (i, j) ∈ ∆kl} is a martingale difference array, we may use the “tower property” of

conditional expectation to show that {Xij ,Fij , (i, j) ∈ ∆(mn)
kl } is also a martingale difference array. Then

by the Cr inequality and Lemma 2.4, we have

Eγp
mn =

1(
Φ1(2m+1)Φ2(2n+1)

)p E


 ∑

(k,l)∈Λmn

γ
(mn)
kl




p

�
(
card(Λmn)

)p−1(
Φ1(2m+1)Φ2(2n+1)

)p ∑
(k,l)∈Λmn

E
(
γ

(mn)
kl

)p

� C

(
card(Λmn)

)p−1(
Φ1(2m+1)Φ2(2n+1)

)p ∑
(k,l)∈Λmn

∑
(i,j)∈∆

(mn)
kl

E||Xij ||p

� C
∑

(2m,2n)�(i,j)≺(2m+1,2n+1)

(
ϕ(i, j)

)p−1(
Φ1(i)Φ2(j)

)p E||Xij ||p.

It thus follows from (3.1) that
∑∞

m=0

∑∞
n=0 Eγp

mn < ∞. Applying the Markov inequality and the Borel-
Cantelli lemma, we obtain

γmn → 0 a.s. as m ∨ n → ∞.

Then by Lemma 2.2, we see

1
Φ1(2m)Φ2(2n)

m∑
k=0

n∑
l=0

∑
(i,j)∈Ikl

γ
(kl)
ij → 0 a.s. as m ∨ n → ∞. (3.5)

Next, for (k, l) ∈ N
2, let (m,n) ∈ N

2
0 be such that (k, l) ∈ ∆(mn). Then

1
Φ1(k)Φ2(l)

∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
i=1

l∑
j=1

Xij

∣∣∣∣∣∣
∣∣∣∣∣∣ �

1
Φ1(2m)Φ2(2n)

m∑
i=0

n∑
j=0

∑
(λ,µ)∈Iij

γ
(ij)
λµ . (3.6)

Combining (3.5) and (3.6) yields (3.2).
(ii) ⇒ (iii): It suffices to show that the conditions (3.3) and (3.4) imply (2.4). Assume that (3.3)

and (3.4) hold. First, we prove that there exists a positive constant C such that for all m � 0,

Φ1(2m+1) − Φ1(2m) � CΦ1(2m+1). (3.7)

This will be done by reductio ad absurdum. Let us assume that (3.7) fails, then for any k � 1, there exists
a non-negative integer mk such that

Φ1(2mk+1) − Φ1(2mk ) <
1
k
Φ1(2mk+1)

implying

lim inf
k→∞

Φ1(2mk+1)
Φ1(2mk)

� 1 + lim inf
k→∞

1
k

Φ1(2mk+1)
Φ1(2mk)

. (3.8)

On the other hand, by (3.3), we obtain

lim inf
k→∞

(1
k

Φ1(2mk+1)
Φ1(2mk)

)
= 0.

It follows from (3.8) that

lim inf
m→∞

Φ1(2m+1)
Φ1(2m)

� 1,
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which contradicts (3.3), and hence (3.7) holds. Thus,

1
Φ1(2m)

m∑
i=0

Φ1(2i+1) � 1
C

Φ1(2m+1)
Φ1(2m)

,

and so (3.3) ensures that

sup
m�0

1
Φ1(2m)

m∑
i=0

Φ1(2i+1) < ∞. (3.9)

By the same method, we can prove the following inequality

sup
n�0

1
Φ2(2n)

n∑
j=0

Φ2(2j+1) < ∞. (3.10)

Combining (3.9) and (3.10) yields (2.4).
(iii) ⇒ (iv): Clearly, if {Xij ,Fij , (i, j) ∈ N

2} is a strong martingale difference array, then it is a
blockwise strong martingale difference array with respect to the blocks {∆(mn), (m,n) ∈ N

2
0}. Therefore,

the assertion (iv) follows immediately from the assertion (iii) by choosing Φ1(x) = Φ2(x) = x.
(iv) ⇒ (i): Let (Xj ,Fj , j � 1) be an arbitrary martingale difference sequence such that

∞∑
j=1

E||Xj ||p
jp

< ∞.

For (i, j) ∈ N
2, set

Xij = Xj if i = 1, Xij = 0 if i > 1, Fij = Fj .

Then {Xij ,Fij , (i, j) ∈ N
2} is a strong martingale difference array. By the same argument as in the proof

of Theorem 2.1 of Quang and Huan [9], we can show that E is p-smoothable. ✷

The following theorem is a variation of Theorem 3.1. The proof technique is similar to that of
Theorem 3.1.

Theorem 3.2. Let E be a real separable Banach space and 1 � p � 2. Then the following two
statements are equivalent:

(i) The Banach space E is p-smoothable.
(ii) For every blockwise martingale difference array {Xij ,Fij , (i, j) ∈ N

2} with respect to the
blocks {∆kl, (k, l) ∈ N

2} and for any two functions Φ1(.), Φ2(.) which are positive nondecreasing
unbounded functions on (0,∞) satisfying (2.4), the condition

∞∑
i=1

∞∑
j=1

E||Xij ||p(
Φ1(i)Φ2(j)

)p < ∞ (3.11)

implies

1

Φ1(m)Φ2(n)
(
ψ(m,n)

) p−1
p

m∑
i=1

n∑
j=1

Xij → 0 a.s. as m ∨ n → ∞. (3.12)

Proof. (i) ⇒ (ii): Assume that the Banach space E is p-smoothable. For (m,n) ∈ N
2
0, (k, l) ∈ Λmn,

we define γ
(mn)
kl as in the proof of Theorem 3.1 and set

γmn =
1

Φ1(2m+1)Φ2(2n+1)
(
ψ(2m, 2n)

) p−1
p

∑
(k,l)∈Λmn

γ
(mn)
kl .

By the Cr inequality and Lemma 2.4, we have

Eγp
mn =

1(
Φ1(2m+1)Φ2(2n+1)

)p(
ψ(2m, 2n)

)p−1 E


 ∑

(k,l)∈Λmn

γ
(mn)
kl




p
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�
(
card(Λmn)

)p−1(
Φ1(2m+1)Φ2(2n+1)

)p(
ψ(2m, 2n)

)p−1

∑
(k,l)∈Λmn

E
(
γ

(mn)
kl

)p

� C
∑

(2m,2n)�(i,j)≺(2m+1,2n+1)

E||Xij ||p(
Φ1(i)Φ2(j)

)p .
Then

∑∞
m=0

∑∞
n=0 Eγp

mn < ∞, and so γmn → 0a.s. as m ∨ n → ∞. By the same argument as in the
proof of the implication ((i) ⇒ (ii)) of Theorem 3.1, we have (3.12).

(ii) ⇒ (i): This implication follows immediately from the implication ((iv) ⇒ (i)) of Theorem 3.1. ✷

The following corollary follows immediately from Theorem 3.2 and is a generalization of the implica-
tion ((i) ⇒ (ii)) of Theorem 2.1 of Quang and Huan [9].

Corollary 3.3. Let E be a real separable p-smoothable Banach space (1 � p � 2), let
{Xij ,Fij , (i, j) ∈ N

2} be blockwise martingale difference array with respect to the blocks
{∆kl, (k, l) ∈ N

2}, and let α, β be positive real numbers. If
∞∑
i=1

∞∑
j=1

E||Xij ||p
iαpjβp

< ∞,

then

1

mαnβ
(
ψ(m,n)

) p−1
p

m∑
i=1

n∑
j=1

Xij → 0 a.s. as m ∨ n → ∞.

We now extend the Marcinkiewicz–Zygmund strong law of large numbers to blockwise adapted
arrays. The proof is inspired by the previous work of Quang and Huan [9].

Theorem 3.4. Let E be a real separable p-smoothable Banach space (1 < p � 2), and let
{Xij ,Fij , (i, j) ∈ N

2} be a blockwise adapted array with respect to the blocks {∆kl, (k, l) ∈ N
2}.

Suppose that {Xij , (i, j) ∈ N
2} is stochastically dominated by a random element X with

E(||X||q log+ ||X||) < ∞ (3.13)

for some q ∈ (1, p). Then
m∑

i=1

n∑
j=1

(
Xij − E(Xij |F−

i−1,j−1)
)

(mn)1/q
(
ψ(m,n)

) p−1
p

→ 0 a.s. as m ∨ n → ∞. (3.14)

Proof. For (i, j) ∈ N
2, set

X ′
ij = XijI(||Xij || � (ij)

1
q ), X ′′

ij = XijI(||Xij || > (ij)
1
q ).

Then

E
(
X ′

ij − E(X ′
ij|F−

i−1,j−1)|F1
i−1

)
= 0, E

(
X ′

ij − E(X ′
ij|F−

i−1,j−1)|F2
j−1

)
= 0,

and so {X ′
ij − E(X ′

ij |F−
i−1,j−1),Fij , (i, j) ∈ N

2} is a blockwise martingale difference array with respect

to the blocks {∆kl, (k, l) ∈ N
2}, and

E||X ′
ij − E(X ′

ij |F−
i−1,j−1)||p � E

(
||X ′

ij || + E(||X ′
ij |||F−

i−1,j−1)
)p � 2p

E||X ′
ij ||p. (3.15)

By (3.15) and (2.3), we get
∞∑
i=1

∞∑
j=1

E||X ′
ij − E(X ′

ij |F−
i−1,j−1)||p

(ij)
p
q

� 2p
∞∑
i=1

∞∑
j=1

E||X ′
ij ||p

(ij)
p
q

< ∞.
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By using Corollary 3.3, we get
m∑

i=1

n∑
j=1

(
X ′

ij − E(X ′
ij |F−

i−1,j−1)
)

(mn)1/q
(
ψ(m,n)

) p−1
p

→ 0 a.s. as m ∨ n → ∞. (3.16)

Next, we again have that {X ′′
ij − E(X ′′

ij|F−
i−1,j−1),Fij , (i, j) ∈ N

2} is a blockwise martingale differ-
ence array with respect to the blocks {∆kl, (k, l) ∈ N

2}. Similarly, by (2.2), for all r ∈ [1, q)
∞∑
i=1

∞∑
j=1

E||X ′′
ij − E(X ′′

ij |F−
i−1,j−1)||r

(ij)
r
q

� 2r
∞∑
i=1

∞∑
j=1

E||X ′′
ij ||r

(ij)
r
q

< ∞.

Thus,
m∑

i=1

n∑
j=1

(
X ′′

ij − E(X ′′
ij |F−

i−1,j−1)
)

(mn)1/q
(
ψ(m,n)

) r−1
r

→ 0 a.s. as m ∨ n → ∞,

and so
m∑

i=1

n∑
j=1

(
X ′′

ij − E(X ′′
ij |F−

i−1,j−1)
)

(mn)1/q
(
ψ(m,n)

) p−1
p

→ 0 a.s. as m ∨ n → ∞. (3.17)

Combining (3.16) and (3.17) yields (3.14). The proof is completed. ✷

Corollary 3.5. Let E be a real separable p-smoothable Banach space (1 < p � 2), and let
{Xij ,Fij , (i, j) ∈ N

2} be a blockwise strong martingale difference array with respect to the blocks
{∆kl, (k, l) ∈ N

2} such that {Xij , (i, j) ∈ N
2} is stochastically dominated by a random elementX.

If (3.13) holds for some q ∈ (1, p), then

1

(mn)1/q
(
ψ(m,n)

) p−1
p

m∑
i=1

n∑
j=1

Xij → 0 a.s. as m ∨ n → ∞.

The next corollary follows immediately from Corollary 3.5 and is an extension of Theorem 2.4 (i) of
Quang and Huan [9].

Corollary 3.6. Let E be a real separable p-smoothable Banach space (1 < p � 2), and let
{Xij ,Fij , (i, j) ∈ N

2} be a blockwise strong martingale difference array with respect to the
blocks {∆(mn), (m,n) ∈ N

2
0} such that {Xij , (i, j) ∈ N

2} is stochastically dominated by a random
elementX. If (3.13) holds for some q ∈ (1, p), then

1
(mn)1/q

m∑
i=1

n∑
j=1

Xij → 0 a.s. as m ∨ n → ∞.
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