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Abstract 

Let },{ ∞<<−∞ iYi  be a doubly infinite sequence of identically distributed 

−ρ -mixing random variables, },{ ∞<<−∞ iai an absolutely summable sequence of 

real numbers. In this paper, we prove the complete convergence and Marcinkiewicz-

Zygmund strong law of large numbers for the partial sums of moving average 

processes








≥∑
∞

−∞=
+ 1n,Ya

i
nii under the same conditions as the case of the usual 

partial sums. 
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1.  Preliminaries  

Let },{ +∞<<−∞ iYi be a doubly infinite sequence of identically dis-

tributed random variables and },{ +∞<<−∞ iai be an absolutely summable sequence of 

real numbers. Next, let 

∑
∞

−∞=
+ ≥=

i
niin nYaX 1,   

be the moving average process based on the sequence },{ +∞<<−∞ iYi . As usual, 

we denote ∑ =
≥=

n

k kn nXS
1

1, , the sequence of partial sums. 

Under the assumption that },{ +∞<<−∞ iYi is a sequence of independent 

identically distributed random variables, many limiting results have been obtained for the 

moving average process }1,{ ≥nX n .For example, Ibragimov [5] established the central 

limit theorem, Burton and Dehling [3] obtained a large deviation principle, and Li et al. [7] 

obtained the complete convergence result for }1,{ ≥nX n . 

Certainly, even if },{ +∞<<−∞ iYi is the sequence of independent identically 

distributed random variables, the moving average random variables }1,{ ≥nX n are 

dependent. This kind of dependence is called weak dependence. The partial sums of 

weakly dependent random variables }1,{ ≥nX n have similar limiting behaviour 

properties in comparison with the limiting properties of independent identically 

distributed random variables. 

For example, we present some previous results connected with complete convergence. 

The following was proved in Hsu and Robbins [4]. 

 

Theorem A. Suppose that }1,{ ≥nX n is a sequence of independent identically distributed 

random variables. If ∑
∞

=

∞<≥<=
1

2
11 }|{|,0||,0

n
n nSPthenXEEX ε  for 

all .0>ε   

Hsu-Robbins result was extended by Li et al. [7] for moving average processes. 
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Theorem B. Suppose that }1,{ ≥nX n is the moving average processes based on a 

sequence },{ ∞<<−∞ iYi of independent identically distributed random 

variables with ∑
∞

=

∞<≥<=
1

2
11 }|{|,0||,0

n
n nSPthenYEEY ε  for all .0>ε    

Very few results for a moving average process based on a dependent sequence are known. 

In this paper, we provide a result on the limiting behaviour of a moving average process 

based on a ρ− -mixing sequence. 

Let },{ ∞<<−∞ iYi be a sequence of random variables defined on a probability 

space ( )PF ,,Ω .For a set of integer numbers T denote u-algebra 

F ( )T = ( )TiYi ∈,σ and as usual, for a u-algebra F we denote by ( )2L F the class of 

all F -measurable random variables with the finite second moment. 

 

For two sets S and T of real numbers we denote 

dist(S, T) = inf{ }TtSsts ∈∈− ,.|| . 

The following definition was introduced in Wang and Lu [10] . A sequence of random 

variables },{ ∞<<−∞ iYi is called ρ− -mixing if 

)(sp − = sup TSTSp ,);,({  are sets of integers, 

dist 0}),( →≥ sTS }≥ →( , ) 0S T s as ∞→s , 

where 

),( TSp − = max [ ]( ){ })(),,(sup,0 TjYgSiYfCorr ii ∈∈ , 

where supremum is taken over all coordinatewise increasing real functions f on  

SR  and g  on TR . 

Next, a sequence of random variables },{ ∞<<−∞ iYi is called *ρ - mixing if for 

some integer ≥ 1s  
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p(s)* = sup sup{ } 1)(:),( 2 <∈ TFLXYXCorr , 

where the first sup is taken over all pairs of nonempty finite sets S, T of integers, such that 

dist sTS ≥),( . The notion of *ρ -mixing seems to be similar to the notion of ρ -

mixing, but Bryc and Smolenski [2] showed that they are quite different from each other. 

    Recall that a finite family of random variables }1,{ niYi <<  is said to be 

negatively associated, if for any disjoint finite subsets S and T of integers and any real 

coordinatewise nondecreasing functions f on SR  and g  on TR . 

0)),(),,(( ≤∈∈ TjYgSiYfCov ji  

whenever the covariance exists. This concept was introduced by Joag-Dev and Proschan 

[6]. 

It is easy to see that },{ ∞<<−∞ iYi is negatively associated if and only if 

ρ−( )s = 0 for all ≥ 1s and ρ ρ− ≤ *( ) ( )s s . Hence the notion of ρ− - mixing is weaker 

than both notions of negative association and *ρ -mixing. 

The following inequality plays the crucial role in the proof of the main result and can 

be found in Wang and Lu [10], Theorem 2.1. 

Rosenthal-type Maximal Inequality. For a positive integer s, positive real numbers ≥ 2p  and 

,)6(0 2/ppt −<≤  if },{ ∞<<−∞ iYi is a sequence of random variables with 

tsp ≤− )( , with = 0iEY  and ∞<p
iYE ||  for every 1≥i , then for all 1≥n , 

there is a positive constant C = C(p, s, t) such that 



















+≤ ∑ ∑∑

= ==≤≤

n

i

pn

i
k

p
k

qk

i
ink

YEYECYE
1

2/

1

2

11
max  

       We also need the following simple statement (cf. Property P2 in Wang and Lu [10]). 
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Property of ρ−-mixing random variables. Let { }1, ≥nYn  be a sequence of ρ−  -mixing 

random variables. If { }1, ≥nfn  is a sequence of real functions all of which are monotone 

nondecreasing (or all monotone nonincreasing), then { }1),( ≥nYf nn  is a sequence of ρ−  

-mixing random variables. 

Note that Property P2 in Wang and Lu [10]  is stated only for increasing functions. It is simple 

to see that this property remains true for nondecreasing functions, too. The statement for 

nonincreasing functions follows for the observation that if a function nf is nonincreasing, then 

the function − nf is nondecreasing. 

Recall that a measurable function h is said to be slowly varying if for each λ > 0  

1
)(
)(lim

x
=

∞→ xh
xh λ

 

We refer to Seneta [9] for other equivalent definitions and for detailed and comprehensive 

study of properties of such functions. 

     In the following, C will represent a positive constants although its value may change from 

one appearance to the next. 

We need the following pure technical lemma. 

 

Lemma.  Let h be a positive slowly varying function and Y be a random variable 

with ∞<)( prp YhYE , where 1, 1r p≥ ≥ . 

{ } .)()()(
1

/11∑∞

=
− ≤>

n

pppr YhYCEnYPnhni  

      ( )ii If vspvs >>≥ ,0,1  and ∞<)|(| psp YhYE  , then 

{ } ).()(
1

/1/1 psp

n

pvpvs YhYCEnYIYEnhn ≤>∑
∞

=

−−  

 

Proof. First of all, we mention that statement (i) is well known, so we will prove only (ii). 

We have  
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{ }∑
∞

=

−− >
1

/1/1 )(
n

pvpvs nYIYEnhn  

 

{ }∑ ∑
∞

=

∞

=

−− +≤<=
1

/1 1)(
n

pv

nm

pvs mYmIYEnhnC  

 

{ }∑∑
∞

=

−−
∞

=

+≤<=
1

/1

1
)(1||

n

pvx

m

pv nhnmYmIYEC  

   

{ }∑
∞

=

−− +≤<≤
1

/1 1)(
m

pvpvs mYmIYEmhmC

{ }∑
∞

=

−− +≤<=
1

/1 1)(
m

pvpvs mYmIYmhEmC

{ }1||)()(
1

/1 +≤<≤ ∑
∞

=

−− mYmIYhYYEC pp
p

m

pvsp
 

).( prp YhYCE≤  

 

 

2 .   M a i n s t r e a m  

With the preliminaries accounted for, the main theorem can now be presented and proved. 

 

Theorem. Let ( )h x  be a positive slowly varying function and1 2, 1,p r≤ < ≥ 1pr ≠ . 

Suppose { },iY i−∞ < < ∞ is a sequence of identically distributed and ρ− -mixing random 

variables and { }, 1nX n ≥ is defined as above. Then 

1 0EY = and 1 1( )rp pE Y h Y < ∞ imply that for all 0ε >  

 

.max)(
1

/1

1

2 ∞<









≥∑ ∑

∞

= =≤

−

n

p
k

j
jnk

r nXPnhn ε  
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 In particular, the assumptions 1 0EY = and 1 ,1 2pE Y p< ∞ < < imply Marcinkiewicz-

Zygmund strong law of large numbers 

 

∑
∞

=

− →
1

/1 0
n

k
p Xn  ..sa  as ∞→n  

 

Proof:  Let  { } { } { },/1/1/1/1/1)1( p
j

pp
jj

p
j

p
nj nYInnYIYnYInY >+≤+−<−=  

and =)2(
njY  (1)

j njY Y− be the monotone truncations of },{ ∞<<−∞ jY j Then by the 

property of ρ− -mixing random variables, for any 

{ }∞<<−∞−≥ jEYYn rjnj ,,1 )1()1( and { }∞<<−∞ jYrj ,)2(  are two sequences of 

ρ− -mixing random variables. Note that 

∑ ∑∑∑∑
∞

−∞=

+

+=

∞

−∞=
+

==

==
i

ni

ij
ji

i
kii

n

k

n

k
k YaYaX

111

 

and 

∑∑∑∑
+

+=≤≤

∞

−∞=

−
+

+=

∞

−∞=

− ≤
ki

ij
rjnki

i
p

ki

ij
rj

i
i

p YEanYaEn
1

)1(

1

/1

1

)1(/1 maxmax  

{ } { }( )pppp nYPnnYIEYCn /1
1

/1/1
11

/1 |||| >+≤≤ −  

{ } { }ppp nYCnPnYIYECn /1
1

/1
11

/11 >+>≤ −

 { } { } ,0/1
1

/1
11 →>+>≤ ppp nYCnPnYIYCE  

 

as .n →∞  Hence, for any 0ε > where exists m large enough such that 

.4/max
1

)1(

1

/1 ε<∑∑
+

+=

∞

−∞=≤≤

−
ki

ij
rj

i
ink

p YaEn  

 

Therefore, in order to prove Theorem, it is enough to prove that 
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and 
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1
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For J by Markov inequality we have 

∑ ∑∑
∞

=

+

+=

∞

−∞=≤≤

−−≤
1 1

)2(

1

/12 max)(
n

ki

ij
rj

i
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  { } { }( )∑
∞

=

−− >+>≤
1

/1
1

/1/1
11

/11 )(
n

ppppr nYPnnYIYEnhnC  

 { } ( )∑
∞

=

−− +>≤
1

11
/1

11
/11 )(

n

prpppr YhYCEnYIYEnhnC   (by Lemma (i)) 

  ∞<≤ )(1
prp YhYCE   (by Lemma (ii) with v =1, and  s=r). 

 

For I, fix any 2q ≥ (to be specified later). Then 

            ( )
q

i
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       ( by Markov inequality ) 
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( )
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i

q

i
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     (by HÖlder inequality) 

( )
q
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ij
njnjnki

i
n

pqr EYYEanhnC ∑∑∑
+
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∞
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
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1 1

)1()1(
2/2)1()1(

1

/2 )(  

     (by Rosenthal-type Maximal Inequality) 

    

{ } { }( )( ){ }2//1
1

/2/1
1

2
1

1

/2 )( qppp

i
i

n

pqr nYPnnYIEYnanhnC >+≤≤ ∑∑
∞

−∞=

∞

=

−−

{ } { }( )ppqpq nYPnnYIYEn /1
1

//1
11 >+≤+  

    

    { } { }( )( ){ }2//1
1

/2/1
1
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1

1

/2 )( qppp

n

pqr nYPnnYIEYnnhnC >+≤≤ ∑
∞

=

−−  

{ } { }( )ppqpq nYPnnYIYEn /1
1

//1
11 >+≤+       (since i

i
a

∞

=−∞

< ∞∑ ) 

 

We consider two separate cases. If 2rp < , let 2.q =  

{ } { }( )ppp

n

pqr nYPnhnnYIYEnhnCI /1
1

/2/1
1

2
1

1

/2 )()( >+≤≤ ∑
∞

=

−−  

{ } ( )prpp

n

pqr YhYCEnYIYEnhnC 11
/1

1
2

1
1

/2 )( +≤≤ ∑
∞

=

−−   (by Lemma (i)) 

    ( )∞<+ prp YhYCE 11   (by Lemma (ii) with 2.q = ). 

If 2rp < , let 2
2

)1(2
≥

−
−

>
p

rpq . Note that in this case 
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{ } ( ) ∞<≤≤≤
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and by Markov inequality 
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1

/1
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    ( ) ∞<+≤ prp YhYCEC 11   (by Lemma (i) and (ii)) 

 

 Now we show the almost sure convergence. By the first part of Theorem, 

1 0EY = and 1
pE Y < ∞  imply 

{ } ∞<>∑
∞

= ≤≤

−

1

/1

1

1 max
n

p
mnk

nSPn ε  for all 0.ε >  

Hence 

{ }∑
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− >>∞
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1 max
n

p
mnk

nSPn ε  
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p
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{ }∑
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>≥
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ε . 
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By Borel-Cantelli lemma, 

 

0max2
21

/ →
≤≤

−
m

m

pk S
k

 almost surely 

 

which implies that 0/ /1 →p
n nS  almost surely.  

 

 
3.  Concluding remarks 

1. The careful analysis of the proof shows that Theorem remains true if we relax the 

assumption of ρ− -mixing to the condition that for a positive integer s and 

0 t≤ / 2(6 ) pp −< , },{ ∞<<−∞ iYi is a sequence of random variables with 

ρ− ≤( ) .s t  

2. It is easy to prove that Theorem remains true if the assumption of the identical 

distribution of the random variables },{ ∞<<−∞ iYi is relaxed to the slightly weaker 

assumption that this sequence is stochastically dominated by a random variable Y with 

corresponding moment assumptions. Recall that a sequence of random variables 

},{ ∞<<−∞ iYi is said to be stochastically dominated by a random variable Y if there 

is a constant 0D >  such that for all 0t ≥  

{ } Dt}.  | YDP{|   t YPsup i >>
∞<<∞− i

 

3. Since the notion of ρ− -mixing is weaker than both notions of negative association 

and *ρ -mixing, the statement of Theorem remains true if we consider the moving 

average process based on a sequence of negative associated or *ρ -mixing random 

variables. We would like to mention two publications by Baek et al. [1] and Liang et al. [8], 

where moving average processes based on a negative associated sequence of random variables are 

considered. Even for this particular case, our result is stronger since it deals with maximums 

of partial sums. 
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4. The case 1pr =  is not treated in Theorem. The authors believe that the result can be 

proved under the additional assumption that ii
a θ∞

=−∞
< ∞∑ for some 0 1,θ< < but 

this is still an open problem. 
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